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Abstract

Learning synaptic weights of spiking neural network (SNN) models that can reproduce tar-

get spike trains from provided neural firing data is a central problem in computational neuro-

science and spike-based computing. The discovery of the optimal weight values can be

posed as a supervised learning task wherein the weights of the model network are chosen

to maximize the similarity between the target spike trains and the model outputs. It is still

largely unknown whether optimizing spike train similarity of highly recurrent SNNs produces

weight matrices similar to those of the ground truth model. To this end, we propose flexible

heuristic supervised learning rules, termed Pre-Synaptic Pool Modification (PSPM), that rely

on stochastic weight updates in order to produce spikes within a short window of the desired

times and eliminate spikes outside of this window. PSPM improves spike train similarity for

all-to-all SNNs and makes no assumption about the post-synaptic potential of the neurons

or the structure of the network since no gradients are required. We test whether optimizing

for spike train similarity entails the discovery of accurate weights and explore the relative

contributions of local and homeostatic weight updates. Although PSPM improves similarity

between spike trains, the learned weights often differ from the weights of the ground truth

model, implying that connectome inference from spike data may require additional con-

straints on connectivity statistics. We also find that spike train similarity is sensitive to local

updates, but other measures of network activity such as avalanche distributions, can be

learned through synaptic homeostasis.

Introduction

With the advent of high dimensional multi-electrode and calcium imaging recordings of neu-

ral activity, efficient computational methods are required to discover the underlying opera-

tional principles of neural microcircuits [1]. Such computational tools would allow the
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inference of connectivity structures at the microcircuit scale from experimental recordings [2].

Although an analysis of functional connectivity, or statistical dependence of spiking behavior

in neurons, requires only descriptive statistics of the provided spike data, a generative model

of causal connectivity can be obtained by fitting the weights of model networks to the experi-

mental data [3].

Spiking neural network (SNN) models, including the Spike Response model (SRM) [4],

Izhikevich model [5] and Leaky Integrate and Fire (LIF) models [6], are computationally

much simpler than the very biologically detailed models, like the Hodgkin and Huxley model

[7] of the squid axon, while still maintaining biological plausibility. In addition to the compu-

tational justification for these models, several empirical studies have demonstrated the reliabil-

ity of spike timing in the brain [8] [9] [10], suggesting that spike timing plays an important

role in the neural code and justifying models where spike times play an explicit role in the net-

work dynamics. Thus, fitting SNNs that reproduce experimental spike trains could plausibly

be used to discover the effective or causal connectivity of the network under study. This aim

motivates a methodology for inferring weights of SNNs based on their spike trains.

Training SNNs to efficiently perform computation, including machine learning tasks, also

motivates the study of learning rules for SNNs [11]. Since the spikes in SNNs are sparse in

time, SNNs can be trained on provided data with considerably fewer operations, saving both

energy and time when compared to their artificial neural network (ANN) counterparts [12].

SNNs have been applied to audio-visual processing [13], edge detection [14], character recog-

nition [15], and speech recognition [16]. Biologically plausible learning rules for spiking neural

networks have also been employed for unsupervised learning tasks like visual feature extrac-

tion [17], sparse coding [18], and non-negative similarity matching [19]. The observation that

SNNs can efficiently perform several machine learning tasks has motivated the development of

neuromorphic hardware specially designed for simulating the dynamics of neural microcir-

cuits [20] [21] [22]. Designing the synaptic connections in a neuromorphic system to accom-

plish a particular task similarly requires learning rules for SNNs, further motivating the

development of an algorithmic framework for designing synaptic connections that can per-

form a particular task.

Work on supervised training of SNNs began with the SpikeProp algorithm, which was an

analogue of backpropagation in ANNs, an algorithm that computes the gradients of a loss

function E with respect to the weight values [23]. The loss function for SpikeProp compared

the desired spike time with the observed spike time with a least squares objective. The post-

synaptic potential kernel �(t), which describes the impact of synaptic currents on the mem-

brane potential of the post-synaptic neuron, was differentiable, permitting the calculation of

gradients of the SpikeProp loss function @E
@w with the chain rule. Using gradient descent, Spike-

Prop was capable of training feed-forward SNNs for the XOR problem, but it was limited in

that it only allowed one spike per neuron, was very sensitive to the initialization of weight

parameters, and demanded latency based coding. Other gradient based algorithms relaxed

these restrictions by allowing multiple spikes per neuron [24], multiple neurons [25], and

allowing the synaptic delays and time constants to be free parameters in the optimization prob-

lem [26] [27]. Backpropagation takes advantage of layered, feedforward structure to efficiently

compute gradients with the chain rule. In networks with a high degree of recurrence or all-to-

all connectivity, other strategies must be employed.

Learning rules for a probabilistic SNN model have been developed by Pfister et. al, in which

the likelihood of a spike occurring at the desired time is maximized with gradient ascent [28].

A similar maximum likelihood technique was applied to the fitting parameters of the Mihalas-

Niebur neuron model [29]. Although stochastic model neurons perform well for randomly
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exploring reinforcement learning policies, they are not ideal for spike time reproduction, in

which low variability in output spike trains for fixed weights is preferred. Following this work,

Gardner et. al. adapted the weight updates from Pfister’s stochastic model to optimize instanta-

neous and filtered error signals in a deterministic LIF network [30]. In these works, post-syn-

aptic potentials were also required to compute gradients of the likelihood functions.

Chronotron [31], ReSuMe [32], and SPAN [33] all provide learning rules for a single spik-

ing neuron receiving input from many pre-synaptic neurons. The Chronotron, like other

learning algorithms, attempts to produce spikes at desired times, but rather than using using

post-synaptic potentials to compute gradients of an error function, it relies on the Victor-Pur-

pora (VP) metric between two spike trains. The VP distance measures the cost associated with

transforming one spike train into another by creating, removing, or moving spikes. The

Chronotron uses an adaptation to the VP distance that renders it differentiable and thus ame-

nable to gradient descent with respect to the weights. ReSuMe (remote supervised learning)

and SPAN both adapt variants of spike time dependent plasticity (STDP) and anti-STDP rules

in which the weight change is proportional to the difference between the desired and observed

spike trains. SPAN uses identical learning rules but filters the spike trains with the alpha kernel

�(t) * te−t/τ, essentially converting the digital spike trains to an analog sum of post-synaptic

potentials.

