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Network phenotypes 
and their clinical significance 
in temporal lobe epilepsy using 
machine learning applications 
to morphological and functional 
graph theory metrics
Camille Garcia‑Ramos1,2*, Veena Nair3, Rama Maganti2, Jedidiah Mathis4, Lisa L. Conant2, 
Vivek Prabhakaran3, Jeffrey R. Binder4, Beth Meyerand1, Bruce Hermann2 & 
Aaron F. Struck2,5

Machine learning analyses were performed on graph theory (GT) metrics extracted from brain 
functional and morphological data from temporal lobe epilepsy (TLE) patients in order to identify 
intrinsic network phenotypes and characterize their clinical significance. Participants were 97 
TLE and 36 healthy controls from the Epilepsy Connectome Project. Each imaging modality (i.e., 
Resting-state functional Magnetic Resonance Imaging (RS-fMRI), and structural MRI) rendered 2 
clusters: one comparable to controls and one deviating from controls. Participants were minimally 
overlapping across the identified clusters, suggesting that an abnormal functional GT phenotype did 
not necessarily mean an abnormal morphological GT phenotype for the same subject. Morphological 
clusters were associated with a significant difference in the estimated lifetime number of generalized 
tonic–clonic seizures and functional cluster membership was associated with age. Furthermore, 
controls exhibited significant correlations between functional GT metrics and cognition, while for TLE 
participants morphological GT metrics were linked to cognition, suggesting a dissociation between 
higher cognitive abilities and GT-derived network measures. Overall, these findings demonstrate the 
existence of clinically meaningful minimally overlapping phenotypes of morphological and functional 
GT networks. Functional network properties may underlie variance in cognition in healthy brains, 
but in the pathological state of epilepsy the cognitive limits might be primarily related to structural 
cerebral network properties.

In temporal lobe epilepsy (TLE), abnormalities in brain structure1–3, connectivity4,5, and cognition6,7 are con-
sistently demonstrated. The abnormalities range from reduced gray and white matter volumes and thickness to 
abnormal diffusion and differences in functional connectivity patterns. While these findings are reproducible 
it is also evident that there is meaningful heterogeneity across patients, even within specific syndromes of TLE 
such as mesial temporal lobe epilepsy5. This variability challenges whether TLE should be studied as a single 
population. The question that has arisen is whether there are specific subgroups of TLE patients with unique 
patterns of structural or functional abnormality, specifically, whether there are clusters of patients with similar 
findings who are distinct from other subgroups of TLE patients.

The presence of latent groups or phenotypes has been shown to be the case in relation to cognition in TLE8,9 
with 3 to 4 cognitive subtypes including a group that is comparable to controls (i.e., showing no cognitive 
impairment), a group with atypical (for a focal epilepsy) generalized cognitive impairment, and 1 to 2 groups 
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with focal language, memory, and/or executive dysfunction (see10 for review). TLE phenotypes have also been 
identified regarding mesiotemporal structural abnormalities including hippocampus, entorhinal cortex, and 
amygdala11. One of the questions addressed here is whether subgroups or phenotypes of morphological and 
functional network integrity can be identified, and their significance determined through their associations 
with demographic, clinical and cognitive variables. Here we address this issue by applying K-means clustering 
to morphologically (cortical and subcortical brain volumes) and functionally derived (resting-state functional 
Magnetic Resonance Imaging (RS-fMRI)) GT metrics from individual TLE subjects. K-means clustering is 
an unsupervised machine learning algorithm that forms clusters within the studied group by minimizing the 
distance between GT metrics12–14. The optimal number of clusters was determined using the elbow method15 
and Silhouette method16. In the case of this study, three GT measures: global efficiency, local efficiency, and 
modularity index (Q) were used to form clusters. Graph theory (GT) is a methodology that allows the investi-
gation of the brain networks by treating brain regions as nodes with connections or edges being determined by 
measures of associations between regions (e.g., Blood Oxygenation Level Dependent (BOLD) response, diffusion 
weighted imaging measures, volumetric correlations)17,18. It is a methodology capable of interrogating the brain 
regarding its global network properties. K-means clustering has been previously applied to brain function (i.e., 
rs-fMRI) in order to determine, for example, dynamic functional network connectivity states of TLE patients9 
on networks derived from Independent Component Analysis (i.e., using more conventional uses of the data). 
To our knowledge, this methodology has not been applied to GT metrics in TLE. Given that GT provides assess-
ment of the brain at the global and local levels, as well as in terms of its configuration, we hypothesize that its 
use will capture subtleties within the TLE group that will make possible cluster identification with clinical and 
cognitive associations.

