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ABSTRACT

High-throughput sequencing of cDNA libraries con-
structed from cellular RNA complements (RNA-Seq)
naturally provides a digital quantitative measure-
ment for every expressed RNA molecule. Nature,
impact and mutual interference of biases in different
experimental setups are, however, still poorly
understood—mostly due to the lack of data from
intermediate protocol steps. We analysed multiple
RNA-Seq experiments, involving different sample
preparation protocols and sequencing platforms:
we broke them down into their common—and
currently indispensable—technical components
(reverse transcription, fragmentation, adapter liga-
tion, PCR amplification, gel segregation and
sequencing), investigating how such different
steps influence abundance and distribution of the
sequenced reads. For each of those steps, we
developed universally applicable models, which
can be parameterised by empirical attributes of
any experimental protocol. Our models are imple-
mented in a computer simulation pipeline called
the Flux Simulator, and we show that read distribu-
tions generated by different combinations of these
models reproduce well corresponding evidence
obtained from the corresponding experimental
setups. We further demonstrate that our in silico
RNA-Seq provides insights about hidden precursors
that determine the final configuration of reads along
gene bodies; enhancing or compensatory effects
that explain apparently controversial observations
can be observed. Moreover, our simulations

identify hitherto unreported sources of systematic
bias from RNA hydrolysis, a fragmentation tech-
nique currently employed by most RNA-Seq
protocols.

INTRODUCTION

Read abundances from RNA-Seq experiments reflect the
quantities of different RNA molecules in the interrogated
transcriptome (1). It is commonly accepted that gene ex-
pression profiles exhibit a similar shape across evolution-
ary distant organisms and functionally diverse cell types.
Observations based on expressed sequence tags (2) show
that most transcripts are rare, some are moderately
abundant and only a small portion is very abundant.
Such unbalanced distribution can be modelled using
Zipf’s Law (3) which exhibits a characteristic linear behav-
iour in log–log (4). Furusawa and Kaneko (2) link the
reason behind this observation to general thermodynamic
diffusion constants that determine power law distributions
in a large spectrum of biomolecules, whereas Ogasawara
et al. (5) propose an evolutionary model.
However, experimental protocols are increasingly

reported to generate deviations from the expected read
distributions (6–8). Since the first ultra sequencing experi-
ments on cellular transcriptomes (9,10), sample prepar-
ations for so-called RNA-Seq have evolved in multiple
respects and generated a considerable repertoire of proto-
cols, which however all stem from a common set of elemen-
tary components. First and foremost, because all current
sequencing technologies can only handle DNA substrates,
reverse transcription (RT) of RNA into cDNA has to be
accomplished. In the first protocols to be proposed for
library preparation, RT constituted the initial step,
involving either poly-dT (for poly-A+ transcriptomes)
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or random primers (usually hexamers) to initiate first-
strand synthesis. Poly-dT oligomers primarily bind in
the region of the poly-A tail, which—especially for long
transcripts—can result in template loss during RT of the
entire molecule and thereby cause a loss of 50-end infor-
mation (9). Randomly primed first-strand synthesis of
full-length RNA molecules, in contrast, can lead to a
relative over-representation of the 50-end information
(11). To diminish RT-related biases, RNA-Seq concepts
have changed towards protocols that postpone RT after
fragmentation, which seems to prevent a strong bias of
read abundances towards the 30-end (1).
Second, fragmentation of transcripts is necessary

because current sequencing platforms produce relatively
short tags from the ends of much longer DNA molecules.
Therefore, any attempt to sequence non-fragmented RNA
populations would result in reads that exclusively repro-
duce the ends of transcripts. First RNA-Seq protocols
relied on fragmentation by restriction enzymes (e.g.
NlaIII or DpnII) to cleave reversely transcribed cDNA
(9,12). Due to the sequence specificity of each restriction
enzyme, however, the number of fragments produced by
enzymatic digestion is not directly comparable between
transcripts of different sequence compositions; for
instance, �4% of known Drosophila melanogaster genes
do not exhibit a NlaIII-recognition site (13), and even
degradation by the endonuclease DNAseI—so far con-
sidered as unspecific—has recently been reported to
exhibit strong sequence-selective characteristics (7).
Therefore, efforts were soon directed towards the devel-
opment of sequence-independent ‘random’ fragmentation
protocols (13), at first by employing nebulisation, the
physical shearing of cDNA molecules in a liquid
medium (14). Although being cost-efficient and effective,
nebulisation has been criticised for its inability to
fragment DNA chains shorter than �700–800 nt and for
producing suboptimal fragment size distributions when
subsequent size selection steps are present (15).
Consequently, current RNA-Seq protocols implement
fragmentation by the controlled hydrolysis of RNA—
usually catalysed by heat and acetate-complexed Mg2+