The application of general purpose evolutionary algorithms to train SNNs has also been

successfully explored [34] [35]. These methods, inspired by biological evolution, explore the

space of possible weight matrices and receive feedback from a loss function during training.

Although these methods optimize the weights of SNNs and do not require knowledge of the

post-synaptic potentials or gradients, they do not leverage the domain knowledge specific to

this problem, namely that a given spike has a causal history that can be traced back to the

recent spikes of other neurons.

Our PSPM learning rules provide a compromise between the stochastic evolutionary search

methods mentioned above with more targeted gradient based local learning rules. PSPM

works for all-to-all neural networks and does not require knowledge of the functional forms of

post-synaptic potentials of neurons in the network. However, since it still leverages informa-

tion about pre-synaptic neurons that fired in the recent past in order to make weight updates,

it is more targeted and plausible than evolutionary search strategies.

Similar to the Chronotron’s VP distance, our PSPM algorithm focuses on eliminating or

inducing spikes so that all of the desired spikes have a pair in the observed spike trains. This is

accomplished by optimally pairing spikes in the desired spike trains with those in the observed

spike trains with a dynamic program. For each unpaired spike, all pre-synaptic neurons that

fired within a window of time prior to the unpaired spike of interest have their weights sto-

chastically increased or decreased. Our learning rules do not require knowledge of the post-

synaptic potential kernel but rather only require the heuristic that the causal history of a given

spike can be summarized by the firing of other spikes in the recent past. We refer to these

updates made to eliminate or induce unmatched spikes as local weight changes, in contrast to

non-local weight changes in which the synapse between two neurons can change due to the

activity of some other neuron in the network.

We balance these local weight changes with network-wide homeostatic updates [36]. Our

algorithm not only makes local weight updates based on the pairing rules described above but

also responds to excess or inadequate network-level activity by modifying the strength of their

synapses. In response to strong and weak external inputs, this modification prevents, respec-

tively, oversaturation and extinction of spiking activity. Synaptic scaling of this sort is crucial

in biological networks with recurrence, which are otherwise at risk of runaway activity result-

ing from feedback loops within the network [37].
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We report two major empirical findings by training LIF networks on a set of desired spike

trains. First, we find that PSPM successfully reproduces the desired spike trains. However, we

also find that the learned weights may differ dramatically from the weights of the ground truth

network. Our finding suggests that potentially many different weight matrices can produce the

same spike trains. This is significant for the project of connectome inference from neural activ-

ity data, indicating that additional knowledge about overall connectivity statistics, like weight

matrix sparsity, may be necessary to accurately infer the weights.

In addition, we find that overall network activity is sensitive to the precise location of the

local weight updates and not just to the overall number or magnitude of changes. To assess the

relative contributions of Hebb and homeostasis, we introduce a control network that receives

fake local updates. The purpose of this control network is to demonstrate that the PSPM rule,

rather than simple bio-realistic synaptic scaling, is responsible for the observed changes. While

it was not anticipated that the control network would exhibit behavior similar to the PSPM

optimized network, it serves as a test of the efficacy of PSPM above and beyond homeostatic

changes. Additionally, we wanted to ensure that improvements on coarser measures of spike

train similarity like interspike-interval distributions were also not simply the consequence of

network wide homeostatic updates. For every update made in the PSPM learned network,

the control network receives a change but at a random synapse. Control network spike trains

vary dramatically from those of the network trained with PSPM. Unsurprisingly, exact spike

matching requires local updates at the synapse locations demanded by PSPM. More surprising,

however, was that the precise location of weight updates demanded by PSPM can result in dif-

ferent overall spike statistics and network wide inter-spike-interval distributions than those of

the control network. This indicates that even when homeostatic adjustments are made in the

network, local learning updates dominate which network-wide activity pattern is learned.

As an additional demonstration of PSPM and its ability to train generative models that

recover interesting features in spike data, we train a LIF network with spike trains provided by

a critical probabilistic integrate and fire model. While spike train similarity measures were

maximized with the precise weight updates of PSPM, we find that the control condition, which

has weight updates at random synapses, can also change the collective firing patterns of neu-

rons closer to the critical regime. This indicates that tuning a network to a near critical state

may simply require homeostatic adjustments, whereas learning precise spike trains requires

reasonable local learning rules.

It is worth noting that our algorithm is general-purpose enough to optimize networks

which have either or both of the properties of strong spike-timing-dependence and recurrence.

The former is most distinct in the peripheral nervous system, and the latter in the central ner-

vous system, with presumably some intersections. This flexibility is a key strength of PSPM, as

most other algorithms cannot handle both spike-timing-dependence and recurrence. [38] [39]

[40] [41] [42]

While we do not analyze this hypothesis in this paper, it is worth considering the possibility

that PSPM serves to produce an attractor dynamic in the optimized neural network. Given the

highly nonlinear nature of spiking neural network and the observed attractors found in studies

of simpler nonlinear neural network models, such dynamics are an entirely plausible explana-

tion for the efficacy of PSPM. [43] [44] [45] [46]

In summary, we present an algorithm for optimizing the weights of fully recurrent spiking

neural networks. The algorithm is then tested by comparing its output to the desired spike

train using a number of statistical measures such as ISI distribution similarity and the van Ros-

sum distance metric [47]. The algorithm is then further analyzed by feeding in so-called critical

spike trains and using the standard metrics of the neural criticality hypothesis [48] to analyze

PSPM’s output.
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Methods

Leaky Integrate-and-Fire (LIF) model

Our neural networks consisted of Leaky Integrate-and-Fire (LIF) neurons. For all neurons i in

the network, the membrane potential Vi(t) had a time dependence given by the following

equations:

If Vi(t)< Vth, then:

t
dViðtÞ
dt
¼ � ViðtÞ þ RmIiðtÞ þ

X

j

Wij sjðtÞ ð1Þ

Else if Vi(t)� Vth, then:

ViðtÞ  0; siðtÞ  1 ð2Þ

Where τ is membrane time constant, Vth is the voltage threshold, Rm is the membrane resis-

tance, and Ii(t) is the external input current into neuron i at time t. Further, Wij is the weight

of the network connection from neuron j to neuron i, and sj(t) is the binary value denoting

whether or not neuron j spiked at time t. Vth represents the threshold membrane potential

above which a neuron will spike. In our simulations, we imposed the condition that 20% of the

neurons in our network are inhibitory with Wij< 0 for all inhibitory neurons j. Network con-

nectivity was all-to-all but we allowed Wij = 0, corresponding to an absence of synaptic

strength between neuron j and neuron i. The parameters of our neuron model are provided in

Table 1. These parameters were based on typical values for biological neurons. The differential

equation is evaluated discretely using Euler’s method with a step size of 3 ms.