Another question that we address here is to test the association between functional, structural, and cognitive 
phenotypes in TLE. There is vast evidence regarding functional discrepancies in TLE compared to controls, in 
terms of BOLD response (i.e., brain activation /deactivation), functional connectivity, and even GT analyses19–21. 
Furthermore, morphological measures, like cortical volumes and diffusion weighted images, have shown dif-
ferences in TLE compared to controls22,23. Even though functional and morphological analyses do not always 
coincide in terms of the disrupted areas in TLE, we hypothesize that associations between their found phenotypes 
will be observed.

Results
Compared to controls (n = 36) the participants with TLE (n = 97) were significantly older (t(131) = 2.589, 
p = 0.011), had a lower full-scale IQ (Intelligence Quotient) (t(131) = − 5.431, p < 0.001), and fewer years of edu-
cation (t(131) = − 3.214, p = 0.002); but were similar in gender distribution ( χ2 = 3.25, p = 0.06). Given that the 
cognitive tests in this study were adjusted for age, no additional age-related adjustments for cognitive analyses 
were made.

Functional and morphological K‑means clustering and their association with cognitive pheno‑
types.  Global efficiency, mean local efficiency, and modularity index (Q) were the GT measures used in the 
K-means clustering algorithm for functional and then morphological analyses. In each case, two clusters were 
found within the TLE group: one like controls (Normal), and one significantly different from controls (Abnor-
mal) (Figs. 1 and 2). For the functional analysis, there were 51 (53%) patients in the Normal cluster, and 46 (47%) 
in the Abnormal one. For the morphological analysis there were 73 (75%) in the Normal cluster and 24 (25%) 
in the Abnormal cluster. Correlation matrices were calculated for each analysis (Fig. 3) which revealed opposite 
patterns for clusters in terms of functional and morphological GT, where “abnormal” clusters showed higher and 
widespread correlations for morphological GT while the opposite was true for functional GT.

The distribution of cognitive phenotypes was examined as a function of the K-means functional and morpho-
logical cluster groups (Fig. 4). There was a significant association between the previously established TLE cogni-
tive phenotypes (see Hermann et al.24) and morphological clusters ( χ2 = 4.737, p = 0.026). The more abnormal 
cognitive phenotypes were associated with the Abnormal morphological cluster, the cluster that was most dis-
similar to controls. The cognitive phenotypes did not show a significant association with the functional clusters. 
In terms of overlap between functional and morphological clusters, there was 44% (43 subjects) correspondence 
for the Normal cluster, and 16% (16 subjects) for the Abnormal one, therefore, there was only partial overlap of 
subjects between clusters ( χ2 = 8.207, p = 0.017). Table 1 shows the composition of clusters along with clinical 
and demographic variables.

Association of functional and morphological clusters with demographic and clinical vari‑
ables.  The relationship between the functional and morphological clusters with categorical clinical epilepsy 
variables was undertaken [medication refractory (yes/no), number of antiseizure medications (ASMs) (bina-
rized), seizure lateralization (left, right, bilateral, unknown), age at first seizure (binarized), and estimated life-
time number of generalized tonic–clonic seizures (GTCS) (binary)]. Figure 5 shows the proportions of each 
TLE cluster (i.e., morphological, functional, cognitive) as a function of the categorical clinical variables. The 
number of ASMs and lifetime number of GTCS were significant. For ASM, only cognitive clusters were statisti-
cally significant ( χ2 = 6.491, p = 0.039). For lifetime number of GTCS, morphological clusters are trending toward 
significance ( χ2 = 3.212, p = 0.061), and cognitive clusters were statistically significant ( χ2 = 10.368, p = 0.006).

Age was significantly different between functional clusters (t(95) = − 2.47, p = 0.015), while gender ( χ2 = 11.0, 
p = 0.001), FSIQ (t(95) = 2.836, p = 0.006), and lifetime number of GTCS (t(91) = − 3.018, p = 0.003) were signifi-
cantly different between morphological clusters (see Table 1). The remaining variables (i.e., age at first seizure, 
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Figure 1.   (A) Local efficiency, (B) Global efficiency, and (C) modularity index across ML-derived TLE clusters 
(red and yellow) and healthy controls (blue) for RS-fMRI.
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Figure 2.   (A) Local efficiency, (B) Global efficiency, and (C) modularity index across ML-derived TLE clusters 
(red and yellow) and healthy controls (blue) for morphological MRI.
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number of ASM, medication refractory, and seizure lateralization) did not show significant differences between 
clusters for either analysis.