or Zn2+ ions (11)—which is generally considered to
produce uniformly distributed fragments (1).
After RT, during the ‘final library preparation’, adapter

sequences are ligated to both sides of the double-stranded
DNA molecules, which mediate the binding of fragments
to beads and harbour primer-binding sites for amplifica-
tion. Randomly primed RT (7) and/or the adapter ligation
process (16,17) promote sequence-selective biases which
manifest as motifs at the fragment ends (7,8); promising
RNA-ligation based protocols avoiding both steps have
been demonstrated (17,18). Before sequencing, fragments
of the primary library are often amplified by a polymerase
chain reaction (PCR), because the most cost-efficient
sequencing platforms to date do not accept single
molecule substrates. Amplification efficiency is known to
depend on the GC content of the respective molecule (17),
although controversial reports on the correlation between
GC content and RNA-Seq coverage have been published
(6,17,19). Leading high-throughput technology providers
therefore suggest a size selection step in order to keep

amplification biases under control by making fragment
lengths homogeneous: e.g. 300–1000 nt long fragments
are recommended for the Roche’s pyrosequencer (20),
and 200 nt� 25 nt are usually suggested for Illumina
sequencing experiments. Size selection in general is imple-
mented by gel electrophoresis, which suffers from artefacts
like molecule aggregates (21).

Finally, the ‘sequencing’ step obtains one arbitrary end
(single reads) or both ends (paired-end reads) of the
cDNA fragments in the library. Read sequences undergo
modifications according to the technical limitations of the
corresponding platform, e.g. insertions/deletions (indels)
typically occur in reads produced by Roche pyro-
sequencing (22), whereas Illumina sequencing platforms
mainly exhibit read sequences with an increased rate of
nucleotide substitutions—and a correspondingly
decreased quality—towards the read end (6). Additionally,
the interplay between sequencing chemistry, sequencer
machine calibration and the base calling algorithm
employed during the downstream analysis of raw data
determine subtle preferences in the so-called ‘crosstalk’,
i.e. the misrecognition of chromophore-marked nucleo-
tides (23).

MATERIALS AND METHODS

Simulation of different fragmentation processes

Enzymatic digestion
In our implementation of in silico enzymatic digestion,
position weight matrices are employed to capture the
sequence selectivity of the corresponding enzyme (e.g.
NlaIII or DpnII) and fragmentation points of cDNA mol-
ecules are determined by importance sampling.

Nebulisation
According to preliminary modelling attempts (24), poten-
tial breakpoints are distribtuted as a Gaussian function
around the molecules’ midpoints and the breaking prob-
ability is drawn from an exponential of the ratio between
the fragment size and the limiting size below which mol-
ecules are unlikely to be broken any further (�=700 nt
for cDNA, Supplementary Methods).

Hydrolysis
Previously published models of hydrolysis are based on
the assumption that fragment sizes produced by uniformly
random fragmentation of molecules with the same length
fall along a characteristic Weibull distribution, if the decay
rate depends on molecule size (25). Here we propose a
model for transcript populations of heterogeneous
lengths, where we empirically derive a logarithmic depend-
ence of the Weibull shape-parameter on the molecule’s
length (see Supplementary Methods and Results section).

Simulation of reverse transcription

We model RT separately for first- and second-strand syn-
thesis. The start point depends on the priming strategy
(i.e. parameters Poly-dT or random) and optionally by a
position weight matrix (PWM) describing the sequence
bias. The primer extension length is parameterised by
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the minimum (RTmin) and maximum length (RTmax) of the
expected cDNA molecules (Supplementary Methods).

Simulated size selection

As for the fragment sizes observed after gel electrophor-
esis, the Flux Simulator accepts parameterised normal
distributions or empirical distributions. Fragments are
subsampled according to such distributions, either by
acceptance–rejection sampling or by the Metropolis–
Hastings algorithm (26,27).

Simulated adapter ligation and PCR amplification

We simulate the reaction kinetics of the adapter ligation
process—reflected by motifs of sequences that are
preferred by the involved enzymes—as Bernoulli trials
parameterised by a PWM representing the sequence
bias. PCR-amplification is sensitive to the GC content of
the amplified DNA stretches and in agreement with
previous observations (17), we model PCR-efficiency as
a quantity distributed normally about a GC-optimum
(Supplementary Methods).