Initialized network parameters

In our simulations, we used one LIF network, termed the reference network, as the ground

truth model. The spike trains of the reference network are intended to be analogous to the

spike trains obtained in an experimental recording or the desired outputs of a neuromorphic

circuit. A distinct network called the naive network was also generated and then optimized

with our learning rules to produce output spike trains similar to those of the reference. All net-

works consisted of N = 400 LIF neurons with 20% of the neurons j randomly assigned as inhib-

itory (Wij< 0 for all inhibitory neurons j) and the remaining 80% set as excitatory (Wij> 0 for

all excitatory neurons j).
Initial synaptic weights of the reference and naive networks, WðRÞ

ij and WðNÞ
ij respectively,

had magnitudes that were drawn from 4 distinct distributions: (1) uniform: reference and

naive network weight matrix magnitudes were both drawn from a uniform distribution,

(2) gaussian: reference and naive weight values were both drawn from a Gaussian distribution,

(3) sparse: reference and naive weight matrix values first drawn from a uniform distribution

with 50% of the synapses in the naive network subsequently set to 0 V, (4) naive-half-max: ref-

erence and naive weight magnitudes drawn different uniform distributions. The distributions

and initial network parameters are provided in Table 2. The variety of initial weight distribu-

tions was chosen to demonstrate the versatility of the algorithm for uniform and gaussian ini-

tializations. The sparse and naive-half-max initial configurations demonstrate that the

Table 1. Parameters used for our neuron model.

τ Rm Vth Inhibitory Synapses step-size

30 ms 100 MO 30 mV 20% 3 ms

https://doi.org/10.1371/journal.pone.0229083.t001
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algorithm can improve the performance of a naive network with initial weights drawn from a

different distribution from that of the reference.

The external input current values at each time step were drawn from a Gaussian distribu-

tion N ðm ¼ 2:5� 10� 10A; s ¼ 1� 10� 10AÞ. The values of the input currents were tuned to be

strong enough to produce a network-wide mean spike frequency 0< f� 1 Hz when all weights

were set to zero, but could produce mean spike rates greater than 10 Hz when the weights

were nonzero. This restriction guaranteed that the external input currents remained smaller

than the currents generated by synaptic connections within the network, and thus the network

weights significantly affected the output spike trains. The distribution described above met

these requirements.

Learning paradigm

We conducted 30 trials for each of the 4 sets of initial network parameters described above

(Initial Network Parameters), creating a reference network and a naive network by drawing

weights from the specified distributions. The reference and naive networks are simulated

with the same input currents to generate reference outputs R and naive outputs N respec-

tively. The naive network’s weights are then changed according to the PSPM rules (PSPM
Learning Rules). This modified network is simulated again with the same inputs to produce

new observed spike trains O, whose dissimilarity with R determines a new set of PSPM pre-

scribed weight changes. This process is repeated for 150 epochs resulting in a network we

define as optimized (Fig 1) with output spike trains O that are now considered optimized.

Note that, henceforward, we will use the script notation R, N , O, C to refer to the spike trains

of the reference, naive, optimized, and control networks respectively and lowercase ri(t),

ni(t), oi(t), and ci(t) to refer to the the spike train of the ith neuron in each of these network

outputs.

To evaluate whether improvements in similarity between R and O (Spike Train Similarity
Measures) are not solely due to network-wide homeostatic adjustments to the weights but

rather are due to the precise, synapse-by-synapse weight changes specified by our PSPM

method, a control condition was established. At the beginning of the learning procedure, the

control network is instantiated as a copy of the naive network. During the course of optimiza-

tion, changes were made to the control network’s weights according to the following rule: for

every synaptic weight change in the naive network, an identical change is made in the control

network but at a random synapse (Fig 1). Thus the control network was provided “fake” local

updates that preserved the total number and magnitude of weight changes to the network but

placed them at the wrong synapses. After the 150 epochs of training, this network is defined to

be the control and its output spike trains defined as C. Because the control network benefited

from the same number and magnitudes of weight changes that the optimized network did, any

difference in performance between the optimized and control networks is due entirely to the

precisely specified weight alterations called for by our PSPM learning rules.

Table 2. Initial network parameters for each of the four initial weight distributions used in this study.

N jWðRÞ
ij j distribution jWðNÞ

ij j distribution Constraints

uniform 400 U[0, 5] mV U[0, 5] mV

gaussian 400 N ðm ¼ 0:4;s ¼ 0:4ÞmV N ðm ¼ 0:4;s ¼ 0:4ÞmV |Wij|� 0

sparse 400 U[0, 5] mV U[0, 5] mV 50% of WðNÞ
ij  0

naive-half-max 400 U[0, 5] mV U[0, 2.5] mV

https://doi.org/10.1371/journal.pone.0229083.t002
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Fig 1. Learning Paradigm (A) Three networks are initialized: The reference network, a naive network and its copy. In

addition, a set of input currents is generated and will be used throughout the trial. When simulated, the reference

network produces goal spike trains R that the learning rule aims to reproduce in the optimized network. A naive

network and its identical copy are created with weights distinct from the reference. (B) The reference and naive

networks are simulated with the same input currents to generate outputs R and N and the PSPM learning rules are

followed to change the weights of the naive network, henceforth denoted as the pre-optimized network (middle

Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks
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Pre-Synaptic Pool Modification (PSPM) learning rules

PSPM learning rules focus on the induction and elimination of spikes so that every desired

spike has a counterpart in the produced spike train within a small temporal interval. At a high

level, our algorithm consists of stochastic local weight updates aimed eliminating unmatched

spikes or inducing spikes at the desired time. Additional weight modifications mimic synaptic

homeostasis to keep the network at a desired level of activity. In response to differences

between R and O, individual weight values are additively modified (Fig 2).

