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Multi-modular AI Approach to 
Streamline Autism Diagnosis in 
Young Children
Halim Abbas   1, Ford Garberson   1, Stuart Liu-Mayo   1, Eric Glover1* & Dennis P. Wall   2

Autism has become a pressing healthcare challenge. The instruments used to aid diagnosis are time 
and labor expensive and require trained clinicians to administer, leading to long wait times for at-risk 
children. We present a multi-modular, machine learning-based assessment of autism comprising three 
complementary modules for a unified outcome of diagnostic-grade reliability: A 4-minute, parent-
report questionnaire delivered via a mobile app, a list of key behaviors identified from 2-minute, semi-
structured home videos of children, and a 2-minute questionnaire presented to the clinician at the 
time of clinical assessment. We demonstrate the assessment reliability in a blinded, multi-site clinical 
study on children 18-72 months of age (n = 375) in the United States. It outperforms baseline screeners 
administered to children by 0.35 (90% CI: 0.26 to 0.43) in AUC and 0.69 (90% CI: 0.58 to 0.81) in 
specificity when operating at 90% sensitivity. Compared to the baseline screeners evaluated on children 
less than 48 months of age, our assessment outperforms the most accurate by 0.18 (90% CI: 0.08 to 0.29 
at 90%) in AUC and 0.30 (90% CI: 0.11 to 0.50) in specificity when operating at 90% sensitivity.

Idiopathic forms of Autism Spectrum Disorder (ASD) have no known biological cause and may correspond to 
multiple conditions with similar symptoms. The incidence of ASD has increased in recent years, and it impacts 1 
in 59 children according to the latest studies1. ASD is diagnosed from clinical observations according to standard 
criteria2 relating to the child’s social and behavioral symptoms. Autism is said to be on a spectrum due to the 
varied severities of symptoms, ranging from relatively mild social impairment to debilitating intellectual disabil-
ities, inabilities to change routines and severe sensory reactions2. Approximately 25–50%3 of autistic children are 
non-verbal and have severe symptoms.

Notably, diagnosis within the first few years of life dramatically improves the outlook of children with autism, 
as it allows for treatment during a key window of developmental plasticity4,5. Unfortunately, the latest studies 
show that although 85% of parents of children with autism reported developmental concerns about their chil-
dren by 36 months of age, the median age of diagnosis in the United States is 52 months1. The complexity of the 
diagnostic procedures and the shortage of trained specialists can result in children with ASD not getting a diag-
nosis early enough to receive behavioral therapies during the time when they are most effective.

Diagnosing autism in the United States generally takes two steps: developmental screening followed by com-
prehensive diagnostic evaluation if screened positive6. Screening instruments typically use questionnaires that 
are answered by a parent, teacher or clinician7,8. They are generally easy and inexpensive to administer and can 
be useful to flag some at-risk children, however, they are not always accurate enough to help inform a diagnosis9. 
Standard autism screeners can also have a high false positive rate, leading to unnecessary referrals and healthcare 
costs10. Comprehensive diagnostic evaluation instruments, on the other hand, are more accurate but require long 
and expensive interactions with highly trained clinicians11,12.

In this paper, we present improvements to two previously published13 automated autism assessment modules 
underlying the Cognoa14 software. The first module is based on a brief questionnaire about the child presented 
directly to parents without supervision. The second module is based on lightly trained analysts evaluating short 
videos of children within their natural environment that are captured by parents using a mobile device. We also 
present a new, third module that is intended to be completed in a primary care setting such as a pediatrician’s 
office during a clinic visit. The third module is based upon a questionnaire that is answered by a clinician after 
examining the child and talking to the parent. We demonstrate that these three modules are as fast and easy to 
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administer as most of the typical screening instruments, yet their combined assessment accuracy is shown in this 
work to be significantly higher, such that they may be used to aid in diagnosis of autism.