Simulated sequencing

During in silico sequencing, the fragments in the library
are subsampled and the sequence of either an arbitrary
end for single reads, or of both ends for paired mates, is
obtained. The number of reads and their length may be
specified; however, there cannot be more reads than the
number of fragments in the library, nor can any read be
longer than the fragment it comes from. The orientation
of the reads is characteristic in sequencing-by-synthesis
protocols (13,17) due to an intrinsic attribute of polymer-
ases progressing strictly from 30 to 50 along the template
(Supplementary Figure S1). For Illumina chemistry, we
additionally implemented a quality-based error model
(Supplementary Figure S2).

Simulated gene expression

In agreement with preliminary observations (2,5), our
analysis of the reference data sets demonstrates that
gene expression profiles estimated from RNA-Seq data
exhibit an about linear shape in log–log space up to the
first thousands of gene expression ranks (Supplementary
Figure S3). By non-linear fitting to the experimental data,
we deduced a modified Zipf’s Law, which we employ to
assign randomised expression levels to genes and tran-
scripts in our simulations (Supplementary Methods).

In the Flux Simulator, we also include the simulation of
two biologically relevant modifications of annotated tran-
scripts: transcripts with the same splicing structure, i.e.
identical configuration of introns that are removed
during the processing of nascent RNA, still may vary in
their precise transcription start site and in the length of
their poly-A tail (Supplementary Methods). These features
can have a significant impact on the physical attributes of
the corresponding molecules, playing an important role
during library preparation.

Data source and basic processing

For our analysis, we employed publicly available read
data (Supplementary Methods) from: Saccharomyces
cerevisiae (9), Arabidopsis thaliana (28),Mus musculus (11),
the same Homo sapiens sample sequenced with two differ-
ent RNA-Seq protocols, i.e. flowcell RT-Seq (FRT) and
standard hydrolysis (STD) protocol (17), andRNA control
sequences spiked-in in high concentrations (29). In a first
step, we mapped and split-mapped non-redundantly all
the reads to the respective reference genome sequence
using the GEM library (http://sourceforge.net/projects/
gemlibrary); in the case of the cress data set, which is com-
paratively small, we also considered additional read
mappings with long indels obtained with BLAT (30).
Subsequently, we focused on the distribution of reads

that map to transcripts without alternatively processed
forms. To define such transcripts, we considered a
standard reference annotation of the transcriptome, i.e.
the SGD annotation for yeast (31), the TAIR annotation
for cress (32) and the murine as well as the human RefSeq
annotation (33). This procedure provided us with
mappings for 6 606 768 reads (47%) from yeast, 351 336
reads (65%) from cress and for 21 359 481 reads (68%)
from mouse, and with 530 996 reads that map in proper
pairs to the spike-in control sequences. Due to substan-
tially different data set sizes (90 million versus 13 million
reads), in the case of the human FRT- and the STD-Seq
experiments, we extracted subsets of reads of suitable size
before mapping to ensure comparability (Supplementary
Table S1).

RESULTS

Overview of the Flux Simulator RNA-Seq pipeline

We implemented a computer pipeline for simulating
RNA-Seq experiments—which we call the Flux
Simulator—comprising explicit models for the processes
that determine abundance and distribution of read tags
according to the specified experimental protocol (see
Figure 1 and Methods section). Starting from a genomic
sequence for a certain species and a corresponding anno-
tation of gene structures, the first step of this pipeline is, in
fact, a transcriptome simulation (Figure 1A) where—if no
pre-defined cell expression profile is available—annotated
genes and transcripts are assigned randomised expression
levels according to the general laws of gene expression
(Supplementary Figure S3).
Next, the in silico transcriptome undergoes RT/frag-

mentation (Figure 1B and C) according to the established
experimental techniques: in one possible scenario, RNA
molecules are first reversely transcribed into cDNA—
adopting poly-dT or random primers—and afterwards
fragmented by nebulisation or enzymatic digestion
(Figure 1B and C, left); alternatively, fragmentation is
carried out by RNA hydrolysis before fragments are
transcribed into cDNA molecules by random priming
(Figure 1B and C, right).
The Flux Simulator pipeline also provides optional

steps to model the final library preparation, involving in
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silico ligation of adapter sequences, fragment size selection
and PCR amplification (Figure 1D). Eventually
high-throughput sequencing is simulated at the level of
the single DNA molecule, offering the possibility to
include platform-specific base calling errors (Figure 1E).
The output comprises the read sequences and their
genomic locations.