To assess how well the spikes in the reference outputs match up with those of the observed

outputs, we optimally pair individual spikes in the ith observed spike train oi(t) with their

counterparts in the ith reference spike train ri(t) using a string-matching dynamic program.

This dynamic program begins by creating a cost matrix L 2 Rn�m
with elements that represent

the cost of matching each possible spike pair where n is the number of spikes in ri(t) and m is

the number of spikes in oi(t). Λkl, therefore, represents the cost of optimal pairing of the first k
spikes of ri(t) to the first l spikes of oi(t). Note that this optimal pairing could leave many spikes

unpaired as shown in Fig 2.

We define the absolute temporal difference dk,l between each spike k in ri(t) and spike l in

oi(t) as

dk;l ¼ jt
ðrÞ
k � tðoÞl j ð3Þ

where tðrÞk is the time of the kth spike in the reference spike train and tðoÞl represents the time of

the lth spike in the observed spike train.

The cost matrix Λ is determined with the following recursion relation

Lk;l ¼ minfLk� 1;l� 1 þ dk;l;Lk� 1;l þ acap;Lk;l� 1 þ acap;Lk� 1;l� 1 þ 2acapg ð4Þ

and base cases

L0;l ¼ l acap ð5Þ

Lk;0 ¼ k acap ð6Þ

where the parameter acap represents the maximum temporal separation between two spikes

that can be considered paired. We chose to set acap at 15 timesteps, which corresponded to

roughly 45 ms. If the first argument of the right hand side in Eq (4) is minimum, then spike k
and spike l should be paired to minimize the cost of Λk,l. The second argument in Eq (4) is

minimum if it is cheapest to leave spike k in ri(t) unpaired, incurring an additional cost of acap.
Likewise, the third argument in (4) is minimal if it is cheapest to leave spike l in oi(t) unpaired.

Lastly, if it is cheapest to leave both k and l without pairs then we incur the additional cost of

2acap.
Once the cost matrix Λ is completely determined, we backtrack through the matrix from

position [n, m] to one of the base case positions: [k, 0] for some k or [0, l] for some integer l. As

we backtrack through positions in the matrix, we move in the direction along which Λn,m was

defined with the recurrence relation (4). This corresponds to identifying the optimal set of

column). For every change in the pre-optimized network, there is an identical change in the copy, except the change is

made at a random synapse. (C) This process is repeated for the specified number of epochs (150) of the algorithm. (D)

Upon completion, the network in the middle column is considered optimized, the reference (left column) is

unchanged and the remaining network (right column) is considered the control.

https://doi.org/10.1371/journal.pone.0229083.g001
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Fig 2. Pre-Synaptic Pool Modification (PSPM) learning rules. (A) Spike trains for the ith neuron from the reference outputs ri(t) and the naive network

outputs ni(t) before weight alteration. The jth neuron’s spike train is also shown for the naïve net nj(t). The red arrow identifies a spike in the reference output

which is initially unpaired. (B) Because the jth neuron of the naïve network experiences a spike at a time shortly before the unpaired spike in the reference

spike train, the synaptic weight from j to i is increased (blue arrow), ideally resulting in a new spike in the ith neuron’s spike train. In the next simulation

round, this new spike matches with the formerly unpaired reference spike, as indicated by the purple arrow. Networks receive this treatment for every spike

that remains unpaired after application of the dynamic program (Methods).

https://doi.org/10.1371/journal.pone.0229083.g002
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spike pairs P where [k,l] 2 P if and only if the kth spike of ri(t) is paired with the lth spike of

oi(t) to minimize the total cost.

Equipped with the set of spike pairs P that minimize total cost, we can then determine

which spikes in ri(t) do not have a counterpart in oi(t) and vice-versa. For every unpaired

spike in ri(t), we attempt to induce a spike at oi(t) by increasing some of the pre-synaptic

weights of neuron i in the optimized network (Fig 2). Let tðRÞk be the time of the unpaired spike

in ri(t). To choose which inbound synaptic connections Wij should be increased to induce a

spike in oi(t) are determined by which neurons j in the presynaptic pool spiked within the

interval ½tðRÞk � z; tðRÞk � where z is an integer number of timesteps. For each of these neurons j we

make the following update

Wij  Wij þ d ð7Þ

where δ is drawn from [0, 10−7] V and z was set to 10 timesteps.

In the case of an extra spike in oi(t), a similar procedure is followed, save that relevant

weights Wij are stochastically decreased. Note that weight matrix values are not allowed to

change sign, which would correspond to an excitatory synapse becoming inhibitory or vice-

versa. Instead, if an excitatory weight is decreased below zero or an inhibitory weight is

increased above zero, the weight is simply set to zero.

In addition, homeostatic weight modifications are made to keep the entire network at a

desired level of activity. In the event of excess spiking throughout the observed spike trains O,

all weights (not just the excitatory weights) of the observed network are stochastically dimin-

ished by subtracting a small random number from each of the weights. If the observed network

produces an inadequate number of spikes, all weights are stochastically increased by adding

small random numbers to each of the weights. Further, changes to weights are additive

increases and decreases, rather than multiplicative increases or decreases in the magnitude of

the weight, though we do not allow inhibitory connections to become excitatory, nor vice

versa. If the reference spike trains R contain x spikes and the observed spike trains O contain

y spikes, changes to each weight value Wij are determined by drawing from a uniform distribu-

tion over [0, (x − y) × 10−11] V.

Spike train similarity measures

To assess agreement between spike trains after the algorithm was run, we used a modification

of the van Rossum distance metric [47]. In the original van Rossum paper, spike trains are fil-

tered with an exponential window to smooth the signal. To generate a distance measure

between the spike trains, absolute or squared differences between convolved signals are then

integrated over the duration of the signals. In this project it was desirable to have tolerance on

both sides of a spike (before and after), so instead of using an exponential windowing function,

we convolved binary spike trains with a Gaussian window as described in Schreiber et. al [49].