Association of individual cognitive measures with GT metrics.  Lastly, in both the control and TLE 
groups associations between global GT metrics from the functional and morphological analyses and targeted 
individual cognitive measures were examined via Spearman correlations. These correlations were performed 
to directly compare associations within the controls and TLE groups to determine symmetry/asymmetry of 
relationships between cognition and morphological and functional metrics. As shown in Table 2, among the 
controls, functional GT measures had significant associations with vocabulary/word knowledge, visual object 
naming, and speeded fine motor dexterity; with no relationship with visuoconstruction or verbal learning/mem-
ory. In contrast, for TLE participants morphological GT metrics were significantly associated with all cognitive 
abilities with functional GT metrics also associated only with motor speed/dexterity.

Figure 3.   Adjacency matrices of functional (top) and morphological (bottom) correlation matrices on controls 
(left), “normal” clusters (middle), and “abnormal clusters” (right).

Figure 4.   (Left) Proportion of TLE participants in morphological clusters vs functional clusters, (middle) 
proportion of TLE participants in cognitive clusters vs functional clusters, and (right) proportion of TLE 
participants in cognitive clusters vs morphological clusters. Results were significant for the left and the right 
cases.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14407  | https://doi.org/10.1038/s41598-022-18495-z

www.nature.com/scientificreports/

Discussion
In this investigation, machine learning (K-means clustering) was employed on two distinct sets of global graph 
theory metrics from TLE participants: one focused on brain morphology (i.e., cortical and subcortical volumes), 
and the other focused on brain function (i.e., RS-fMRI). Three main findings resulted: (1) K-means clustering 
revealed two distinct phenotypes of morphological as well as functional network status in patients with TLE—
Normal (functional: 53%, morphological: 75%) and Abnormal (functional: 47%, morphological: 25%). (2) These 
clusters only partially overlapped indicating substantial independence of functional and morphological network 
abnormalities in persons with TLE. (3) Cluster membership was of clinical significance as demonstrated by their 
association with multiple clinical seizure features and cognition.

This is the first investigation to use GT to analyze both morphological and functional imaging data as well 
as to demonstrate the existence of discrete network phenotypes in this fashion. Multiple papers have reported 
abnormalities in morphological and functional networks in TLE patients (for a review, see Bernhardt et al.25). 
However, in this investigation we were able to demonstrate separate latent groups within each analysis. Inter-
estingly, a substantial proportion of TLE participants were comparable to controls, this trend being more pro-
nounced in the morphological analysis. These findings agree with other cognitive and behavioral studies where 
cluster analysis work has shown a significant proportion of patients with TLE to exhibit cognitive and behavioral 
performance comparable to controls, with other groups showing abnormalities in type and/or magnitude9,24. In 
this case, the abnormal functional cluster had higher global efficiency and lower local efficiency and Q, while the 
abnormal morphological cluster had higher global and local efficiency but lower Q than controls. The direction 
of local efficiency was opposite between morphological and functional clusters showing that tightly connected 
small networks are associated with pathology in the morphologic grouping, but it is the breakdown of these local 
connections that are associated with pathology in functional networks, a finding evident qualitatively from the 
adjacency matrices (Fig. 3). The increased morphological local efficiency may be related to patterns of atrophy 
along the epileptic network that reflect disease severity. The opposite finding in functional connectivity may 
be related to a reorganization of connectivity secondary to the disruption from the primary epileptic network. 
Importantly, a considerable proportion of TLE participants did not exhibit these changes and were comparable 
to controls, or normal, is important and points to the spectrum of abnormality that should be understood and 
captured in these investigations, the etiology underlying this spectrum remaining to be investigated, and their 
implications understood. In addition, participants within the functional and morphological clusters did not 
overlap significantly, meaning that patients with abnormal brain function did not necessarily present abnormal 

Table 1.   Functional and morphological clusters. L left, R right, B bilateral, U unknown. a Significantly different 
between functional clusters. b Significantly different between morphological clusters. c Significantly different 
between controls and TLE.