Physical properties of fragments produced by
RNA-hydrolysis

By ‘uniform fragmentation’ we refer to the sequence-
independent selection of breakpoints, as implemented for
instance by DNA nebulisation or RNA hydrolysis, which
is not to be confused with uniform breakpoint distribu-
tions along each transcript. In contrast to reports on the
unequal representation of transcripts by nebulisation,
fragmentation from RNA hydrolysis is considered to
produce fragments of comparable lengths (11) without
positional preferences (1). In this section, we study both
hypotheses by simulating with our pipeline the experimen-
tal distributions observed for the so-called spike-in
controls of known sequences (29). To this end, we
extend a model proposed for uniform random fragmenta-
tion processes when the breaking probability depends on
molecule size (25).
Paired-end reads generated from spike-in control se-

quences are particularly well suited to assess differences
in fragment size distributions, as biases from incomplete

transcript annotation can safely be excluded, and
fragment sizes can be estimated straightforwardly by the
distance between mapped read mates. Figure 2A demon-
strates that fragments originating from three highly
covered control sequences having substantially different
lengths (i.e. 35 838 hydrolysis fragments from the
11 934 nt long Lambdaclone1-1, 472 364 fragments from
the 1429 nt long OBF5, and 21 264 fragments from the
376 nt VATG sequence) also exhibit markedly different
size distributions: when an arbitrary size of 150 nt is
chosen as the threshold between short and long forms,
we observe 36% fragments <150 nt for the short RNA
control VATG (Figure 2A, green curve), whereas short
fragments account for only 22% of the molecules in the
case of the typical messenger-sized control OBF5
(Figure 2A, red curve), and their proportion drops to
15% for the long control sequence Lambdaclone1-1
(Figure 2A, blue curve).

The analysed experiment employs a gel segregation step
in which exclusively fragments with the overall size attri-
butes shown in Figure 2B are selected. Therefore, one
cannot computationally cast back to the intermediate
size distribution of fragments after fragmentation and
before size selection. However, a previously published
model for uniformly random fragmentation processes
in molecules having the same length predicts that the
sizes of the produced fragments follow a Weibull distri-
bution—which is specified by two characteristic

Figure 1. Outline of the Flux Simulator pipeline. Provided the genomic sequence of an organism and a representative gene annotation as input, the
initial step is a transcriptome simulation (A) to assign each transcript a randomised expression level according to general laws of gene expression.
Subsequently, fragmentation (B) and RT (C) are carried out, either by first hydrolysing RNA and then transcribing the fragments into cDNA
molecules (B and C, right) or by nebulisation respectively enzymatic digestion after reversely transcribing the entire RNA molecules (B and C, left).
The simulated molecules of the primary library then get amplified by in silico PCR (D)—optionally after selecting a certain size range—and the final
library then is subjected to simulated sequencing (E), including potential platform and sequencing chemistry specific error models. Finally, read
sequences along with their genomic mappings are obtained.
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parameters, the shape (d) and the scale (Z). According to
Figure 2B we conducted an exhaustive search within
the relevant parameter space followed by simulated size
selection (Supplementary Materials and Methods) and
we found that the differences observed for fragment
sizes can be qualitatively reproduced employing a
constant decay rate (Z=200 nt), with the further prescrip-
tion that the shape parameters depend logarithmically on
the molecule length (Supplementary Figure S4).

With our parameterised hydrolysis model (Z=200 nt,
d�2.6 for VATG, d�3.2 for OBF5 and d�4.1 for
Lambdaclone1-1) we then investigated the abundance
distribution of fragments observed along transcript
bodies. To avoid biases that have been demonstrated
to impact on the ends of fragments in the considered
experimental protocol (7,8), we focused during our
analysis on the distribution of fragment midpoints
along the RNA molecule they have been derived from.
The top panels of Figure 3 show the density of such
fragment centres produced by in silico hydrolysis along
the three transcript bodies of Lambdaclone1-1, OBF5
and VATG (primary axis), segregated by the respective
fragment size (secondary axis). The corresponding
bottom panels depict the experimental outcome, which
is sensitive to additional influences from other steps (e.g.
size selection).

Albeit there are differences, the positional biases pre-
dicted by the hydrolysis simulation reproduce qualita-
tively the patterns of fragment concentrations observed
in the experiment: the short VATG control exhibits
three such distinct points (Figure 3, left), whereas the
mRNA-sized OBF5 control shows seven fragment accu-
mulations (Figure 3, centre)—and in both cases such
points are located with remarkable symmetry about the

centre of the reference molecule. Density fluctuations of
Lambdaclone1-1 (Figure 3, right), the longest of the
spike-in sequences considered, fall below the resolution
limit of the diagram (Supplementary Figure S5).