We present our approach to selecting maximally predictive features for each of the modules. Both the parent 
and the clinician questionnaire modules key on behavioral patterns similar to those probed by a standard autism 
diagnostic instrument, the Autism Diagnostic Interview - Revised (ADI-R)11. ADI-R is administered by a trained 
clinician, and typically gives consistent results across examiners. But its 93 point questionnaire often spanning 
2.5 hours of the interviewer and parent’s time makes it largely impractical for the primary care setting15. The 
video assessment module keys on behavioral patterns similar to those probed in another diagnostic instrument, 
the Autism Diagnostic Observation Schedule (ADOS)12. ADOS is a multi-modular diagnostic instrument, with 
different modules for subjects at different levels of cognitive development. It is widely considered a gold standard 
and is one of the most common behavioral instruments used to aid in the diagnosis of autism16. It consists of an 
interactive and structured examination of the child by trained clinicians in a tightly controlled setting.

For validation, the three modules are applied to assess children in a clinical study using the Cognoa14 software. 
To-date, Cognoa has been used by over 300,000 parents in the US and internationally. The majority of Cognoa 
users are parents of young children between 18 and 48 months. The clinical study underlying the validation 
results discussed in the results section consists of a total of 375 at-risk children who had undergone full clinical 
examination and received a clinical diagnosis at a center specialized in neurodevelopmental disorders17. The 
outputs of the assessment modules are compared to those of three screening instruments. The Modified Checklist 
for Autism in Toddlers, Revised (M-CHAT-R)7 is a parent-completed questionnaire for autism that is intended 
to be administered during developmental screenings for children between the ages of 16 and 30 months and is 
commonly used as an autism screening instrument. The Social Responsiveness Scale - Second Edition (SRS) is 
another standard ASD screener that is based upon a questionnaire filled out by an examiner18–20. The SRS has a 
preschool form intended for children of ages 30 months to 54 months, and a school age form intended for chil-
dren of ages 48 months through 18 years of age. We use SRS “total score” scale as a baseline autism assessment. 
The Child Behavior Checklist (CBCL)8 is a parent-completed questionnaire that provides risk assessments in 
many categories. We use the “Autism Spectrum Problems” scale of CBCL for comparison. In all cases, the answers 
to the questions comprising the screeners are coded, then the codes are summed and the sum compared against 
a threshold to determine whether the child is at risk.

Methods
We base our approach on de-identified historical patient records. We collect medical instrument score sheet data 
pertaining to children tested for suspicion of autism, and process those into training sets for the predictive models 
underlying each of our three autism assessment modules.

Since we apply said predictive models in a significantly different setting than the clinics where the correspond-
ing training data were generated, we expect a consequential performance degradation resulting in unacceptable 
diagnostic accuracy if conventional machine learning methods are used13. To counteract that effect, we apply 
custom machine learning techniques as detailed in this section, building upon previous experimental work13. The 
new techniques discussed below are empirical post-hoc feature selection, training data noise injection, and an 
overfitting-resilient probabilistic combination of module outcomes.

Data.  Training data were compiled from multiple repositories of de-identified ADOS and ADI-R score sheets 
of children between 18 and 84 months of age including Boston Autism Consortium, Autism Genetic Resource 
Exchange, Autism Treatment Network, Simons Simplex Collection, and Vanderbilt Medical Center. To counteract 
class imbalance, the sample set negative class was supplemented with 59 low risk children random-sampled from 
Cognoa’s user-base, and ADI-R was administered on those additional controls.

The diagnostic accuracy of our modules was measured using data from a multi-site blinded clinical validation 
study (reviewed and approved by Western IRB project number 2202803)17. The study was performed in 2016 and 
2017 at three tertiary care centers in the United States. Informed consent was obtained from guardians of each 
child, and all relevant regulations and guidelines were followed. Children enrolled in the study were 18 to 72 
months of age, of English-speaking households, and were all referred through the typical referral process for sus-
picion of autism. Every child was measured using autism assessment instruments (such as ADOS, M-CHAT-R, 
and/or CBCL) as appropriate for his or her age. Diagnosis was ultimately ascertained by a licensed health care 
provider. Prior to the clinical assessment, parents used the Cognoa mobile app to complete the parent question-
naire and video assessment modules, and starting in 2017, a clinician also completed the Cognoa clinician ques-
tionnaire. The clinicians were blinded to the results of the assessment rendered by Cognoa. More details on the 
steps of the clinical study are shown in Fig. 1.

