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Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 
1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately an-
aerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut 
contents of the termite Neotermes castaneus. The species is of interest because it may play an 
important role in the digestion of breakdown products from cellulose and hemicellulose in 
the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on 
physiological and genomic characteristics, we propose its reclassification as a novel species 
in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 
2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes 
is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain SPN1T (= DSM 17374 = ATCC BAA-1237) is 
the type strain of Spirochaeta coccoides and was 
isolated from the hindgut contents of the lower 
dry-wood termite Neotermes castaneus [1,2]. The 
genus Spirochaeta currently consists of 19 validly 
named species [3]. The genus name was derived 
from the Latinized Greek words speira, 'a coil' and 
chaitê, 'hair', yielding the Neo-Latin 'Spirochaeta', 
the coiled hair [3]. The species epithet was derived 

from the neo-Greek words coccos, 'a berry' and 
eidos, meaning 'shape', yielding the Neo-Latin word 
coccoides, meaning berry-shaped [1]. Based on the 
nucleotide sequence of the 16S rRNA gene strain 
SPN1T was assigned to the genus Spirochaeta, alt-
hough its coccoid, non-motile cells differ from the 
morphology of all known validly named spiro-
chetes [1]. Recently, Ritalahti et al. proposed that 
Spirochaeta sp. Buddy and Spirochaeta sp. Grapes 

http://dx.doi.org/10.1601/nm.10201�
http://dx.doi.org/10.1601/nm.22801�
http://dx.doi.org/10.1601/nm.7796�
http://dx.doi.org/10.1601/nm.22801�
http://dx.doi.org/10.1601/nm.7796�
http://dx.doi.org/10.1601/nm.22801�
http://dx.doi.org/10.1601/nm.10201�
http://dx.doi.org/10.1601/nm.7797�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.10201�
http://dx.doi.org/10.1601/nm.22801�
http://dx.doi.org/10.1601/nm.7797�
http://dx.doi.org/10.1601/nm.10201�
http://dx.doi.org/10.1601/nm.7797�
http://dx.doi.org/10.1601/nm.7797�
http://dx.doi.org/10.1601/nm.7797�
http://dx.doi.org/10.1601/nm.17622�
http://dx.doi.org/10.1601/nm.17622�


Abt et al. 

http://standardsingenomics.org 195 

belonged to the novel genus Sphaerochaeta based 
on their unique morphology and the 16S rRNA se-
quence similarity to their closest relatives. The two 
spherical isolates Spirochaeta sp. Buddy and 
Spirochaeta sp. Grapes were named Sphaerochaeta 
globosa and Sphaerochaeta pleomorpha, respective-
ly [4]. On the basis of its morphological, physiologi-
cal and genomic characteristics, S. coccoides is more 
closely related to Sphaerochaeta than to the re-
maining Spirochaeta species, and we therefore 
propose the placement of S. coccoides SPN1T into 
the genus Sphaerochaeta. Here we thus present a 
summary classification and a set of features for S. 
coccoides SPN1T, a description of the complete ge-
nome sequencing and annotation, and a proposal to 
reclassify S. coccoides as a member of the genus 
Sphaerochaeta as Sphaerochaeta coccoides comb. 
nov. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain SPN1T was compared using NCBI BLAST 
[5,6] under default settings (e.g., considering only 
the high-scoring segment pairs (HSPs) from the 
best 250 hits) with the most recent release of the 
Greengenes database [7] and the relative frequen-
cies of taxa and keywords (reduced to their stem 
[8]) were determined, weighted by BLAST scores. 
The most frequently occurring genera were 
Spirochaeta (57.6%), Sphaerochaeta (39.7%) and 
Cytophaga (2.7%) (22 hits in total). Regarding the 
six hits to sequences from other members of the 
genus, the average identity within HSPs was 90.2%, 
whereas the average coverage by HSPs was 30.9%. 
Among all other species, the one yielding the high-
est score was Spirochaeta bajacaliforniensis 
(AJ698859), which corresponded to an identity of 
90.3% and an HSP coverage of 32.6%. (Note that 
the Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an au-
thoritative source for nomenclature or classifica-
tion.) The highest-scoring environmental sequence 
was AY570600 ('biodegraded Canadian oil reser-
voir clone PL-16B9'), which showed an identity of 
91.0% and an HSP coverage of 85.9%. The most 
frequently occurring keywords within the labels of 
all environmental samples which yielded hits were 
'microbi' (6.5%), 'mat' (4.5%), 'hypersalin' (3.1%), 
'termit' (2.8%) and 'hindgut' (2.6%) (228 hits in 
total). Environmental samples which yielded hits of 
a higher score than the highest scoring species 
were not found. The keywords are partially in 