Convolution of physical with chemical biases

After elucidating positional preferences caused by physical
attributes of RNA molecules, we set off to establish com-
putational models for capturing biases caused by a mol-
ecule’s sequence composition. Some sensitivity of
RNA-Seq coverage to the GC content had already been
noted earlier (6), especially in protocols involving PCR-
amplification (17). In agreement with these previous
studies we found that empirical PCR amplification effi-
ciency can be appropriately modelled by a Gaussian dis-
tribution centred around a GC content of 50%
(mean=0.5, SD 0.1; Supplementary Figure S6).
In the case studies of spike-in sequences described in the

previous section, we assessed the correlation between the
number of fragments covering a certain position and the
GC content in a window of 192 nt (the mean fragment
size) centred at that position (Figure 4, top panels): for
the Lambdaclone1-1 and the OBF5 controls we found a
high correlation (Pearson coefficient of 0.91 and 0.97, re-
spectively) between binned GC fraction and the respective
fragment coverage, whereas in the VATG control both
attributes strongly anti-correlated (Pearson coefficient
�0.88). These apparently contradictory observations
cannot be satisfactorily explained just by a significantly
larger range of GC content in the former two controls
(ranging from �30% to >50% GC) as opposed to a
quite tight spectrum (39–45% GC) in the latter case.
The reasons behind this seemingly paradoxical depend-

ence on GC content become clearer when considering

Figure 2. The size of an RNA molecule determines the hydrolysed fragments’ size distribution. (A) Theoretical and experimentally measured
probability distributions of three control sequences with significantly distinct lengths: VATG (376 nt long, green lines), OBF5 (1429 nt, red lines)
and Lambdaclone1-1 (11 934 nt, blue lines). The solid lines represent frequencies observed by the reads of an experiment, whereas the dashed lines are
simulated results, obtained by the procedure depicted in B and C. Lambdaclone1-1—the longest control sequence—exhibits relatively less short
fragments (blue curve), whereas VATG—the shortest control sequence—shows a comparatively lower fraction of long fragments (green curve). (B)
The distribution used for simulated size filtering (solid line) is obtained by adjusting the insert size distribution observed across all sequences of the
experiment (dashed-dotted line) with the combined distribution of insert sizes before filtering (dashed line), as estimated by simulated hydrolysis of
the three spike-ins. During simulated size selection, weighted subsampling according to the filter distribution (solid line) is applied to the fragment
size distributions (C) to derive the distributions predicted by the simulation after size filtering (A). (C) Computational prediction of fragment size
distributions obtained from either control sequence after simulated hydrolysis, i.e. before size selection. According to the employed model, fragment
sizes fall along Weibull distribution of same scale (= 200 nt) but different shapes (d=2.6, 3.2 and 4.1 for VATG, OBF5 and Lambdaclone1-1,
respectively). Subjecting these simulated fragments to in silico size selection (B) can reproduce the differences observed in experimental results for the
investigated controls (A).
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GC-biases together with positional biases caused by frag-
mentation (Figure 4, bottom panels): in Lambdaclone1-1
and OBF5 fragments, coverage (red curve) declines where
GC content (blue curve) drops; in VATG (Figure 4, right
bottom panel), on the other hand, GC content shows a
drop about the centre of the molecule where—consistent
with our hydrolysis model (Figure 3)—the mutual over-
lap of fragment accumulations causes a coverage peak
(Figure 4, left bottom panel). Similar observations hold
for other control sequences from the same experiment.
Interestingly, the transcript AGP, which has a length
similar to that of VATG (325nt versus 376nt), exhibits—
in contrast to VATG—a pronounced dependency of
fragment coverage on GC: this is due to the fact that in
the case of AGP, GC-distribution along the molecule and
positional preferences of hydrolysis mutually amplify about
the molecule’s centre (Supplementary Figure S7).

Sequence-selectivity at the ends of sequenced fragments

RNA-Seq is known to introduce biases not only in
relation to the fraction of G and C nucleotides present
in a sequence, but also for certain nucleotides towards
the ends of a sequenced fragment, manifesting in motifs
of bases preferred at specific positions (7). In agreement
with earlier reports that predict fragment end positions by
employing correspondingly observed motifs modelled as

position weight matrices (PWMs), we found only
moderate correlations between the observed fluctuations
and the predictions based on PWMs (8). Supplementary
Figure S8 depicts the effect of sequence-selectivity—which
has been attributed to the enzyme–subtrate kinetics of
randomly-primed reverse transcription process (7) and/
or adapter ligation to cDNA molecules (16).