Indeed, in the original van Rossum paper it was suggested that other windowing functions

(specifically square windows) could be used depending on the information one seeks to

extract. The Gaussian window we use essentially combines the symmetrical nature of the

square window with the smooth and rapid decrease of an exponential window. Our Gaussian

filter had a mean μ = 0 and a standard deviation of s ¼ 5
ffiffiffi
2
p

time-steps or roughly σ� 21 ms.

The kernel, or windowing function, KðtÞ ¼ e�
1

2s2
t2

is convolved with the ith binary spike train

si(t) 2 {0, 1}T, which is defined for the time interval of the simulation [0, T] where T is the total

number of time steps in a simulation. The result of this convolution is essentially a sum of
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Gaussians and is defined as the activity signal for neuron i

aðsiðtÞ; tÞ ¼ KðtÞ � siðtÞ ¼
Z t

0

dt e� ðt� tÞ
2=2s2siðtÞ:

A total network activity signal can be found by summing individual activity signals

a(si(t), t) over each neuron index i with N the total number of neurons. If

S ¼ ½s1ðtÞ; s2ðtÞ . . . ; siðtÞ; . . . ; sNðtÞ� 2 f0; 1g
T�N

is the matrix containing each of the output

spike trains of a network, then the total activity signal for spike trains S is

AðS; tÞ ¼
XN

i¼1

aðsiðtÞ; tÞ

We will adopt the convention that lowercase a(si(t), t) corresponds to the activity signal of

neuron i while the upper case AðS; tÞ corresponds to the total activity signal of the network

spike trains S.

From these two types of activity signals, two distance metrics are established. First a pair-

wise distance metric DPðS;RÞ is constructed by comparing the individual activity signals of

two sets of spike trains (with the same number of neurons N) S;R 2 f0; 1gT�N , neuron by
neuron over the time interval [0, T]. If si(t) and ri(t) are the ith binary spike trains for distinct

network outputs S and R, then the pairwise distance measure would be

DPðS;RÞ ¼
XN

i¼1

ZT

0

dt ½aðsiðtÞ; tÞ � aðriðtÞ; tÞ�
2
:

We also define an aggregate distance measure between the two sets of spike trains S and R as

DAðS;RÞ ¼
ZT

0

dt ½AðS; tÞ � AðR; tÞ�2:

where AðS; tÞ and AðR; tÞ are total activity signals of spike trains S and R respectively.

In addition to these spike train distance measures, we also assessed agreement between

spike trains by comparing inter-spike-interval (ISI) distributions, which contain information

about the regularity of spiking in a network. For a given spike train si(t), the inter-spike inter-

val distribution is a series of observations of the number of time steps between adjacent spikes.

For instance, if at time t, si(t) = 1 and the time of the next spike is t + a so si(t + a) = 1 and

si(t + b) = 0 for 0< b< a, then the value a is appended to the ISI distribution. For a network

wide measure ISI distribution, observations from each neuron are concatenated to produce a

distribution with the entire set of observations.

To compare ISI distributions between two output spike trains, we compute histograms of

fixed bin size and calculate the ℓ2 distance between the histogram vectors of the two spike

trains. The value of each element in these histogram vectors is the number of intervals that fall

within a given bin. We compare the naive, optimized and control ISI distributions to that of

the reference. Low ℓ2 distance indicates similar ISI distributions.

Probabalistic Integrate-and-Fire (PIF) model

In our second set of simulations, reference binary spike trains R were generated from a proba-

balistic integrate and fire (PIF) model with N = 400 neurons [48–50]. Like the synapses in the
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LIF, the strength of PIF synapses are represented by a weight matrix W 2 RN�N . To impose

sparsity, we set the probability that a synapse is created between any two neurons i and j to

p = 10%. In our PIF network, all synapses were excitatory. The weight values were drawn from

a uniform distribution on [0, 0.02] so that the mean (nonzero) weight value was 0.01. The

maximum eigenvalue λ was calculated and each element of the weight matrix W was subse-

quently divided by λ so that the maximum eigenvalue of W is 1 and the network operates at

criticality [48]. Input values Ii(t) were drawn from a Poisson distribution with mean and vari-

ance μ = σ2 = 1 which were then multiplied by 0.001 to produce a network wide average spik-

ing frequency greater than 0.003 spikes per time-step or 1 Hz if each time-step is 3 ms,

consistent with the overall spike rate of our LIF model. The binary state of neuron i at time

t + 1, si(t + 1), is given in terms of the state of all other neurons at time t:

siðt þ 1Þ ¼ Y½
XN

j¼0

WijsjðtÞ þ IiðtÞ � xiðtÞ� ð8Þ

where ξi(t) are random numbers drawn from a uniform distribution on [0, 1] and Θ is

the unit step function. Whereas the LIF network parameters have dimensions corresponding

to voltage and current, the PIF model parameters are dimensionless. This PIF network

was simulated for T = 50, 000 time-steps to produce the reference spike trains

R ¼ ½r1ðtÞ; . . . ; riðtÞ; . . . ; rNðtÞ� 2 f0; 1g
T�N

. This simulation time was chosen so that there

were 5000 or more avalanches (Avalanche Analysis). The PIF outputs R were then broken

up into 5 spike trains of 10,000 timesteps each of which served as a set of reference spike

trains for the PSPM learning procedure. These spike trains were split so as to reduce the

algorithm’s input size, improving the speed at which a solution could be obtained. Naive LIF

networks were initialized with weight magnitudes drawn from a uniform distribution on [0,

1 × 10−3] with all synapses designated as excitatory.

Avalanche analysis

To test whether PSPM successfully induced criticality in the optimized LIF networks, ava-

lanche statistics were calculated for each of the output spike trains R, N , O, and C. From a set

of spike trains si(t) for neurons i, a summed network spiking FðtÞ ¼
X

i

siðtÞ was evaluated.