agreement with the known environmental prefer-
ences of S. coccoides SPN1T, but the results also in-
dicate that the species itself is rarely found in envi-
ronmental probes. 

Figure 1 shows the phylogenetic neighborhood of S. 
coccoides in a 16S rRNA based tree. The sequences 
of the three 16S rRNA gene copies in the genome 
differ from each other by up to two nucleotides, 
and differ by up to two nucleotides from the previ-
ously published 16S rRNA sequence (AJ698092). 

In contrast to all other validly described spirochete 
species (except for those currently placed in the 
novel genus Sphaerochaeta [4]) the cells of S. 
coccoides SPN1T are cocci (0.5 to 2.0 µm in diame-
ter) which are surrounded by an outer envelope. In 
the early growth phase cell aggregates are formed 
[1]. S. coccoides is a Gram-negative, non-motile and 
strictly anaerobic bacterium (Table 1). Strain 
SPN1T showed no catalase activity [1], although a 
gene probably coding a catalase (Spico_0266) was 
identified in the genome. The optimal growth tem-
perature of strain SPN1T is 30°C, with no growth 
observed above 40°C or below 15°C [1]. The pH 
range for growth is 5.5-9.5, with an optimum at pH 
7.4 [1]. Maltose is fermented to ethanol, with 
formate and acetate as the main fermentation 
products. Glucose, galactose, lactate, pyruvate, 
amino acids, and polysaccharides are not utilized, 
but the organism is able to grow with yeast extract 
as the sole carbon and energy source [1]. A mini-
mum yeast concentration of 0.2% was required for 
growth [1]. Activities of β-D-glucosidase, α-D-
glucosidase, α-D-galactosidase, α-L-arabinosidase, 
β-D-fucosidase, and β-D-xylosidase are exhibited 
[1]. These enzymatic activities seemed to be cell-
bound, as no glycolytic activity was found in the 
supernatant of the culture [1]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [34], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [35]. The genome project is de-
posited in the Genomes On Line Database [15] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 
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Growth conditions and DNA isolation 
S. coccoides strain SPN1T, DSM 17374, was grown 
anaerobically in DSMZ medium 1204 (Spirochaeta 
coccoides medium) [36] at 30°C. DNA was isolated 
from 0.5-1 g of cell paste using MasterPure Gram-

positive DNA purification kit (Epicentre 
MGP04100) following the standard protocol as 
recommended by the manufacturer with modifica-
tion st/DL for cell lysis as described in Wu et al. 
2009 [35]. DNA is available through the DNA Bank 
Network [37]. 

 
Figure 1. Phylogenetic tree highlighting the position of S. coccoides relative to the other type strains within the 
family Spirochaetaceae. The tree was inferred from 1,360 aligned characters [9,10] of the 16S rRNA gene sequence 
under the maximum likelihood criterion [11]. Rooting was done initially using the midpoint method [12] and then 
checked for its agreement with the current classification (Table 1). The branches are scaled in terms of the expected 
number of substitutions per site. Numbers adjacent to the branches are support values from 500 ML bootstrap repli-
cates [13] (left) and from 1,000 maximum parsimony bootstrap replicates [14] (right) if larger than 60% if. Lineages 
with type strain genome sequencing projects registered in GOLD [15] are labeled with one asterisk, those also listed 
as 'Complete and Published' with two asterisks (see [16-19], CP002696 for Treponema brennaborense, CP002903 
for S. thermophila, and CP002868 for S. caldaria). Also, genomes that are finished but are missing a second asterisk 
are S. africana CP003282, S. pleomorpha CP003155 and S. globosa CP002541. 
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Table 1. Classification and general features of S. coccoides SPN1T according to the MIGS recommendations [20] and the 
NamesforLife database [21]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [22] 