To alleviate such biases, a modified hydrolysis protocol
is sometimes performed, where the ligation of adapter se-
quences to the RNA molecule comes before RT and the
latter is carried out with primers specifically targeting
anchor sequences in the adapters. Variants of such
‘RNA-ligation’ based methods differ in the way adapter
sequences are attached to the respective 50- and 30-ends
of RNA fragments, e.g. by the use of standard RNA
ligase (17) or by poly-A polymerase and special circular
ligase (18).

Both methods have been reported to improve the uni-
formity of read coverage along transcripts. Here we
evaluate our computational models by analysing the dif-
ference between simulations with PWMs (derived from
RNA-Seq data sets produced by the standard hydrolysis
protocol) and the experimental results of the RNA-
ligation method called FRT-Seq (as RT is performed on
an Illumina flowcell), in the case of a human placental
sample. In addition to the difference in substrate when

Figure 3. RNA hydrolysis produces characteristic patterns of fragment accumulations. Distribution of fragment midpoints along RNA control
sequences added to an RNA-Seq experiment that involves fragmentation by hydrolysis. The x-axis resolves the positions of fragment centres along
the RNA control molecules VATG (right, 376 nt), OBF5 (centre, 1429 nt) and Lambdaclone1-1 (left, 11 934 nt long), whereas the y-axis segregates the
obtained fragments according to their lengths. Data are shown as density scatter plots, with observed frequencies increasing from blue to red to
yellow. The top panels show the distributions predicted by simulation employing the hydrolysis model implemented in the Flux Simulator, whereas
the corresponding experimental outcome is shown in the bottom panels. Distinct points of fragment accumulations are notable in the short reference
VATG and in the mRNA-sized control OBF5.
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ligating adapters, the FRT-protocol is PCR-free and
employs no specific size selection step (17).

Figure 5 shows that the PWMs derived from read se-
quences differ substantially in the two cases. The informa-
tion content, a logarithmic measure of the deviation from
uniformly distributed nucleotide frequencies that corres-
pond in the depicted sequence logos to the height of a
stack of letters at every position, describes less severe
biases in the FRT-Seq protocol (Figure 5A) than in the
standard hydrolysis protocol (Figure 5B). Consequently,
we observe a higher degree of transcript coverage in the
FRT experiment (Figure 5A versus B, black bars). The
trend can be reproduced in silico when providing the cor-
responding PWM and de-activating simulated PCR and
size selection (Figure 5A and B, grey bars). Differences
between the simulated and the experimental data set are
mainly due to different mapping redundancies: on average
�1.82 mappings per read are found for the experimental
data set, whereas in the simulated data to every read
exactly one mapping can be assigned.

Simulation of generic RNA-Seq experiments

We then employed the entire Flux Simulator pipeline to
assess how well the models described so far—when
combined—can mimic the overall distribution of reads
along RNA molecules in populations of cellular tran-
scripts. To allow the simulation of realistic transcript

expression levels, we developed a transcriptome simulator:
it is based on Zipf’s Law—which governs gene expres-
sion— and modified according to further empirical obser-
vations from RNA-Seq experiments (Supplementary
Figure S3 and Supplementary Table S2).
Since sequencing-by-synthesis protocols produce reads

whose first nucleotide identifies the fragment edge (i.e. the
breakpoint) and whose mapping directionality further
reveals the nature of the fragment edge (i.e. whether it
constitutes a 50- or 30-end, Supplementary Figures S1
and S9), we separately focused on breakpoint distributions
for reads mapping in sense and in antisense directions,
thus preventing influences on sequence coverage by differ-
ent read lengths. In our benchmark, we investigated
four different experiments (i.e. the last four rows in
Supplementary Table S1) that differ in species/tissue of
the sequenced RNA, sample preparation and sequencing
platform (9,11,28). For each data set, we provide a
parameterised in silico model (Supplementary Table S3),
and we compare the experimental observation with the
simulation.
The results of our comparisons are summarized

in Figure 6. As a general trend, they reproduce earlier
observations (28) that reads from 50-ends of fragments
(sense mappings) generally increase close to the 50-end of
transcripts and decrease close to the 30-end, whereas the
30-ends of fragments (antisense mappings) exhibit an