Avalanches were defined as events where the summed network spiking F(t) exceeded the 20th

percentile of the all summed activity values over the simulation interval [0, T]. An avalanche

persists from the time step F(t) first passes above the 20th percentile threshold until F(t) sinks

below this threshold. This percentile threshold was chosen so that in a simulation of T = 50,

000 time steps, the number of avalanches exceeded 5000 for the PIF network outputs R. For

each avalanche, the size S and duration D were recorded. Size is defined as the number of

spikes within an avalanche while duration is the number of time steps for which the avalanche

persists. As described in [51], a maximum likelihood method was employed to fit power

law probability distributions for the sizes and durations of avalanches. Namely that the size

distribution follows P(S)* S−τ while the duration distribution follows P(D) * D−α. At criti-

cality, the average avalanche size < S> and duration D of avalanches also obeys a power law

< S>* D−β with critical exponent β. By using the calculated critical exponents α and τ from

the size and duration probability densities one can calculate a predicted βp = (α − 1)/(τ − 1)

which can then be compared to an empirically observed critical exponent βo obtained by fitting

average size < S> and duration D observations for the avalanches in the output spike train.
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Results

PSPM learning improves spike train distance measures

In simulations with LIF reference and naive networks generated from the distributions

described in Initial Network Parameters, optimization improved agreement between O and R.

Fig 3(A)–3(D) show sample raster plots of R, N , O, and C for a representative trial with naive-
half-max initial network parameters (Methods). R and N exhibit significant differences in the

timing of spikes for individual neurons in the network. Because both networks were stimulated

with the same input currents, the difference in the reference and naive weight matrices account

Fig 3. PSPM improves qualitative agreement in output spike trains. (A) The outputs R the reference network for a representative trial when

stimulated with Gaussian input currents and initialized with the naive-half-max conditions. Neuron identity is plotted on the y-axis, while time is

plotted on the x-axis. These spike trains serve as the goal output firing activity throughout the application of the algorithm. (B) The outputs N of a

naïve network simulated with identical inputs as the reference network used in (A). Note that the dissimilarity in outputs between (A) and (B) is due

entirely to differences in the weight matrices of the reference and naive networks. (C) After optimization of the weight matrix, the network’s firing

activity O is qualitatively similar to that of the reference network. (D) The spiking C of the control network also differs from the reference. The

weights of the control network are changed each time the algorithm would have made a change to a specific weight in the optimized network, but at a

different random synapse instead. Thus, the disparity in performance between the optimized and control networks is due to PSPM’s neuron-by-

neuron precise weight adjustments.

https://doi.org/10.1371/journal.pone.0229083.g003
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for the observed disparity in the output spike trains. O, however, exhibits considerably better

qualitative agreement with R than N does, indicating improvement due to PSPM learning. C,

despite benefiting from similar homeostatic adjustments to its weight matrix as the optimized

weight matrix (Methods), shows disagreement in precise timing with R due to the weight

changes made at random synapses during learning. This indicates that network performance

is sensitive to the prescribed local weight changes called for by our PSPM learning rules.

A qualitative evaluation of the voltage traces also reveals that PSPM produces single neuron

activity with greater agreement with the reference network. Fig 4 shows sample voltage traces

for a neuron over a short time window. The optimized and reference traces are nearly identical

while the naive and control do not have all spikes at the correct time. The fact that all networks

receive the same input driving currents means that all differences between the activity traces

are due to differences in the weight matrix.

To corroborate these qualitative assessments of spike train similarity for this trial, we gener-

ate network activity signals with the Van-Rossum like method described in Spike Train Simi-
larity Measures. Fig 5(A)–5(D) shows the single neuron activity signals for an example neuron,

in this case, the first neuron in the network. Again, the optimized activity signal a(o1(t), t)
shows better agreement with the reference a(r1(t), t) than either the naive a(n1(t), t) or control

a(c1(t), t) activity signals do. In addition to single neuron signals, we show the total network

activity signals for this trial in Fig 5(E)–5(H) to visually capture network-wide spike train

behavior. As before, the optimized network activity AðO; tÞ shows the greatest agreement with

the total activity signal of the reference AðR; tÞ.
Distance measure results for each of the initial network configurations described in Initial

Network Configurations are shown in Fig 6. For each initial configuration, 30 trials were con-

ducted. Tables 3 and 4 show these pairwise and aggregate distance measures respectively. For

each of the initial network configurations, the distance measures of the optimized networks

are lower than the distance measures for the naive and control networks. The fact that PSPM

improves performance of the optimized network but not the control demonstrates the impor-

tance of making local weight updates at appropriate synapses during learning (Methods).

Improved agreement in ISI distributions and basic spike statistics

dependent on initial network configuration

In addition to improving spike train similarity, the PSPM procedure also improves goodness

of fit between inter-spike interval (ISI) distributions. For example, the ISI distributions for

each of the four spike trains R, N , O, and C for a sample trial are shown in Fig 7(A)–7(D).

Qualitatively, the ISI distribution of the optimized network shows best agreement with that of

the reference network. The ISI distributions of the naive and control networks differ somewhat

from that of the reference network.

To quantify similarity between ISI distributions, ℓ2 distances between the set of reference

ISI observations and the observed ISI values from the naive, optimized, and control outputs

were computed (Methods). Fig 8 shows the ℓ2 values recorded for each of the 30 trials along

with spike number mean and variance (computed over neurons in the network) while numeri-

cal ℓ2 values are reported in Table 5. The ISI distribution for O demonstrates the closest fit

with that of R as indicated by the low values for each of the initial network configurations.

The one exception is the Gaussian initialization where the mean control ℓ2 distance is actually

lower than that of the optimized. Therefore, the improvement in performance caused by

PSPM over and above the control updates depends on the initial weight distribution.

Our simulations indicate that, overall, PSPM improves agreement between ISI distributions

of the reference and optimized network. However, the large standard deviations in ℓ2 for each
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Fig 4. In addition to improving spike train similarity, PSPM also improves agreement with voltage traces. Example voltage traces are

plotted for a single neuron over 200 timesteps. All neurons in the network are driven with the same input currents so the differences in

dynamics between networks is only due to the different weight matrices. The reference (A) and optimized (C) show most similar traces with

spikes at 25 and 100 timesteps. The same neuron in the naive network (B) has only one spike, and it occurs later than the desired time. During

PSPM, weight matrices are learned to reproduce the correct spike times, evidenced by the optimized trace (C). The control network (D) is

given overall homeostatic adjustments that keep total network activity at the desired level but the spike times are different. Note that the second

spike in the control network occurs later than the reference spike.

https://doi.org/10.1371/journal.pone.0229083.g004
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network and initial configuration indicates a large trial to trial variability. Learning the ISI dis-

tribution is sensitive to the sampled initial weights of the naive and reference networks in each

trial.