Phylum Spirochaetae TAS [23,24] 

Class Spirochaetes TAS [24,25] 

Order Spirochaetales TAS [26,27] 

Family Spirochaetaceae TAS [26,28] 

Genus Spirochaeta TAS [26,29-31] 

Species Spirochaeta coccoides TAS [1,2] 

Type strain SPN1 TAS [1,2] 

 Gram stain negative TAS [1] 

 Cell shape coccoid TAS [1] 

 Motility non-motile TAS [1] 

 Sporulation none TAS [1] 

 Temperature range mesophile TAS [1] 

 Optimum temperature 30°C TAS [1] 

 Salinity not reported  

MIGS-22 Oxygen requirement obligately anaerobic TAS [1] 

 

Carbon source 
pentoses (arabinose, xylose), oligosaccharides (maltose, 
cellobiose, maltotriose, maltotetraose), yeast extract 

TAS [1] 

 Energy metabolism chemoorganotroph TAS [1] 

MIGS-6 Habitat digestive tract of lower dry-wood termites TAS [1] 

MIGS-15 Biotic relationship host associated commensal TAS [1] 

MIGS-14 Pathogenicity none TAS [1] 

 Biosafety level 1 TAS [32] 

 Isolation hindgut of Neotermes castaneus TAS [1] 

MIGS-4 Geographic location not reported  

MIGS-5 Sample collection time 2005 or before TAS [1] 

MIGS-4.1 Latitude not reported  

MIGS-4.2 Longitude not reported  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

a) Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the lit-
erature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a 
generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology 
project [27]. If the evidence code is IDA, then the property should have been directly observed, for the purpose of this 
specific publication, for a live isolate by one of the authors, or an expert or reputable institution mentioned in the 
acknowledgements. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality finished 

MIGS-28 Libraries used Three genomic libraries: one 454 pyrosequence standard library, one 
454 PE library (8.9 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 960.0 × Illumina; 40.0 × pyrosequence 

MIGS-30 Assemblers Newbler version 2.3, Velvet version 0.7.63, phrap version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP002659 

 Genbank Date of Release April 27, 2011 

 GOLD ID Gc01739 

 NCBI project ID 48121 

 Database: IMG-GEBA 2503904012 

MIGS-13 Source material identifier DSM 17374 

 Project relevance Tree of Life, GEBA 
 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [38]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 97 contigs in one scaffold 
was converted into a phrap [39] assembly by 
making fake reads from the consensus, to collect 
the read pairs in the 454 paired end library. 
Illumina GAii sequencing data (2,245.3 Mb) was 
assembled with Velvet [40] and the consensus 
sequences were shredded into 2.0 kb overlapped 
fake reads and assembled together with the 454 
data. The 454 draft assembly was based on 142.5 
Mb 454 draft data and all of the 454 paired end 
data. Newbler parameters are -consed -a 50 -l 
350 -g -m -ml 20. The Phred/Phrap/Consed 
software package [39] was used for sequence as-
sembly and quality assessment in the subsequent 
finishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Per-
formance Software, LLC). Possible mis-
assemblies were corrected with gapResolution 
[38], Dupfinisher [41], or sequencing cloned 
bridging PCR fragments with subcloning. Gaps 
between contigs were closed by editing in 
Consed, by PCR and by Bubble PCR primer walks 

(J.-F. Chang, unpublished). A total of 308 addi-
tional reactions were necessary to close gaps and 
to raise the quality of the finished sequence. 
Illumina reads were also used to correct poten-
tial base errors and increase consensus quality 
using a software Polisher developed at JGI [42]. 
The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 1,000.0 × coverage of the ge-
nome. The final assembly contained 137,682 
pyrosequence and 58,694,953 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [43] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [44]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, 
UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. Additional gene prediction 
analysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [45]. 
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Genome properties 
The genome consists of a 2,227,296 bp long chro-
mosome with a G+C content of 50.6% (Table 3 and 
Figure 2). Of the 1,924 genes predicted, 1,866 
were protein-coding genes, and 58 RNAs; 44 
pseudogenes were also identified. The majority of 
the protein-coding genes (74.6%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 