Figure 4. Convolution of hydrolysis biases with sensitivity to GC content. The GC content of the three spike-in controls has been measured per
position considering a surrounding window corresponding to the mean observed insert size (192 nt). To estimate coverage, the number of fragments
that include a respective position is taken into account. Top panels: for each of 20 equally sized GC bins (x-axis), a box plot summarizes the
distribution of fragment coverage (y-axis). Within their specific spectrum of GC content, Lambdaclone1-1 and OBF5 show a positive correlation of
coverage with GC content, whereas for the VATG control, GC content and coverage anti-correlate. Bottom panels: the GC content (blue curve,
normalised to [0;1] for each transcript) along the molecules (x-axis) is shown in comparison with the relative fragment coverage (red curve).
Lambdaclone1-1 and OBF5 exhibit synchrone variations in GC content and coverage, whereas the relative GC content of VATG scores minimal
around the molecule’s centre, where the mutual overlap of hydrolysis products provokes a peak in coverage (Figure 3).
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inverse effect (Figure 6). Our simulation reveals that the
phenomenon is due to the fragmentation step, given that
50/30-ends of transcripts are also naturally included as 50/
30-ends of some of the fragments produced from them;
therefore, the fraction of transcription start sites preserved

in the fragment population is higher for short transcripts
that exhibit a comparatively lower number of breakpoints
(Figure 6, left panels). A corresponding increase of anti-
sense mappings is predicted by our simulations at the
30-end of the transcripts, however, corresponding reads
fall into the poly-A tail not included in Figure 6.

In Figure 6A, we assessed the distribution of reads for the
hydrolysis protocol investigated in detail in a previous
section. In agreement with earlier reports (1), the
transcript-specific biases we pinpoint are not identifiable
when sufficiently heterogeneous molecule groups are con-
sidered together (11). Only the small reduction of reads next
to the 50-bin in transcripts with <2000 nt reflects a cumula-
tive effect of fragments that fall along sufficiently similar
Weibull distribution (left and centre panel of Figure 6A).

In Figure 6B, we compare these results with a recent
adaptation of the hydrolysis protocol that has been
employed to produce the Illumina Body Map 2 (accession
number ERP000546 in the European Nucleotide Archive).
The experiment produced reads exclusively from the sense
strand of RNAs obtained from a mixture of 16 tissues
(libraries HCT20170 and HCT20173). Therefore, only
spurious amounts of antisense mappings can be
observed which, in agreement with previous reports
about antisense transcription, can be found especially at
the 50-/30-ends of long transcripts (Figure 6B, right panel).

In this protocol, the longer reads (100 nt)—and there-
fore also larger fragments—cause a more accentuated
drop of read density towards the 50-end. Moreover, the
use of a so-called ‘ribofree’ technology allows extracting
RNA species without relying on the presence of a poly-A
tail. We therefore expect the downstream ends of 30-most
fragments—which would be represented by antisense
mappings absent from this experiment—are at (or close
to) the respective cleavage sites. Consequently, we observe
the frequency of sense mappings to decrease at positions
closer than the average fragment size to 30-end of the
transcribed sequence. The effect is marginally stronger in
experimental data than when reproduced in silico,
indicating that additional mechanisms might play a role
here. However, our simulations are able to qualitatively
reproduce that 30-regions which suffer from such read
under-representation are comparatively larger in short
and medium-sized transcripts (Figure 6B, left and centre
panel).

To simulate the experiment depicted in Figure 6C, we
replaced the uniformly random fragmentation model by
enzymatic digestion with DNAseI (9) and moved it after
RT, which in this protocol has been realised by poly-dT
priming on the original transcript templates. Our
models correctly predict the under-representation of
50-end information in poly-dT primed RT due to the
simulated template loss of the reverse transcriptase
during first-strand synthesis (1)—and an increasing
impact of the bias from short to long transcripts (Figure
6B, left versus centre versus right panel).

In Figure 6D, we compared simulation results to with an
experiment employing cDNA nebulisation in contrast to
fragmentation by DNAseI (28). Our model of mechanical
breakage is able to reproduce the known bias of read dis-
tribution towards the centres of the transcripts (28),

Figure 5. Correlation of sequence biases with transcript coverage in a
standard hydrolysis experiment (A) and an RNA-ligation method (B).
The panels above the bar plots depict sequence logos that capture
biases as observed in the first six bases of sequenced reads, where the
height of the letters are scaled according to the information content
(IC), a logarithmic measurement that captures the divergence from
equally distributed bases. The bar histogram in (A) and (B) show the
corresponding transcript coverage by experimentally obtained reads
(black bars), respectively, by correspondingly simulated reads (grey
bars). The standard hydrolysis protocol exhibits stronger sequence se-
lectivity that produces read stacks at specific positions and thereby
reduces the overall transcript coverage.
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especially in shorter transcripts that break few times
(Figure 6D, left and centre panels); multiple recursive
breaks along the body of long transcripts thin out these
points of sharp breakpoint accumulation (Figure 6D,
right panel).