The enrollment process in 2016 yielded 162 validation samples, which were used to validate the parent ques-
tionnaire and video modules. This same clinical enrollment cohort was used as validation dataset in our previous 
publication on the subject13. Given the learnings from this dataset, and prior to the extension of the study in 2017, 
several improvements were made to the algorithms including tuning of model thresholds, training combination 
modules, and performing feature selection for the clinician module which was newly introduced in 2017. The 
enrollment process in 2017 yielded 213 additional validation participants, bringing the total N to 375 samples 
over the course of the two years.

The sample breakdown by cohort, age group, and diagnosis for all data used for training and validation is 
shown in Table 1. In both the training and the validation datasets, the majority of the “Not autism” class label is 
composed mostly of children who are diagnosed with an alternate developmental delay (e.g., ADHD or speech 
and language disorder). Since these conditions share many symptoms with autism, this is a particularly challeng-
ing sample for classification . Only seven of the children in the validation sample are neurotypical, suggesting that 
this sample will be harder to perform correct classifications on than in the general population.
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Algorithm methodology.  In this section we explain important aspects of our machine learning methodol-
ogy that are common to the classifiers underlying each of our three assessment modules.

Training procedure.  Classifier training, feature selection, and optimization were done separately for children 
under four years of age and four years of age and over. The parent questionnaire and clinician questionnaire clas-
sifiers make predictions based off of answers to questions that probe similar concepts to the ADI-R questionnaire. 
They were trained using the answers to questions from historical item-level ADI-R score sheets with labels corre-
sponding to established clinical diagnoses. The video module makes predictions based off of answers to questions 
that probe similar concepts to the ADOS instrument, as recorded by video analysts. It was trained using ADOS 
instrument score sheets and diagnostic labels. Progressive sampling was used to verify sufficient training volume 
as detailed in the supplementary materials. Gradient boosted decision trees were used for all three modules as 
they consistently performed better than other options that were considered such as neural networks, support 
vector machines, and logistic regression. For all models, hyper-parameters were tuned with a bootstrapped grid 
search. In all cases, true class labels (ASD or non-ASD) were used to stratify the folds, and (age, label) pairs were 
used to weight-balance the samples. More details can be found in the supplementary materials.

In all cases, the machine learning models were trained using historical patient records that correspond to con-
trolled clinical examinations, but focused on application in non-clinical settings aimed for brevity, ease-of-use, 
and/or unsupervised parent usage at home. These differences introduce biases which can be significant enough to 
ruin the performance of an algorithm if not properly addressed, and which cannot be probed by cross validation. 
See the supplementary material for further details. New strategies to address these biases are discussed below that 
result in big improvements in accuracy compared to previous work13.

Figure 1.  Detailed steps performed during the clinical study described in this document.

Age (years) Condition

Number of samples

Parent/Clinician 
module training

Video module 
training

Clinical 
validation 2016

Clinical 
validation 2017

<4 Autism 414 1445 75 91

<4 Not autism 207 539 20 30

≥4 Autism 1885 1865 46 60

≥4 Not autism 180 410 21 32

Table 1.  Dataset breakdown by age group and condition for each of the sources of training data and for the 
clinical validation sample. Machine learning model training was stratified by age group. Clinical validation 2016 
and 2017 samples are used together to evaluate performance of the parent and video modules in this paper, 
while the clinician module was only available for the clinical 2017 dataset.
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Inconclusive outcomes.  Each of the three modules predicts one of three assessment outcomes: Positive, negative, 
and inconclusive. As outlined in Fig. 2, support for inconclusive determination is incorporated using a process 
that involves three separate machine learning training runs. The first model is trained to make predictions that are 
used to label the samples in the training data that are the most likely to be misclassified. A second model is then 
trained using these labels to predict the likelihood of any new samples being misclassified. Finally, only samples 
that are likely to be classified correctly are used to train a final, binary autism classifier. Only the latter two models 
are used at prediction time: the one to identify and filter out samples that should be labeled “inconclusive”, and the 
other to make a binary prediction of whether the child is autistic in those which are likely to be correctly labeled. 
More details about how these models are trained are available in the supplementary material.