Insights from the genome sequence, and 
taxonomic conclusions for S. coccoides 
Taxonomic interpretation for S. coccoides and 
neighboring species in the family Spirochaetaceae 
according to 16S rRNA data 
Based on its 16S rRNA sequence strain SPN1T was 
placed into the genus Spirochaeta [1], although it 
lacks the typical spiral morphology and is non-
motile. SPN1T showed highest similarity in 16S 
rRNA gene sequences to Spirochaeta sp. strain 
Buddy and Spirochaeta sp. strain Grapes [1], two 

spherical isolates that were not formally named at 
that time, but  preliminarily named 'free-living ple-
omorphic spirochaetes' [4]. Recently, these isolates 
were placed into the novel genus Sphaerochaeta, 
and validly published as S. globosa and S. 
pleomorpha, respectively [4]. 

The phylogenetic tree shown in Figure 1 demon-
strates that the current classification of the group 
suffers from a non-homogenous location of species 
featured as members of the genus Spirochaeta. Not 
only is Borrelia placed within Spirochaeta (without 
much branch support), but S. coccoides also ap-
pears as the sister group of Sphaerochaeta with 
maximum support. Support for a placement of S. 
caldaria, S. stenostrepta and S. zuelzerae more 
closely to Treponema than to the other Spirochaeta 
species (a topological arrangement that was ob-
served earlier [46]) is also high and could only be 
considered a matter of rooting for the former two 
species (but note that the rooting is confirmed by a 
phylogenomic analysis described below and see the 
tree topology of the entire order Spirochaetales in 
[46,47]). 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 2,227,296 100.00% 

DNA coding region (bp) 2,003,786 89.96% 

DNA G+C content (bp) 1,126,077 50.56% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 1,924 100.00% 

RNA genes 58 3.01% 

rRNA operons 3  

Protein-coding genes 1,866 96.99% 

Pseudo genes 44 2.29% 

Genes with function prediction 1,434 74.53% 

Genes in paralog clusters 733 38.10% 

Genes assigned to COGs 1,528 76.72% 

Genes assigned Pfam domains 1,518 78.90% 

Genes with signal peptides 314 16.32% 

Genes with transmembrane helices 524 27.23% 

CRISPR repeats 4  
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Figure 2. Graphical map of the chromosome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 

To measure phylogenetic conflict caused by the 
taxonomic classification in detail, we conducted 
both unconstrained heuristic searches for the best 
tree under the maximum likelihood (ML) [11] and 
maximum parsimony (MP) criterion [14] as well as 
searches constrained for the monophyly of all gen-
era (for details of the data matrix see the caption of 
Figure 1). Our own re-implementation of CopyCat 
[48] in conjunction with AxPcoords and AxParafit 
[49] was used to determine those leaves (species) 
whose placement significantly deviated between 
the constrained and the unconstrained tree. 

AxParafit was applied to the ML trees with 1,000 
rounds of random permutations of the associations. 

The ParaFit test was originally introduced for com-
paring host and parasite phylogenies [50], but can 
be applied to the comparison of all kinds of trees. In 
contrast to other measures for the comparison of 
trees, it includes a statistical test for whether indi-
vidual leaves significantly contribute to the agree-
ment between two trees (a p-value indicates how 
likely it is that this contribution is no more than 
random).  
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All other leaves apparently cause more conflict 
than agreement [50]. The rationale of comparing 
unconstrained trees with constrained trees in-
ferred from the very same data is that the con-
straint might be in conflict with the original tree. In 
addition to assessing whether the trees are overall 
significantly different according to the data and a 
given optimality criterion in a paired-site test (see, 
e.g. chapter 21 in [51] for an in-depth description of 
such tests), the ParaFit test is a straightforward 
extension for assessing which leaves of the trees 
cause the conflict, if any. 
The best-known ML tree had a log likelihood of -
16,001.40, whereas the best tree found under the 
constraint had a log likelihood of -16,322.98. The 
constrained tree was significantly worse than the 
globally best one in the Shimodaira-Hasegawa test 
as implemented in RAxML [11] (α = 0.01). The best-
known MP trees had a score of 3,105, whereas the 
best constrained trees found had a score of 3,260 