Controls (n = 36) TLE (n = 97)

Functional clusters Morphological clusters

Normal (n = 51) Abnormal (n = 46) Normal (n = 73) Abnormal (n = 24)

Agea,c (mean ± SD) 34.1 ± 10.8 40.0 ± 11.8 37.2 ± 11.0 42.7 ± 11.9 39.9 ± 10.9 39.1 ± 14.4

Genderb (M/F) 20/16 37/60 19/32 18/28 21/52 16/8

Educationc 
(mean ± SD) 16.5 ± 2.8 14.8 ± 2.8 14.92 ± 2.6 14.67 ± 3.0 15.1 ± 2.8 13.9 ± 2.7

FSIQb,c (mean ± SD) 115.3 ± 12.4 100.8 ± 14.1 102.53 ± 12.85 100.33 ± 14.2 103.5 ± 12.6 95.1 ± 14.4

Age at first seizure 
(mean ± SD) – 22.2 ± 14.4 21.5 ± 12.9 23.0 ± 16.0 22.0 ± 13.5 22.9 ± 17.2

Number of ASM 
(mean ± SD) – 1.78 ± 0.95 1.67 ± 0.93 1.88 ± 0.95 1.71 ± 0.9 1.95 ± 1.1

Medication refrac-
tory (0/1) – 36/61 21/30 15/31 28/45 8/16

Seizure lateraliza-
tion (L/R/B/U) – 17/48/22/7 27/10/4/10 21/12/3/7 38/14/7/13 10/8/0/4

Number of lifetime 
GTC​b (mean ± SD) – 12.4 ± 22.5 10.0 ± 15.7 15.4 ± 28.7 8.8 ± 17.4 25.0 ± 32.4

WASI vocabularyb,c 
(mean ± SD) 61.6 ± 9.2 50.9 ± 8.8 51.6 ± 9.1 50.1 ± 8.5 52.4 ± 8.6 46.2 ± 8.0

WASI block designc 
(mean ± SD) 56.17 ± 9.5 50.0 ± 10.1 51.4 ± 8.9 48.6 ± 11.1 51.1 ± 9.4 46.8 ± 11.3

Boston naming testc 
(mean ± SD) 48.5 ± 10.4 43.3 ± 11.3 42.9 ± 11.2 43.7 ± 11.4 42.6 ± 10.7 45.3 ± 12.8

Grooved pegboard-
dominant handb,c 
(mean ± SD)

9.9 ± 3.1 7.9 ± 2.9 8.3 ± 3.0 7.5 ± 2.8 8.5 ± 2.9 6.1 ± 2.2

Grooved pegboard-
nondominant 
handb,c (mean ± SD)

10.8 ± 1.8 8.3 ± 2.7 8.7 ± 2.8 7.9 ± 2.6 8.8. ± 2.6 6.8 ± 2.6

Rey auditory 
verbal learning testc 
(mean ± SD)

104.6 ± 11.6 91.7 ± 16.3 92.1 ± 16.9 91.1 ± 15.8 93.1 ± 16.5 87.4 ± 15.3
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brain morphology, and vice versa. This apparent dissociation between function and structure in TLE, although 
seemingly unanticipated, has been observed before26 and suggests that future multimodal imaging investigations 
with additional imaging measures may reveal interesting associations and dissociations.

We demonstrated that functional and morphological clusters had some overlapping but many unique associa-
tions with clinical and demographic variables (Table 1, Fig. 4). Morphological clusters appeared more sensitive 
to demographic, clinical and cognitive variables, that is, they were significantly different in gender, the number 

Figure 5.   Proportion of TLE participants in (left) morphological clusters, (middle) functional clusters, and 
(right) cognitive clusters vs (A) number of ASMs (binarized), (B) lifetime number of GTCs (binarized), (C) age 
at first seizure (binarized), (D) EEG lateralization, and (E) medication refractory.
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of estimated number of lifetime GTCS, cognitive phenotypes and several individual cognitive tests such as FSIQ. 
In contrast, functional clusters differed only in age. Therefore, abnormalities in brain morphology and func-
tion in TLE might be linked to different factors that, in this case, do not overlap significantly. There have been 
investigations using structural brain data to predict postoperative seizure outcomes of patients with TLE27,28. For 
example, Bonilha et al.27 used structural GT to predict seizure outcomes in TLE after temporal lobectomy and 
found that network characteristics of white matter integrity along with clinical variables served as outcome pre-
dictors. Furthermore, Doucet et al.28 studied gray matter integrity of the frontal lobe of pre-surgical TLE patients 
using voxel-based morphometry (VBM) and were able to predict seizure outcomes in some patients. Given that 
the current investigation was able to differentiate TLE participants into normal and abnormal phenotypes, this 
might help yield greater precision in predicting clinical and surgical outcomes.