Parental module.  Initial feature selection.  The parental questionnaire probes for a minimal set of highly 
relevant child behavioral patterns that are maximally predictive of autism in combination. Care is taken to phrase 
the questions and answers such that the most reliable signal can be input from everyday parents undertaking the 
questionnaire via mobile app without clinical assistance.

To that effect, a custom feature selection method is devised involving robust bootstrap-driven backwards 
subtraction, the details of which are discussed in a previous publication13. Out of an initial set of 93 questions 
under consideration, this produces an optimal set of 17 novel questions for children less than four years old, and 
21 questions for children four and older.

Empirical post-hoc feature selection refinement.  Following the conclusion of the 2016 clinical validation study 
enrollment, we studied differences in the distribution of answers to each question between the training data and 
the validation data that was collected in the 2016 clinical study. While some questions had quite good agree-
ment, others show a strong bias towards higher (or lower) severity answer choices in the clinical data than in 
the training data. Questions for which the mean absolute severity difference was statistically greater than three 
standard errors (averaged over the autism and the non-autism samples) are rejected. This requirement results in 
the exclusion of 4 out of the 17 questions in the younger cohort, and 8 out of 21 questions in the older cohort, and 
the models are re-trained (with new hyper-parameter tuning) on the reduced feature set. This further refinement 
of the selected features minimizes the significant biases due to differences between the training and application 
environment. See the supplementary material for more details on these differences.

This feature refinement leads to a larger boost in performance compared with13 than any other improvement. 
The size of the performance improvement is validated on the held-out sample of children collected during 2017, 
where the new models show a statistically equivalent increase in performance compared with the 2016 sample.

Video module.  The video assessment module consists of a parent upload of 2 or 3 mobile videos, each 1 to 
2 minutes in length, of the child during play or meal time at home. The underlying algorithm produces autism 
assessments based upon the responses of at least three minimally-trained analysts who watch the videos and then 
respond to a behavioral questionnaire.

The data available for training the video module’s classification model are taken from ADOS sessions admin-
istered by clinicians in standardized clinical settings. Gradient boosted decision trees are trained keying off of the 
features identified in the analysis of ADOS records. The questionnaires that the video analysts answer are then 
created to probe for similar behavioral features as those observed in the training data. A challenge of this method-
ology is that the module must make predictions in the face of missing features that are not observable in the short 
videos uploaded by the parents. The video analysts are allowed to skip any questions if not answerable based on 

Figure 2.  An illustration of the methodology for training diagnostic assessment algorithms capable of 
outputting one of three possible outcomes: “positive”, “negative”, or “inconclusive”. The first binary classifier is 
only used to assist in training and never at runtime. It is trained to predict binary “autism” vs “not autism”, and 
these labels are then compared with the true ASD results to label which samples are incorrectly classified. The 
samples with their “correct” and “incorrect” labels are used to train the classifiers at runtime. A “indeterminate” 
classifier is trained to predict which samples will have their ASD diagnosis misclassified, which serves as a filter 
to identify “inconclusive” cases at runtime, while only the predicted “correct” samples are used to train the final 
binary ASD diagnosis classifier.
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the posted videos. On average, analysts skipped questions 15% of the time, with big variations among particular 
questions. This effect, combined with the large discrepancy in the observation time window from the original 
clinical examination to the brief home-video version, would result in a big assessment-accuracy degradation 
unless steps are taken to correct for the bias and variance .

We tackle this problem by introducing bias and variance to the training data in a manner designed to make it statis-
tically similar to the video analyst answers on which the assessments will be run. The data from the 2016 clinical study13 
is used to develop this methodology, and the performance of the algorithm on the data from the children enrolled in 
2017 is used to validate the generalizability of the improvements. Most children who participated in the clinical study 
are also administered a full ADOS, which provided paired ADOS and video data that we use to determine what noise 
patterns to add. Using these paired data, we construct a probability map for each question-response set describing the 
ways video analysts are likely to respond for a given “true” ADOS response. We then use the mapping as a stochastic 
transform to build a new training data set that can be thought of as the results of a hypothetical experiment in which 
the technicians watch parent-supplied video of the children in the training data and respond accordingly.

The addition of simulated “setting noise” to the classifier training data leads to a larger boost in performance 
compared with13 than any other improvement13. Additionally, the optimal parameters for the resulting decision 
tree models favor larger tree depth. This is as expected, since the new models are expected to make determina-
tions as to which features are reliable when present, as well as which features to fall back on when the best features 
are missing.