and were significantly worse in the Kishino-
Hasegawa test as implemented in PAUP* [14] (α < 
0.0001). Accordingly, the current classification of 
the family as used by [3,46,47] is in significant con-
flict with the 16S rRNA data. Such discrepancies are 
not surprising in this group because many of the 
included taxa were described before 16S rRNA 
analysis could be applied [23,25,46], with 
Spirochaetaceae dating back to 1907 [28] and 
Spirochaeta even to 1835 [31]. Still uncultivated 
species and genera of Spirochaetales are described 
based on morphology alone, without depositing 
16S rRNA sequences [52]. Table 5 shows the 
ParaFit test results obtained by comparing the un-
constrained tree and the one obtained with the ge-
nus-based constraint. The largest conflict is caused 
by Spirochaeta aurantia, probably because of its 
placement close to Borrelia, followed by 
Sphaerochaeta and then by the other members of 
the main Spirochaeta group.

 

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 143 8.5 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 118 7.0 Transcription 
L 99 5.9 Replication, recombination and repair 
B 0 0.0 Chromatin structure and dynamics 
D 58 3.5 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 25 1.5 Defense mechanisms 
T 59 3.5 Signal transduction mechanisms 
M 46 2.7 Cell wall/membrane/envelope biogenesis 
N 2 0.1 Cell motility 
Z 39 2.4 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 19 1.1 Intracellular trafficking, secretion, and vesicular transport 
O 54 3.2 Posttranslational modification, protein turnover, chaperones 
C 77 4.6 Energy production and conversion 
G 260 15.5 Carbohydrate transport and metabolism 
E 160 9.5 Amino acid transport and metabolism 
F 58 3.6 Nucleotide transport and metabolism 
H 42 2.5 Coenzyme transport and metabolism 
I 44 2.6 Lipid transport and metabolism 
P 58 3.6 Inorganic ion transport and metabolism 
Q 15 0.9 Secondary metabolites biosynthesis, transport and catabolism 
R 193 11.5 General function prediction only 
S 109 6.5 Function unknown 
- 396 20.6 Not in COGs 
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To assess whether placing S. coccoides in 
Sphaerochaeta [4] and the other three Spirochaeta 
species that cause conflict in Treponema [46] 
would solve the problem, an according second 
constraint was created and used in phylogenetic 
analysis. The resulting ML tree had a log likeli-
hood of -16,025.93 and was significantly worse 
than the best-known ML tree only for α = 0.05. 
The MP trees inferred under the second constraint 
had a score of 3,123 and were not significantly 

worse than the best-known MP trees. Table 5 also 
shows the ParaFit test results obtained by com-
paring the unconstrained tree and the one ob-
tained with the second constraint. Apparently the 
conflict is largely resolved; the only remaining p-
value above 0.05 is the one for S. thermophilus, 
which is nevertheless only slightly above the cho-
sen α-value (0.0539) and might become signifi-
cant if more organisms were included [50]. 

Table 5. Result (p-values) from the test of individual links with ParaFit 
Species p-value, constraint 1 p-value, constraint 2 