In addition, spike number mean and variance show sensitivity for the initial network

conditions (Fig 8). Mean spike numbers were calculated for a collection of spike trains

S ¼ ½s1ðtÞ; s2ðtÞ . . . ; siðtÞ; . . . ; sNðtÞ� 2 f0; 1g
T�N

by first counting the number of spikes in

each individual spike train si(t) and then taking an average over neurons i. Variance was simi-

larly calculated over the spike numbers in each individual neuron’s spike train. While the

mean spike number varies sporadically throughout optimization, spike number variance tends

Fig 5. PSPM improves qualitative agreement between output activity signals and reference activity signals (Methods). Subplots (A)-(D) show

single neuron activity signals of network outputs for a representative trial. In particular, these are the activity signals for neuron 1 in this trial. If r1(t),
n1(t), o1(t), c1(t) represent the spike trains of the first neuron in the reference, naive, optimized, and control networks respectively then the activity

signals a(r1(t), t), a(n1(t), t), a(o1(t), t), a(c1(t), t) are plotted in (A), (B), (C), and (D) respectively (Methods). Transitioning from the naive state to the

optimized state there is clear improvement in the agreement with the reference activity signal. Similarly, the post-optimization signal a(o1(t), t)
exhibits greater agreement with the reference signal a(r1(t), t) than does the control total activity signal AðC; tÞ with the reference signal. The fact that

(A) and (C) show closest agreement indicates successful learning due to PSPM. Total activity signals are plotted in (E)-(H). If the total activity signals

for the reference spike trains R, naive spike trains N , optimized spike trains O, and control spike trains C are represented by AðR; tÞ, AðN ; tÞ,
AðO; tÞ, AðC; tÞ, then these are respectively plotted under labels (E), (F), (C), and (D) (Methods).

https://doi.org/10.1371/journal.pone.0229083.g005
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to increase with application of PSPM. Interestingly, the gaussian and sparse networks show a

larger spike number variance for the optimized outputs O than for the control outputs C, indi-

cating that for these distributions, network-wide homeostatic adjustments do not considerably

influence the spike number variance but the targeted spike-matching weight adjustments due

to PSPM increase spike number variance.

Fig 6. PSPM decreases distance measures for all initial network configurations. (A) Pairwise DPð�;RÞ and aggregate DAð�;RÞ distance

measures from 30 trials for where initial weight matrix magnitudes were drawn from a uniform distribution on (Methods). Moving from left to

right in each panel, distances are shown for the naive N (left), optimized O (middle), and control C network outputs (right). (B) Distance

measures for a reference weight distribution with magnitudes drawn from a gaussian distribution (see Methods). (C) Distance measures for

sparse initial configuration. (D) Distance measures for reference outputs produced from a naive-half-max initial configuration (Methods). Note

that in each of these figures the optimized distances are consistently smaller than those of the naive or control, indicating successful learning

due to PSPM prescribed weight changes.

https://doi.org/10.1371/journal.pone.0229083.g006

Table 3. Pairwise distance measures for each of the 4 initial network configurations. Mean and standard deviation reported for 30 trials.

Initial Configuration DPðN ;RÞ DPðO;RÞ DPðC;RÞ

uniform 58 ± 9 18 ± 4 63 ± 16

gaussian 61 ± 9 28 ± 8 79 ± 12,

sparse 79 ± 8 37 ± 0.425 97 ± 16

naive-half-max 154 ± 15 11 ± 5 68 ± 9

https://doi.org/10.1371/journal.pone.0229083.t003

Table 4. Aggregate distance measures for each of the 4 initial network configurations. Mean and standard deviation

reported for 30 trials.

Initial Configuration DAðN ;RÞ DAðO;RÞ DAðC;RÞ

uniform 25 ± 7 5 ± 2 28 ± 13

gaussian 28 ± 6 11 ± 5 40 ± 9,

sparse 37 ± 6 14 ± 6 53 ± 14

naive-half-max 112 ± 15 3 ± 3 33 ± 7

https://doi.org/10.1371/journal.pone.0229083.t004
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PSPM does not induce agreement between weight matrices

With the PSPM algorithm’s demonstrated success in reducing spike train distance measures

and improving goodness of fit of ISI distributions, a plausible expectation may be that the

algorithm improves similarity between the reference and optimized weight matrices

WðRÞ;WðOÞ 2 RN�N
but an analysis of the resulting weight matrices shows that this is not

the case. To calculate the similarity between weight matrices, component-wise sums of

squares, also known as Frobenius norms, were calculated for each of the following matrices

W(N) −W(R), W(O) −W(R), W(C) −W(R). These errors are shown in Table 6 averaged over 30

trials for each of the initial network configurations. The optimized weights W(O) showed the

largest disagreement with the reference weights W(R) for the uniform, gaussian, and sparse and

only shows slight improvement for the naive-half-max condition where the elements of the

naive and reference weight matrices, W(N) and W(R) respectively, are drawn from distinct

probability distributions. A possible explanation for this disagreement between optimized and

reference weight matrices despite improvement in distance measures and ISI statistics is that

many possible weight matrices could produce the same spike trains.

PSPM used to generate critical behavior in a LIF network

In the second set of simulations, a probabilistic integrate-and-fire (PIF) networks was gener-

ated with the maximum eigenvalue of the weight matrix tuned to 1 (Methods). The PIF net-

work was driven with Poisson inputs and the outputs were evaluated with avalanche analysis.