Clinician module.  We introduce a module to screen for autism using questionnaire responses from a cli-
nician. A pediatrician might answer these questions during a regular checkup. The questions for the clinician 
were selected in a similar manner as used for the Parental Module (see the supplementary material for details). 
Responses from both the parent and the clinician are used in a machine learning module in the same manner as 
described for the parental questionnaire above. Some key behaviors are probed via questions directed at both the 
parent and the clinician, but the clinician questions are more nuanced and allow for more subtle answer choices. 
In cases where the parent and the clinician give contradictory answers to the same question, the clinician’s answer 
overrides that of the parent. The clinician module was introduced to the clinical validation study beginning in 
2017. Its results are therefore based on a smaller sample size than those of the other modules.

Feature selection.  In order to create a brief clinician questionnaire appropriate for the primary care setting, 
multiple lists of candidate questions are each compiled and ordered using different strategies. The lists are then 
intersected and prioritized, then the top features in the intersection set are shortlisted. The first list of candidate 
questions is prepared by considering those questions from the original medical instruments that had been excluded 
from the parental questionnaire because they were deemed too difficult for a parent to answer reliably. This list is 
ranked by feature importance values as measured and ranked by a dedicated offline machine learning training and 
cross validation run in the same manner as performed for initial parental module feature selection. The second list 
is prepared from the parental questionnaire questions by simulating the effects of parents over or underestimating 
answer severities on children with machine learning responses near a decision threshold. Children in the training 
data for whom the model response was between [0 and 0.1] above the ASD-vs-non ASD decision threshold had 
their question severities dropped one at a time by one severity value, while children who were between [0 and 0.1] 
below the decision threshold had their question severities raised by one severity category. The questions in this list 
are then ranked based upon the average size of the resulting shift in model responses. The procedure is repeated 
for children in the training data between [0.1 and 0.3] above or below the decision threshold. In each case the top 
7 questions are selected (with significant overlap). This results to a total of 9 candidate questions for young chil-
dren and 10 for older children. The third list is prepared by consulting domain experts for an assessment of the 
likelihood of each candidate question to benefit from a clinician’s input as a complement to the parent’s input. This 
method is conducted separately for each of the two age-silo groups, and results in an overall clinician questionnaire 
of 13 questions for children 18 through 47 month old, and 15 questions for children 4 to six years old.

Module combination.  Due to limitations on available training data, it is not possible to train a single 
combined model that uses the input features from each of the parental, video, and clinician modules. Instead, 
responses from the modules are each considered to be a probability and combined mathematically21 using the 
equation:

= Σ ∗ Σ− − −r I R I I( ) ( ) (1)comb
T T1 1 1

Where rcomb is the result of the combination, I is a vector of 1s, R is a vector of responses for each module to be 
combined, and Σ is the covariance matrix of the response residuals compared to the true diagnosis. The “training” 
of the combination module consists of calculating the values of Σ to use in this equation, which is done using the 
responses of each module on data from the clinical study. For each child, the Σ values in the rcomb equation were 
calculated with that child excluded. This process is similar to leave-one-out cross validation, and ensures that the 
results reported for our combination procedure do not suffer from overfitting.

Since Eq. (1) produces only a single model response, the determination of “inconclusive” outcomes proceeds 
in a different manner than for the individual assessment modules. Both a lower and an upper threshold are 
applied on the combined response. Children with a response less than both thresholds are considered to be 
non-ASD, children with a response in between the two thresholds are considered to be inconclusive, and children 
with a response greater than both thresholds are considered to have ASD. As in the single model cases, the two 
thresholds can be tuned independently to optimize the sensitivity, specificity, and model coverage.
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Results
Each of the individual Cognoa assessment modules, their combinations, as well as 3 baselines based on 
commonly-used autism screening instruments (CBCL, M-CHAT-R, and SRS) are evaluated on the data collected 
during a blinded clinical study. When the inconclusive determination feature is turned off and all samples are 
required to be assessed conclusively, the Cognoa assessment modules achieve ROC AUC up to 0.83 and sensi-
tivity and specificity up to 80% and 75% respectively. Turning on the inconclusive determination feature with an 
allowance of up to 30% inconclusive outcomes results in an accuracy improvement over the conclusive samples, 
with AUC up to 0.92 with sensitivity and specificity up to 90% and 83% respectively. This performance is shown 
to be a statistically significant improvement over each of the baselines used for comparison.