Spirochaeta aurantia (M57740) 0.2882 0.0038 

Sphaerochaeta globosa (AF357916) 0.2844 0.0230 

Sphaerochaeta pleomorpha (AF357917) 0.2754 0.0201 

Spirochaeta cellobiosiphila (EU448140) 0.2076 0.0080 

Spirochaeta americana (AF373921) 0.2001 0.0149 

Spirochaeta alkalica (X93927) 0.1905 0.0145 

Spirochaeta asiatica (X93926) 0.1830 0.0280 

Spirochaeta halophila (M88722) 0.1806 0.0124 

Spirochaeta bajacaliforniensis (AJ698859) 0.1765 0.0490 

Spirochaeta dissipatitropha (AY995150) 0.1749 0.0278 

Spirochaeta africana (X93928) 0.1656 0.0241 

Spirochaeta isovalerica (M88720) 0.1654 0.0039 

Spirochaeta smaragdinae (U80597) 0.1592 0.0454 

Spirochaeta thermophila (FR749903) 0.1384 0.0539 

Spirochaeta litoralis (FR733665) 0.1327 0.0025 

Spirochaeta coccoides (IMG2503956950) 0.0863 0.0217 

Spirochaeta perfilievii (AY337318) 0.0716 0.0010 

Result (p-values) from the test of individual links with ParaFit for the species with an insignificant result (α 
= 0.05) in the first approach. The comparison was done between an unconstrained ML tree and the first, 
genus-based constraint (second column) or the second constraint, based on a revised classification of the 
group (third column). Note that with a single exception the phylogenetic conflict was resolved by assign-
ing S. coccoides to Sphaerochaeta [4] and three other Spirochaeta species to Treponema [46]. 

Phylogenomic analyses 
According to the results from 16S rRNA analysis 
and the whole-genome phylogenies described be-
low, for a comparative analysis the genome se-
quences of S. globosa (GenBank CP002541) and S. 
pleomorpha (CP003155) [4], as well as the se-
quences of S. smaragdinae (GenBank CP002659) 
were used. 
The genomes of the sequenced Spirochaeta and 
Sphaerochaeta species differ significantly in their 

size. The genome of S. coccoides (2.2 Mb, 1,866 
protein-coding genes, G+C content 51 mol%) is 
the smallest in size. The genomes of S. pleomorpha 
(3.6 Mb, 3,216 protein coding genes, G+C content 
46 mol%), and S. globosa (3.3 Mb, 3,057 protein-
coding genes, G+C content 49 mol%) are bigger in 
size and the genome of S. smaragdinae counts 4.7 
Mb with 4,306 protein-coding genes and a G+C 
content of 49 mol%. 
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An estimate of the overall similarity between S. 
coccoides, with both Sphaerochaeta species and S. 
smaragdinae was generated with the GGDC-
Genome-to-Genome Distance Calculator [53,54]. 
This system calculates the distances by comparing 
the genomes to obtain HSPs (high-scoring seg-
ment pairs) and inferring distances from the set of 
formulas (1, HSP length / total length; 2, identities 
/ HSP length; 3, identities / total length). Table 6 
shows the results of the pairwise comparison. 
The comparison of S. coccoides with both 
Sphaerochaeta species revealed the highest scores 
using the GGDC. The comparison of S. coccoides 
with S. globosa and S. pleomorpha revealed that 
4.5% and 3.9% of the average of genome length 
are covered with HSPs. The identity within the 
HSPs was 83.2% and 83.3%, respectively, whereas 
the identity over the whole genome was 3.7% and 
3.3%, respectively. Lower similarity scores were 

observed in the comparison of S. coccoides with S. 
smaragdinae: only 1.2% of the average of either of 
the genome lengths are covered with HSPs. The 
identity within these HSPs was 84.6%, whereas 
the identity over the whole genome was only 
1.0%. 
As expected, those distances relating HSP cover-
age (formula 1) and number of identical base pairs 
within HSPs to total genome length (formula 3) 
are higher between the S. coccoides and the 
Sphaerochaeta species than between S. coccoides 
and S. smaragdinae. That the distances relating the 
number of identical base pairs to total HSP length 
(formula 2) are different indicates that the ge-
nomic similarities between S. coccoides and S. 
smaragdinae are strongly restricted to more con-
served sequences, a kind of saturation phenome-
non [54]. 

 

Table 6. Pairwise comparison of S. coccoides with both Sphaerochaeta species and S. smaragdinae using the 
GGDC-Genome-to-Genome Distance Calculator. 