Evidence that the functional and morphological clusters have potential for clinical utility is their associa-
tion with clinical measures such as the estimated frequency of lifetime generalized seizures as well as cognitive 
measures. A reliable finding in the neuropsychology of epilepsy is the existence of discrete cognitive subgroups 
ranging from intact cognition comparable to controls, to expected focal cognitive abnormalities, to widespread 
and arguably unexpected (for a focal epilepsy) generalized cognitive impairment9,24,29. The degree to which 
disordered morphological versus functional networks may contribute to the existence of these groups, as well 
as to performance on individual cognitive tests, is a topic of contemporary interest. Among TLE patients, it was 
clear that the abnormal morphological network phenotype was more closely associated with cognitive pheno-
types than the disordered functional network phenotype (Fig. 4). To determine whether there was a different 
pattern between controls and TLE patients we also investigated individual cognitive tests from the domains 
of intelligence, verbal learning and memory, naming, and speeded motor dexterity; and again, it was clear 
that performance in TLE was linked to morphological network measures while for controls functional metrics 
predominated. Such TLE-specific morphological associations with cognition might deem morphological GT 
measures more susceptible to disruptions than functional GT measures.

A prior investigation of resting-state functional connectivity in the Epilepsy Connectome Project (ECP) data 
set demonstrated differences between TLE and controls in global connectivity using the GT measures of global 
clustering coefficient and rich club proportion21. These findings also correlated with neuropsychological disease 
severity. Thus, while the abnormal morphological phenotype and its associated characteristics are more tightly 
associated with cognition within the current experiment, other GT methods of quantifying aberrant global con-
nectivity can detect differences, highlighting the sensitivity not only to modality (morphology versus resting-state 
functional connectivity), but also to the evaluation metrics. Rich club proportion and global clustering coefficient 
measure “clustering” tendencies of nodes, especially highly connected nodes in the case of rich club proportion. 
Whereas global efficiency and local efficiency are related to path length between nodes, and Q detects a tendency 
for forming networks but on a larger scale than “clustering” measures, with less focus on highly connected net-
works like rich club proportion. The current study is an extension of prior investigations using efficiency and 
modularity measures in morphological connectivity30,31. It was logical to treat the morphological and functional 
measures as similar as possible therefore, efficiency and modularity measures were selected. Nonetheless this 
study highlights the importance of feature selection in machine-learning.

The use of ML on GT metrics based on functional and morphological data, compared to more traditional 
analyses (i.e., seed based functional connectivity, cortical and subcortical volumes/thickness), facilitated the 
identification of novel discrete latent functional and morphological groups with clinical and cognitive correlates. 
Abnormalities in GT metrics of functional connectivity are more related to cognition in controls and morphol-
ogy more relevant in epilepsy. The findings suggest that at the global network level the functional connectivity 
may underlie variance in cognition in healthy brains, but in the pathological state of epilepsy the cognitive lim-
its might be primarily related to structural network changes. It may be that in healthy controls the variance in 

Table 2.   Significant correlations between GT measures and cognition. f functional, m morphological, GE 
global efficiency, LE local efficiency.

Control TLE

WASI vocabulary subtest fGE ( R = −0.351, p = 0.036)
fLE ( R = 0.384, p = 0.021)

mQ ( R = 0.227, p = 0.026)
mGE ( R = −0.336, p = 0.001)
mLE ( R = −0.301, p = 0.003)

WASI block design subtest
mQ ( R = 0.21, p = 0.039)
mGE ( R = −0.228, p = 0.025)
mLE ( R = −0.248, p = 0.014)

Boston naming test fQ ( R = 0.371, p = 0.026)

Grooved pegboard-dominant hand fQ ( R = 0.343, p = 0.04)
fLE ( R = 0.353, p = 0.035)

mQ ( R = 0.315, p = 0.002)
mGE ( R = −0.441, p < 0.001)
mLE ( R = −0.428, p < 0.001)
fGE ( R = −0.236, p = 0.02)

Grooved pegboard-nondominant hand
fQ ( R = 0.424, p = 0.01)
fGE ( R = −0.43, p = 0.009)
fLE ( R = 0.468, p = 0.004)

mQ ( R = 0.21, p = 0.039)
mGE ( R = −0.356, p < 0.001)
mLE ( R = −0.35, p < 0.001)
fGE ( R = −0.228, p = 0.025)
fLE ( R = 0.221, p = 0.039)

Rey auditory verbal learning test (total words recalled) mGE ( R = −0.242, p = 0.017)
mLE ( R = −0.221, p = 0.029)
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morphology is smaller than in the pathological state and thus it follows that associations with cognition would 
be greater with functional connectivity. In contradistinction is TLE where patterns of cortical thinning and 
atrophy are intrinsic to the disease and more tightly associated with cognition and disease specific factors like 
lifetime number of GTCs. The functional connectivity in these patients, at least as measured with the three global 
GT measures presented here, were not as effective in capturing the relevant clinical factors like seizure burden 
or cognitive decline. Potentially looking at other global GT metrics (such as Rich Club Proportion and Global 
Clustering Coefficient) could be more relevant—highlighting how functional and morphological connectivity 
are measuring fundamentally different elements of pathophysiology. This orthogonality should be exploited in 
future phenotyping efforts or in developing combinatoric biomarkers. The essential finding is that morphologic 
and functional connectivity provide independent information.