ROC curves in Fig. 3 show how the parent module performs individually, as well as in combination with the 
video and clinician modules at a 30% inconclusive rate allowance. Figure 4 shows a similar comparison with all 
the variants consistently restricted to children under four years of age. ROC curves corresponding to the assess-
ment modules with the inconclusive allowance turned off can be found in the supplementary material.

Statistical model performance comparisons between assessment modules and baselines are shown in Table 2. 
For each comparison, the subset of children for whom both screeners were administered are selected (n in the 
table), and 10,000 bootstrapping experiments are run where n children are selected with replacement. The average 
and [5%, 95%] confidence interval improvements in AUC and the specificity between the screeners are evaluated 
across all bootstrapping experiments. In the case of specificity the calculation of the improvement is performed 
using thresholds that are set to achieve 90% sensitivity. 

Table 2 shows that Cognoa modules show an improvement of at least 0.26 in AUC and at least 0.52 in spec-
ificity compared with the CBCL and SRS-2 screeners at 95% confidence level. Due to the fact that M-CHAT-R 
screener is only evaluated on younger children the statistical uncertainty in the comparison is larger, however, 
it also shows an improvement of at least 0.08 in AUC and 0.11 in specificity at 95% confidence level. In these 
comparisons we allow Cognoa assessment modules to decide to hold aside up to 30% of the hardest cases as 
inconclusive. The same comparisons when we force the classification on all of the hardest cases can be found in 
Table 3 of the supplementary material.

Figure 3.  ROC curves on the clinical sample for the parent, video, and clinician modules, separately and in 
combination. Inconclusive determination is allowed for up to 30% of the cases. The established screening 
tools M-CHAT-R, SRS-2 and CBCL are compared as baselines. The ROC curve for the M-CHAT-R baseline 
instrument only includes children under four years of age since M-CHAT-R is not applicable for older children.

Figure 4.  ROC curves on kids  < 4 years of age in the clinical sample for the parent, video, and clinician 
modules, separately and in combination. Inconclusive determination is allowed for up to 30% of the cases. The 
established screening tools M-CHAT-R, SRS-2 and CBCL are compared as baselines.
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Time to completion comparisons.  A random sample of 529 Cognoa users was used in order to measure 
time to completion of each of the Cognoa autism assessment modules. The median time to completion of the 
parent module was just under 4 minutes. The median time to completion of the clinician module was 1.2 minutes. 
The median time per video analysts to score a videos was 20 minutes. More details can be found in the supple-
mentary material. The results indicate that the parent and clinician modules can be completed in as little time as 
most established autism screeners and in some cases much faster, while achieving significantly higher accuracy. 
The time required for a video analyst to score a video is more lengthy, however, the turnaround time is faster 
than for an ADOS administration12 and can be performed by minimally trained analysts as opposed to certified 
clinical practitioners.

Discussion
We presented a multi-modular assessment consisting of three machine learning modules for the identification of 
autism via mobile App as well as an evaluation of their performance and time-to-completion in a blinded clinical 
study. The assessment modules outperform conventional autism screeners, as shown in Table 2 and Fig. 3. The 
accuracy of the combined assessment is similar to that of gold-standard instruments such as ADOS and ADI-R22, 
without requiring hours of time from certified clinical practitioners. This suggests the potential for the Cognoa 
assessment to be useful as an autism diagnostic. The high performance of these modules benefits from the use 
of the techniques described in this paper to identify and set aside up to 30% of the most challenging samples as 
inconclusive. The supplementary material of this paper shows that we outperform conventional autism screeners 
without this technique as well.

