
STEM CELLS

More than just a pool
An intricate stem cell niche boundary formed by finger-like extensions

generates asymmetry in stem cell divisions.
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S
tem cells have the ability to divide and

self-renew or specialize into many differ-

ent types of cells that replenish tissues

and organs. Historically, and based largely on

blood stem cells, divisions have been thought to

be asymmetric, resulting in two daughter cells

with different fates: an identical, slow-cycling

stem cell and a faster-cycling progenitor cell

committed to differentiation. However, self-

renewal of many tissues, such as the intestine, is

ensured by cells that do not display strong divi-

sion asymmetry and are instead organized as

pools of progenitor cells. Daughter cells of these

progenitors frequently do not appear to differ in

their likelihood to self-renew or specialize

(Post and Clevers, 2019).

Establishing the design principles underlying

such progenitor pools is key to understanding

how continuous self-renewal is maintained. Now,

in eLife, Kacy Gordon and colleagues from the

University of North Carolina and Duke University

report new insights about stem cell division in

the nematode Caenorhabditis elegans

(Gordon et al., 2020).

In C. elegans, germ stem cells – which ensure

the production of oocytes and sperm – reside at

one end of tube-shaped gonads in what is

known as the progenitor zone. The progenitor

zone is capped by a large cell called the distal

tip cell. The distal tip cell controls the prolifera-

tion of germ stem cells, and its finger-like exten-

sions are thought to communicate with these

cells (Fitzgerald and Greenwald, 1995;

Byrd et al., 2014). Proximal sheath cells (Sh1

cells) surround the gonads and wrap the differ-

entiating germ stem cells exiting the progenitor

zone.

Germ stem cells within the progenitor zone

show some variation in specialization (the cells

closest to the proximal end of the gonads start

expressing genes associated with the differentia-

tion of reproductive cells). But the orientation of

progenitor division was reported to be largely

random, compatible with the idea that the pro-

genitor zone, or at least a distal portion thereof,

forms a ‘bag’ of mostly equivalent proliferating

cells – with the most proximal being randomly

pushed out and differentiating. The speed of the

cell cycle is largely similar among progenitors,

apparently furthering the notion that the differ-

entiation process is not controlled by division

asymmetry (Maciejowski et al., 2006;

Crittenden et al., 2006; Jaramillo-

Lambert et al., 2007; Chiang et al., 2015;

Rosu and Cohen-Fix, 2017).

To investigate how the cell fate of germ stem

cells is regulated, Gordon et al. used fluorescent

labeling of both the distal tip cell and the Sh1

cells and tracked the dividing germ stem cells.

This revealed that both the distal tip cell and

Sh1 cells intercalate long protrusions that con-

tact the germ stem cells (Figure 1a). Unexpect-

edly, most cell divisions happened at the distal

tip cell-Sh1 interface. Most strikingly, these divi-

sions were often asymmetrical, with one daugh-

ter cell staying in contact with the distal tip cell

and the other one with Sh1 cells – turning the
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idea on its head that the progenitor zone is a

pool of randomly proliferating cells. Manipula-

tion of the cytoskeleton-related gene expression

further suggested that a tightly knit interface

between the distal tip cell and Sh1 cells may be

necessary for robust proliferation. However, this

does not rule out that this interface could also

respond to signals from dividing germ stem

cells. This interface may also play a role in posi-

tioning gene expression patterns within the pro-

genitor zone.

The work of Gordon et al. illustrates that a

niche is more than just a region that accommo-

dates a given number of stem cells or that serves

as a punctual source of a self-renewal signals

(Schofield, 1978). Rather, these experiments

have unearthed hidden layers of control and

thus provide a stepping stone to future research

unraveling unknown mechanisms underlying cell

fate determination. For example, what is the

purpose of asymmetric cell division in this spe-

cific area? Could the intricate shape of the niche

enlarge the surface area and so increase the

number of asymmetric divisions in this progeni-

tor zone? This asymmetry, even if it does not

anchor stem cells, could still shape clonal

dynamics in a way that helps minimize mutations

and prevent premature senescence of germline

stem cells (Cairns, 2006; Chiang et al., 2015;

Cinquin et al., 2016).

In the future, it will be important to study

germ stem cells below the gonad surface, which

Figure 1. Stem cell division in Caenorhabditis elegans. (A) In C. elegans, germ stem cells reside in a niche formed

by the distal tip cell (DTC) and are wrapped by the proximal sheath cells (Sh1) as they move proximally and

differentiate. The DTC forms protrusions that may communicate with germ stem cells. Gordon et al. discovered

that Sh1 cells also have finger-like extensions that intercalate with the DTC and contact progenitors. (B) Cell

division takes place in three different compartments within the progenitor zone (PZ): one covered by the

DTC (purple) , one at the interface of the DTC and Sh1 (orange), and one covered by Sh1 (green). Divisions are

often asymmetric in that each daughter maintains contact with one of DTC or Sh1. (C) Germ cells contacting both

the DTC and Sh1 cells contribute a substantial fraction of overall progenitor generation because they have a

higher proportion of dividing cells to non-dividing cells compared to the other compartments.
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may have different behaviors;, and to assay the

impact of asymmetric division on the dynamics

of stem cell clones. It remains to be seen if pro-

trusions similar to those of the distal tip cell and

those of other cell types such as embryonic stem

cells (Ramı́rez-Weber and Kornberg, 1999;

Inaba et al., 2015; Junyent et al., 2020), are a

prevalent feature of stem cell niches. Such struc-

tures could have remained hidden because of

imaging difficulties, and may represent a hub for

asymmetric cell divisions in tissues currently

viewed as lacking those features.
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