Even though the data from this investigation were carefully obtained, this manuscript has some limitations. 
One pertains to the relatively modest sample size of the control group. Although the analysis was mainly focused 
on TLE participants, a greater number of controls would have been favorable for demographic and cognitive 
comparisons. Another limitation is the age discrepancy between controls and TLE, and between some of the 
obtained clusters. Given that the cognitive measures used in this analysis were already age-corrected, the results 
should not represent age-related differences, however, it is a matter that should be acknowledged. We want to 
emphasize that morphological matrices were calculated indirectly with a statistical methodology proposed by 
Saggar et al.32. Although it was proven to reflect structural connectivity networks such matrices are based on 
the brain volumes correlations but are not volumetric correlations. Lastly, as in all clustering techniques the 
clustering algorithm is sensitive to the type of data the algorithm is clustering and the underlying clinical hetero-
geneity. All reasonable attempts to ensure that the clusters are reflective of distinct groups through data-driven 
clustering techniques were performed. Future studies should be aimed at confirming these clusters are similar 
in independent populations, incorporating other types of data (e.g. EEG), and correlate with pre-clinical and 
long-term clinical trajectory.

Methods
Participants.  Participants include 97 TLE patients and 36 healthy controls from the ECP33,34 (Table 1), a 
project that our group is a part of. ECP is a two-site research project involving the Medical College of Wisconsin 
and the University of Wisconsin-Madison. The dataset generated during the current study is not publicly availa-
ble but it is projected to be released in Summer 2022. However, data are available from the corresponding author 
on reasonable request. TLE participants were between the ages of 19 to 60 with tested FSIQ at or above 70, speak 
English fluently, with no medical contraindications to MRI. Some TLE participants (63%) had medically refrac-
tory epilepsy defined as a disabling seizure during the last year despite having tried at least 2 appropriate anti-
seizure medications (ASM). The diagnosis of TLE and side of seizure onset were determined by a board‐certified 
neurologist with expertise in epileptology, in accordance with the criteria defined by the International League 
Against Epilepsy, based on scalp or intracranial video‐electroencephalographic (EEG) telemetry, seizure semiol-
ogy, and neuroimaging evaluation. Specifically, TLE participants met two or more of the following criteria: (1) 
described or observed clinical semiology consistent with seizures of temporal lobe origin, (2) EEG evidence of 
either Temporal Intermittent Rhythmic Delta Activity or temporal lobe epileptiform discharges, (3) temporal 
lobe onset of seizures captured on video EEG monitoring, or (4) MRI evidence of mesial temporal sclerosis or 
hippocampal atrophy. Patients with any of the following were excluded: (1) lesions other than mesial temporal 
sclerosis causative for seizures, and (2) an active infectious/autoimmune/inflammatory etiology of seizures.

Controls were healthy adults between the ages of 18 and 60. Exclusion criteria included: Edinburgh Laterality 
(Handedness) Quotient less than +50; primary language other than English; history of any learning disability, 
brain injury or illness, substance abuse, or major psychiatric illness (major depression, bipolar disorder, or 
schizophrenia); current use of vasoactive medications; and medical contraindications to MRI. All participants 
provided written informed consent, and the study was reviewed and approved by the IRB (Institutional Review 
Board) at Medical College of Wisconsin and all experiments were performed in accordance with relevant guide-
lines and regulations.

Neuroimaging acquisition.  MRI was performed on 3  T General Electric (GE) 750 scanners at both 
institutions. T1-weighted structural images were acquired using MPRAGE (reduced magnetization prepared 
gradient echo sequence): TR/TE = 604  ms/2.516  ms, TI = 1060.0  ms, flip angle = 8°, FOV = 25.6  cm, voxel 
size = 0.8 mm isotropic. Four 5-min rs-fMRI images were acquired over two sessions using whole-brain simul-
taneous multi-slice, gradient echo planer imaging35: 8 bands (72 slices, TR/TE = 802 ms/33.5 ms, flip angle = 50°, 
matrix = 104 × 104, FOV = 20.8 cm, voxel size = 2.0 mm isotropic) and a 32-channel receive coil were concat-
enated. The participants were asked to fixate on a white cross at the center of a black screen during the scans for 
better reliability36.