  
HSP length / 

total length [%] 
identities / 

HSP length [%] 
identities / 

total length [%] 
Spirochaeta coccoides Sphaerochaeta globosa 4.5 83.2 3.7 

Spirochaeta coccoides Sphaerochaeta pleomorpha 3.9 83.3 3.3 

Spirochaeta coccoides Spirochaeta smaragdinae 1.2 84.6 1.0 
Sphaerochaeta 
globosa Sphaerochaeta pleomorpha 14.2 82.0 11.7 
Sphaerochaeta 
globosa Spirochaeta smaragdinae 1.3 84.6 1.1 

 
For conducting phylogenomic analyses of the 
group, amino-acid sequences from 16 
Spirochaetaceae and outgroup (other Spirochaeta 
families) completed type-strain genomes were 
retrieved from INSDC and investigated as de-
scribed in [55] with minor modifications. 
Orthologs were determined with parallel genome-
against-genome protein NCBI BLAST version 
2.2.17 [56] and our own re-implementation of the 
OrthoMCL algorithm [57] in conjunction with MCL 
version 08-312 [58,59] with the OrthoMCL default 
parameters (an e-value threshold of 10-5 and 2.0 
as inflation parameter). OrthoMCL clusters con-
taining inparalogs [57] were reduced as previous-
ly described [55] and aligned using MUSCLE ver-
sion 3.7 under default settings [60]. The resulting 
alignments were filtered using  RASCAL version 
1.3.4 [61] and GBLOCKS version 0.91b [9] as in 

our earlier study [55]. Filtered alignments com-
prising at least four sequences were concatenated 
to form a supermatrix. As an extension of the ap-
proach in [55], the supermatrix was cleaned from 
relatively uninformative genes using MARE [62] 
under default values (except that deleting taxa 
was disallowed). Maximum-likelihood trees were 
inferred with RAxML [11] version 7.28 in conjunc-
tion with rapid bootstrapping and the 
bootstopping criterion [13] with subsequent 
search for the best tree. The best amino acid sub-
stitution model was determined beforehand by 
comparing the resulting log likelihoods on a max-
imum-parsimony starting tree. Maximum-
parsimony tree search was conducted with PAUP* 
version 4b10 [14] as previously described [55]. 
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In addition to the supermatrix analysis, homolo-
gous sequences were determined using our own 
re-implementation of the TribeMCL algorithm 
[63] in conjunction with MCL [58,59], applying an 
e-value threshold of 10-5 and an inflation parame-
ter of 2.0. A gene-content (presence/absence) ma-
trix was constructed, representing the occurrence 
of a gene of one genome within a cluster of homo-
logs. Phylogenetic inference was done with the 
BINGAMMA model in RAxML and under maximum 
parsimony with PAUP*, other settings being as 
described above. 
The supermatrix comprised 2,408 genes and 
696,696 characters before, 522 genes and 140,413 
characters after cleaning with MARE. The selected 
model was PROTGAMMALGF; the resulting tree 
had a log likelihood of -2,172,190.75 and is shown 
in Figure 3. The best maximum-parsimony tree 
found had a length of 346,334 steps (not counting 
uninformative characters) and was topologically 
identical. The gene-content matrix comprised 
11,131 characters and yielded a best tree with a 
log likelihood of -61,799.49 and a parsimony score 

of 10,229, respectively. Bootstrapping support 
values from all four methods applied are shown in 
Figure 3 if larger then 60%. 
The sister-group relationship of S. coccoides and 
Sphaerochaeta was unanimously supported by all 
methods, much like the placement of S. caldaria 
within Treponema. The trees differed however, 
regarding the support for the placement of 
Borrelia as sister group to all other ingroup taxa. 
For this reason, we assessed via long-branch ex-
traction [64] whether this positioning could be 
caused by long-branch attraction [51] between 
Borrelia and the outgroup. Removal of Borrelia 
and subsequent phylogenetic inference yielded a 
maximum-parsimony tree with the same topology 
that would have been obtained by pruning 
Borrelia from the tree depicted in Figure 3. Re-
moval of the outgroup from the alignment, how-
ever, yielded a maximum-parsimony tree in which 
Borrelia was placed as sister group of S. 
thermophila, supporting the long-branch attrac-
tion hypothesis (data not shown). 
 