Important open questions remain. First, in all cases in this paper, the assessment modules were validated on 
children who had been preselected as having high risk of autism. Children that are pre-selected in this way tend to 
have autism-like characteristics regardless of their true diagnosis, increasing the challenge of distinguishing true 
ASD cases. These modules are expected to perform better on a general population sample of children. Further 
work is needed to verify this hypothesis by conducting clinical studies on children from the general population. 
Second, the clinician module newly presented in this work appears promising, but so far it has only been applied 
in a secondary-care setting. Further testing in primary care clinics is needed to validate accuracy in that setting. 
In addition, two wider avenues of exploration are interesting as further steps. First, while these assessment mod-
ules have been shown to be effective at identifying the presence or absence of autism, our goal is to extend them 
to identify the severity of the condition (if present) as well. Second, the techniques presented in this paper could 
potentially be used to build algorithms for other child behavioral conditions than autism, as well as behavioral 
conditions affecting adults and seniors.
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Age Group Baseline Screener Assessment Module ΔAUC, [0.05, 0.95] C.I.
ΔSpecificity at 90% 
sensitivity, [0.05, 0.95] C.I. n

All ages CBCL Parent 0.17, [0.10, 0.23] 0.21, [0.13, 0.30] 370

All ages SRS-2 Parent 0.20, [0.12, 0.28] 0.21, [0.12, 0.31] 307

All ages CBCL Parent, Video 0.29, [0.22, 0.36] 0.41, [0.30, 0.52] 363

All ages SRS-2 Parent, Video 0.32, [0.24, 0.40] 0.41, [0.30, 0.52] 302

All ages CBCL Parent, Video, and Clinician 0.35, [0.26, 0.43] 0.69, [0.58, 0.81] 200

All ages SRS-2 Parent, Video, and Clinician 0.42, [0.33, 0.50] 0.65, [0.52, 0.78] 175

1.5 to 3 y.o. M-CHAT-R Parent −0.01, [−0.10, 0.07] 0.09, [−0.02, 0.21] 209

1.5 to 3 y.o. CBCL Parent 0.12, [0.03, 0.22] 0.20, [0.07, 0.34] 214

1.5 to 3 y.o. SRS-2 Parent 0.15, [0.03, 0.27] 0.24, [0.12, 0.38] 161

1.5 to 3 y.o. M-CHAT-R Parent, Video 0.14, [0.06, 0.22] 0.20, [0.07, 0.34] 204

1.5 to 3 y.o. CBCL Parent, Video 0.28, [0.18, 0.38] 0.33, [0.18, 0.49] 209

1.5 to 3 y.o. SRS-2 Parent, Video 0.31, [0.20, 0.42] 0.37, [0.21, 0.55] 157

1.5 to 3 y.o. M-CHAT-R Parent, Video, and Clinician 0.18, [0.08, 0.29] 0.30, [0.11, 0.50] 107

1.5 to 3 y.o. CBCL Parent, Video, and Clinician 0.34, [0.22, 0.45] 0.46, [0.25, 0.67] 111

1.5 to 3 y.o. SRS-2 Parent, Video, and Clinician 0.40, [0.27, 0.53] 0.50, [0.28, 0.73] 91

1.5 to 3 y.o. CBCL Parent 0.21, [0.11, 0.30] 0.23, [0.11, 0.35] 156

1.5 to 3 y.o. SRS-2 Parent 0.25, [0.15, 0.36] 0.18, [0.06, 0.31] 146

4 to 6 y.o. CBCL Parent, Video 0.30, [0.20, 0.39] 0.49, [0.34, 0.64] 154

4 to 6 y.o. SRS-2 Parent, Video 0.33, [0.22, 0.44] 0.44, [0.29, 0.59] 145

4 to 6 y.o. CBCL Parent, Video, and Clinician 0.35, [0.23, 0.47] 0.93, [0.83, 1.00] 89

4 to 6 y.o. SRS-2 Parent, Video, and Clinician 0.43, [0.30, 0.55] 0.79, [0.66, 0.91] 84

Table 2.  Statistical tests of performance improvements between models in this paper and standard baseline 
screening models. ΔAUC tells us the increase in AUC found in the screeners of this paper across bootstrapping 
experiments. ΔSpecificity tells us the increase in the specificity in the bootstrapping experiments at a threshold 
designed to achieve 90% sensitivity. Each Δ calculation shows the average value of the improvement along with 
the [0.05, 0.95] confidence interval.
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