Neuropsychological assessment.  The healthy control and epilepsy participants underwent neuropsy-
chological evaluation that included measures of intelligence (Wechsler Abbreviated Scale of Intelligence-2 
Vocabulary and Block Design subtests)37, verbal learning and memory (Rey Auditory Verbal Learning Test) 
including total words learned across trials and delayed recall38, object naming (Boston Naming Test)39, letter 
fluency (Controlled Oral Word Association Test)40,41, semantic fluency (Animal Naming)40,42, spatial orienta-
tion (Judgement of Line Orientation)43, face recognition (Facial Recognition Test)43, and speeded fine motor 
dexterity (Grooved pegboard, dominant and non-dominant hands)44. In addition, selected cognitive subtests 
from the National Institutes of Health Toolbox-Cognitive Battery were included: l Pattern Comparison Process-
ing Speed45,46, Dimensional Change Card Sort, List Sorting Working Memory, Flanker Inhibitory Control and 
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Attention, Picture Vocabulary, Oral Reading Recognition, and Picture Sequence Memory tests. Legal copyright 
restrictions prevent public archiving of the various neuropsychological tests used in the study. These can be 
obtained from the copyright holders in the cited references accompanying each test.

Cognitive clusters.  Morphological and functional clusters were compared to empirically derived neu-
ropsychological cognitive phenotypes identified in this patient cohort (see Hermann et al.24). In short, 18 neu-
ropsychological test metrics were assigned to 5 cognitive domains and subsequently subjected to cluster analysis 
that revealed three cognitive phenotypes including: (a) a cluster with cognitive performance similar to con-
trols (No-Cognitive Impairment (CI), n = 57), (b) a cluster with cognitive abnormality characterized by leading 
impairment in language, memory and executive function (Focal-CI, n = 34), and (c) a cluster with performance 
impaired across all the tested cognitive domains including language, memory, executive function, visuospatial 
and motor speed (Generalized-CI, N = 20) (Fig. 1S).

MRI preprocessing.  MR images were processed using the Human Connectome Project (HCP) minimal 
processing pipelines47 which are primarily based on FreeSurfer v5.348 and FSL (Functional MRI of the brain Soft-
ware Library)49. In brief, the T1-weighted images are non-linearly registered to the MNI (Montreal Neurological 
Institute) space, segmented into predefined structures, white and pial cortical surfaces reconstructed, followed 
by standard folding-based surface registration to a surface atlas (the “fsaverage” template). The functional por-
tion of the pipelines removes nonlinear spatial distortions in the rs-fMRI images using spin echo unwarping 
maps, realigns volumes to compensate for subject motion, registers to the structural images, reduces the bias 
field, normalizes the 4D image to a global mean, masks the data with the final brain mask and maps the voxels 
within the cortical gray matter ribbon onto the native cortical surface space. General details on the HCP process-
ing pipelines can be found in Glasser et al.47, and specific details in our previous work34. The Desikan-Killiany 
atlas was used for the segmentation of cortical areas while an atlas that contains probabilistic information on the 
location of structures was used for the segmentation of subcortical regions52. Cortical and subcortical volumes 
were extracted from FreeSurfer in order to construct correlation matrices for the GT analysis.

The functional portion of the pipelines removes spatial distortions in the rs-fMRI images using spin echo 
unwarping maps, realigns volumes to compensate for subject motion, registers to the structural images, reduces 
the bias field, normalizes the 4D image to a global mean, masks the data with the final brain mask and maps 
the voxels within the cortical gray matter ribbon onto the native cortical surface space. Details on the HCP 
processing pipelines can be found in Glasser et al.47. Additional pre-processing was performed on the rs-fMRI 
images using AFNI (Analysis of Functional Neuro-Images)50. This included motion regression using 12 motion 
parameters, regression-based removal of signal changes in the white matter, CSF, global signal, and band-pass 
filtering (0.01–0.1 Hz). Time-series data from four 5-min rs-fMRI scans acquired in a single session were con-
catenated. 360 time-series from Glasser Parcellation51 plus 19 FreeSurfer subcortical regions52 were extracted 
per subject. Pairwise Pearson correlations between 379 time series were calculated and Fisher-z transformed for 
generating connectivity matrices.