 

 
Figure 3. Phylogenetic tree inferred from completely sequenced genomes of the Spirochaeta type strains. The tree was in-
ferred from 140,413 aligned amino acid characters under the maximum likelihood (ML) criterion and rooted with 
Leptospira. The branches are scaled in terms of the expected number of substitutions per site. Numbers above the branches 
are bootstrapping support values (if larger than 60%) from (i) maximum-likelihood supermatrix analysis; (ii) maximum-
parsimony supermatrix analysis; (iii) maximum-likelihood gene-content analysis; (iv) maximum-parsimony gene-content 
analysis. INSDC accession numbers are given in square brackets. Note that the placement of Borrelia is probably caused by 
long-branch attraction. For further details see the text. 
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The phylogenomic analysis thus confirms the 16S 
rRNA tree (Figure 1) regarding the paraphyly of 
Spirochaeta but, of course, based on much more 
characters. A first step to resolve this taxonomic 
problem is to assign S. coccoides to the genus 
Sphaerochaeta. Given that S. caldaria and some other 
species are situated within Treponema [46], and that 
Borrelia probably is placed within the remaining 
Spirochaeta species, further taxonomic changes will 
probably be necessary in the future. But apparently 
in addition to sampling more characters (by replac-
ing 16S rRNA with genome sequences) sampling 
more taxa (by obtaining whole genomes from more 

type strains) might by necessary to obtain a natural 
classification of the spirochetes. 

Phenotypic data and taxonomic interpretation 
Table 7 gives an overview of some morphological 
and physiological features of S. coccoides compared 
with the genus descriptions of Sphaerochaeta and 
Spirochaeta. The coccoid cell morphology, the cell 
size, the lack of motility as well as the products of 
fermentation support the reclassification of  S. 
coccoides as a member of the genus Sphaerochaeta. 
S. coccoides is so close to the original description of 
the genus Sphaerochaeta that only its reported GC 
content needs to be modified. 

Table 7. Typical features of reference taxa. 
 Spirochaeta coccoides [1] Genus Sphaerochaeta [4] Genus Spirochaeta [30] 

Cell shape coccoid, spherical, not spiral 
coccoid, spherical, pleomorphic; 
not helical or spiral 

helical or spiral; spherical 
bodies under unfavorable 
growth conditions 

Cell size 0.5-2.0 µm 0.4-2.5 µm 0.2-0.75 by 5-250 µm 
Motility non-motile non-motile motile 

Flagellation no flagella no flagella 
2 periplasmic flagella  
(exception: S. plicatilis, with 
many flagella) 

T-optimum 30 °C mesophilic 25-68 °C 
pH-optimum 7.4 neutrophilic  

Oxygen requirement anaerobe anaerobe 
obligately anaerobe or 
facultatively anaerobe 

Fermentation products acetate, ethanol, formate acetate, ethanol, formate acetate, ethanol, CO2, H2 

G+C content 
56.6-57.4 mol% [1] 
51 mol%, this study 

45-48 mol% 
51-65 mol% [30] 
44-65 mol% [29] 

On the basis of the above mentioned physiological and phylogenetic characteristics of strain SPN1T, its reclassification 
into the genus Sphaerochaeta is proposed. The inclusion of Sphaerochaeta in Spirochaetaceae also makes an emenda-
tion of the family necessary, as its previous description excludes features specifically found in Sphaerochaeta. 

 
Emended description of the family 
Spirochaetaceae Swellengrebel 1907 
(Spirochaetaceae Swellengrebel 1907 
emend. Abt, Göker, Kyprides and Klenk) 
The description of the family Spirochaetaceae is 
given by Swellengrebel 1907 [26,28]. Some spe-
cies form coccoid cells, have no flagella and are 
not motile. Some do not have L-ornithine in the 
peptidoglycan. 
Emended description of the genus 
Sphaerochaeta (Sphaerochaeta Ritalahti et al. 
2012 emend. Abt, Göker, Kyprides and Klenk) 
The description of the genus Sphaerochaeta is as that 
given by Ritalahti et al. 2012 [4], with the following 
modification: DNA G+C content is 45-51 mol%. 

Description of Sphaerochaeta coccoides 
(Dröge et al. 2006) Abt, Göker, Kyrpides and 
Klenk, comb. nov. 
Basonym: Spirochaeta coccoides Dröge et al. 2006. 
The characteristics of the species are given in the 
species description by Dröge et al. 2006 [1]. The 
type strain is SPN1T (= DSM 17374 = ATCC BAA-
1237). 
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