DISCUSSION

We present the Flux Simulator, a framework for
simulating RNA-Seq experiments in silico that breaks
down heterogeneous sample preparation protocols into
their atomic steps (Figure 1). For each step, we provide

tunable computational models with a minimal set of free
parameters, whose values can be estimated by correspond-
ing quantities observed in real experiments. The Flux
Simulator pipeline implements these steps as modules
that can be flexibly joined: this structure allows simulation
of arbitrary protocols. In the present article we focus on
several protocols employed for the currently popular
Illumina and Roche 454 sequencing platforms, but the
modularity of our simulation platform allows analysis of
arbitrary sequencing technologies, as those announced for
the future by the manufacturers Ion Torrent (34) and
Pacific Biosciences (35). Although our models are largely
of approximate nature and describe in a simplified way the

Figure 6. Comparison of simulated reads with experimental evidence in different sequencing protocols. For each experiment, transcripts from a
reference annotation of the corresponding species have been classified into short (<1000 nt, left panels), intermediate (1000–2000 nt, centre panels),
and long forms (>2000 nt, right panels). Red and orange bars show reads from the experiment that align in sense and antisense, respectively, to the
directionality of transcription, the corresponding in silico results are shown as dark and light blue bars, respectively. (A) Read tag distributions from
an RNA hydrolysis protocol in M. musculus sequenced on the Illumina GA2 platform. (B) A different hydrolysis experiment carried out with the
recent HiSeq2000 technology (Illumina), producing longer reads that exclusively map in sense orientation, so called ‘dir RNA-Seq’). (C) A
complementary Illumina experiment employing poly-dT primed RT and subsequent DNAse digestion of the (poly-A+) transcriptome of S.
cerevisisae. (D) Results from an experiment in A. thaliana where poly-dT primed RT products are fragmented by nebulisation.
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underlying complex chemistry, we show that our simula-
tions reproduce fairly well the read distributions observed
in practice (Figure 6).
If we accept that our bioinformatics models capture

the main origins of the experimental biases, our simula-
tion enables us to investigate intermediate stages of
sequencing protocols—usually hidden layers of
RNA-Seq (Figures 2–4). Specifically, we give computa-
tional and experimental evidence as to why insert size dis-
tributions obtained by hydrolysis differ substantially
between transcripts of different lengths (Figure 2). In the
light of the uniform random fragmentation model we de-
veloped, the dependence of the RNA molecules’ geometry
on their length can be interpreted as shorter molecules
being more linearised when hydrolysed, whereas longer
RNA polymers—in spite of strongly denaturing condi-
tions—still tend to form higher order structures.
Therefore, size filtering alters the way transcripts are rep-
resented in the library as a function of the length of the
original RNA molecule.
In addition, our models show why fragments ob-

tained by sequence-independent fragmentation processes,
as for instance cDNA nebulisation or RNA hydrolysis,
are not uniformly distributed along the fragmented
molecule, but occur more frequently at rather specific
points: the ends of nebulised fragments accumulate at
the midpoints of recursively split molecules (Figure 6D),
whereas fragment density obtained by RNA hydrolysis
propagates from a transcript’s ends towards its centre in
patterns produced by characteristic Weibull distribution
of the obtained insert sizes (Figure 3). Onto these
patterns one has to superimpose sequence-specific biases
(Figures 4 and 5). If heterogeneous transcripts are con-
sidered together, however, the recognition of these biases
on large scale is complicated (Figure 6).
As for the computational analysis of RNA-Seq experi-

ments, we consider our simulation-based studies as a
serious motivation to debunk the widespread belief that
all biases should affect the interpretation of data nega-
tively: in fact, well-understood biases of systematic
nature are valuable as additional sources of information.
Therefore, we are convinced that the critical evaluation of
experiments mimicked in silico will have an increasing
impact on design and evaluation of bioinformatics
approaches to RNA-Seq.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3, Supplementary Figures 1–9,
Supplementary Methods and Supplementary References
[36–42].

AVAILABILITY

The Flux Simulator is implemented in platform-portable
Java code (JDK compliance 1.6), source code and
binaries are freely available via the webpage http://flux
.sammeth.net.
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