Matrix and graph theory measures: calculations and statistical analyses.  Two GT analyses were 
performed: one based on morphological matrices (i.e., based on cortical and subcortical volumes), and one 
based on functional matrices (i.e., resting-state fMRI). The morphological analysis comprised 87 nodes contain-
ing cortical regions (frontal, temporal, parietal, and occipital areas) based on the Desikan-killiany atlas from 
FreeSurfer, and subcortical structures. We calculated a weighted undirected matrix based on the correlation 
coefficients of the covariance between nodal volumes corresponding to each participant. This was done by apply-
ing the AOP (add one patient) approach formulated by Saggar et al.32. With this method, one of the TLE partici-
pants was added to the control group before the correlation matrix was calculated. Then the matrix of the control 
group was subtracted from the one containing the controls plus one TLE, and a matrix reflecting the effect of that 
single TLE participant was obtained. This was done for each TLE participant (n = 97). Afterwards, GT metrics 
were calculated, correcting for intracranial volume (ICV). The GT analysis on functional matrices was based 
on the Glasser Parcellation51, which comprises 379 nodes encompassing both cortical and subcortical regions. 
Functional matrices based on temporal correlations between nodes were constructed for each subject and graph 
theory metrics were then calculated. Tables 1S and 2S (supplemental file) contain the list of the 87 nodes used for 
the morphological analysis, and the 379 nodes used for the functional analysis, respectively.

Once the matrices were created, they were thresholded using a combination of proportional thresholding 
with the Minimum Spanning Tree (MST) as its backbone (to avoid disconnected nodes). In this case, a density of 
25% means the MST plus 25% of the rest of the strongest correlations from the matrix (see Garcia‐Ramos et al.53 
for details). The degree distribution for each imaging modality can be found in Fig. 3S of the supplementary 
document.

The graph theory measures used in this investigation were global efficiency, local efficiency, and Q because 
they capture the association between nodes at both global and regional levels54, as well as their configuration55, 
respectively. Global efficiency is defined as the average of the inverse of the shortest paths in the network54. 
Therefore, high global efficiency represents the integration of communication within the network. In contrast, 
local efficiency is a metric of interactions between the neighbors of a node54. Specifically, it is a measure based 
on the shortest paths between each node’s neighbors, which reflects how efficient communication is between the 
immediate spatial neighbors of a node54. The modularity index (Q) reflects how well the global network of nodes 
can be divided into highly connected sub-networks or modules that often contribute to the same underlying 
neurological processes55,56. In a highly modular network, nodes within the same modules are said to be working 
toward the same process. In this study, Q was estimated using the modularity Louvain algorithm.
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Since different thresholds could render different results, we devised a method to identify a threshold that 
captured the network configuration. Given that modularity assesses network configuration, we calculated it 1000 
times for averaged matrices at every threshold. This was done since the Modularity Louvain algorithm estimates 
modularity instead of performing an exact calculation55. Then, we obtained the highest proportion regarding the 
number of modules at the given threshold and found the one at which the number of modules reached a constant 
value for each group and for each GT analysis. Afterwards, we calculated GT measures at the given threshold 
and used them in the K-means clustering algorithm. In this investigation, the density value arising from these 
calculations was 20% for the functional analysis, and 40% for the morphological analysis.

Categorization of clinical variables.  In order to better visualize cluster-wise comparisons with clinical 
variables, we categorized the latter. The number of ASMs taken by TLE participants was binarized: one group 
was composed of patients taking more than one ASM (n = 58) and the other composed of patients taking 1 or no 
ASMs (n = 39). The lifetime number of GTCS and age-at-first seizure were also binarized by dividing the group 
at the median. For the lifetime number of GTCS, 47 patients were in the group below the median (median of 4 
lifetime GTCS) (4 subjects had unknown data), and for age-at-first-seizure, 50 patients were in the group below 
the median (median of age 20 years). Medication refractory (yes or no) and seizure lateralization (left, right, 
bilateral, unknown) are already categorical, therefore were not modified. Table 1 shows mean and SD for the 
beforementioned categorical clinical variables.

K‑means cluster analysis.  Global GT metrics from TLE participants were scaled to a mean of zero and 
a standard deviation of one. Next, the optimal number of clusters for both functional and morphological con-
nectivity was determined using the elbow method15 and silhouette method16. For both functional and morpho-
logical clusters the optimal cluster number was 2 using both the elbow method and average silhouette methods 
(Fig. 2S in Supplemental file). K-means clustering with K = 2 was performed with bootstrapping (1000 trials) to 
ensure stability of clustering. Final partitions were determined by the frequency of concurrence over the 1000 
trials (“fpc”—Flexible Procedures for Clustering” 2.2‐3, Christian Henning R package). Clustering analysis was 
performed in R version 4.0.5.
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