LIF networks were then optimized to reproduce the critical outputs of the PIF, but in a

Fig 7. PSPM learning improves agreement of inter-spike interval (ISI) distributions. (A) The network-wide ISI distribution for the reference

network most closely resembles the ISI of the optimized network (C) for this trial. The naive (B) and control (D) network ISI distributions both differ

qualitatively from the reference ISI distribution. Thus the synapse specific changes called for by PSPM produces an ISI distribution similar to the

reference.

https://doi.org/10.1371/journal.pone.0229083.g007
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deterministic model network. The spike trains of this PIF network were simulated and subse-

quently used as the reference data for runs of our algorithm. Namely, the 50,000 time steps of

the PIF simulation were split into five sets of 10,000 time steps, each of which was used for a

run of the PSPM algorithm. The resulting output spike trains were concatenated to provide

adequate data for critical avalanche analysis. While the PIF network received external, scaled

Poisson inputs (Methods), the LIF network was stimulated using a Gaussian input current dis-

tribution identical to that used in our first set of simulations. Poisson inputs were only used for

the PIF network on account of its different dynamics. Input currents in the PIF represent

probabilities of firing due to external input, whereas input currents in the LIF change the

membrane potential. Unlike the first set of simulations, the LIF network synapses were exclu-

sively excitatory, as was the case for the PIF networks described by Karimipanah [48].

We investigated the avalanche statistics for the critical PIF reference network and compared

it with the avalanche statistics for the naive, optimized, and control LIF network from ten runs

of the algorithm (Fig 8). As expected, the critical PIF network demonstrates the marked agree-

ment between the predicted and fit β values with absolute difference |βo − βp| = .006, indicating

critical avalanche statistics. Because the PIF network was already tuned to criticality, this

Fig 8. Improvement in ISI goodness of fit and basic spike statistics dependent on initial network configuration. (A) ℓ2 distance measures between ISI

histograms and basic spike statistics for uniform initial reference and naive networks (Methods). The plots are organized left to right for reference, naive,

optimized, and finally control conditions. The ISI goodness of fit improves during optimization indicating similarity in the reference and optimized inter-spike

interval distributions. For the uniform initial distributions, the control ISI ℓ2 distances are lower on average than those of the optimized networks, but for all

other initializations, the ISI ℓ2 distance is lowest for the optimized condition. Means and variances of spike number are computed by recording the number of

spikes in each neuron’s spike train and taking averages and variances over neurons. While the mean spike number is roughly unchanged through optimization

(from naive to optimized), the variance in spike number diverges from the reference value. (B) For the gaussian initial network configuration, ISI ℓ2 for the

optimized network is greater on average than that of the control, but in both cases improves during learning. (C) For the sparse initial network configuration,

PSPM improves network performance for both ISI goodness of fit and mean spike number but not for variance. (D) The naive-half-max initial configuration

enjoys benefits in ISI goodness of fit and mean spike number but shows spike number variance again increasing with application of PSPM.

https://doi.org/10.1371/journal.pone.0229083.g008
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agreement is unsurprising. In contrast, the naive LIF networks with weights drawn from a

uniform distribution on [0, 1 × 10−3] had fewer avalanches and the avalanches that were

observed failed to follow a power law with size or duration. After running our algorithm, the

concatenated output spike trains of the optimized and control LIF networks were also sub-

jected to avalanche analysis. Of the three LIF networks, the optimized network demonstrated

the best agreement between its predicted and observed values of β with absolute difference

|βo − βp| = .064 as is evident in Fig 9(C). This indicates that the weight alterations made during

the application of PSPM successfully induced critical activity in the optimized LIF network.

Interestingly, however, the control condition, shown in Fig 9(D) exhibits decent agreement

between the predicted and observed β values with |βo − βp| = .128. This surprising agreement is

of potential theoretical interest, as it could indicate that non-targeted alterations to the weight

matrix of a sort similar to that of biological synaptic scaling are sufficient to induce criticality,

providing a potential explanation of the emergence of criticality in biological neural networks

which should be explored in future work.

Discussion

We developed flexible, supervised learning rules for SNNs that reproduce a desired set of spike

trains. The principle of our learning rules is to produce spike pairs, which consist of a spike in

the reference outputs and a spike in the model outputs that have a bounded temporal distance.

During training, spike pairs are identified with a dynamic program, and stochastic weight

changes are made to eliminate or induce spikes in the model outputs to minimize the number

of unpaired spikes. Our learning rules, while simple, do not require information about post-

synpatic potentials or demand the network have a feedforward structure. Algorithms based on

gradient descent commonly need the former while algorithms specifically performing back-

propagation require the latter as well.

In addition, we explore how training all-to-all SNNs with PSPM for spike train similarity

allows the discovery of weight parameters. By comparing our learned weight matrices with

those of a ground truth model, we find that spiking neural networks, and thus potentially bio-

logical neural networks, have highly degenerate connectivity. Lastly, we explore the relative

contributions of local and homeostatic weight updates in this supervised learning setting.

Table 5. ISI goodness of fit measured with ℓ2 distance between histograms. Actual values are 100 times those reported above.

distribution Naive ℓ2 Optimized ℓ2 Control ℓ2

uniform 17 ± 2 9 ± 10 16 ± 20

gaussian 22 ± 2 15 ± 10 11 ± 10

sparse 21 ± 2 8 ± 10 20 ± 20

naive-half-max 17 ± 20 7 ± 10 17 ± 20

https://doi.org/10.1371/journal.pone.0229083.t005

Table 6. Weight matrix differences for each initial network configuration. Mean and standard deviation reported

for 30 trials.

Initial Configuration
X

ij

ðWðNÞ
ij � WðRÞ

ij Þ
2

X

ij

ðWðOÞ
ij � RðRÞij Þ

2
X

ij

ðWðCÞ
ij � WðRÞ

ij Þ
2

uniform .064 ± .022 .095 ± .154 .061 ± .005

gaussian .032 ± .0001 .055 ± .002 .043 ± .001,

sparse .18 ± .006 .19 ± .003 .18 ± .0007

naive-half-max .059 ± .0003 .059 ± .0017 .05 ± .0002

https://doi.org/10.1371/journal.pone.0229083.t006

Pre-Synaptic Pool Modification (PSPM): A supervised learning procedure for recurrent spiking neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0229083 February 24, 2020 20 / 25

https://doi.org/10.1371/journal.pone.0229083.t005
https://doi.org/10.1371/journal.pone.0229083.t006
https://doi.org/10.1371/journal.pone.0229083


PSPM improved spike train and inter-spike interval similarity with the desired set of spike

trains. However, we find that training a model that reproduces spike trains does not entail that

the resulting weight matrix matches that of the reference model. The fact that weight matrices

were under-determined by the output spike trains of our model networks could have implica-

tions for connectome inference from spike data. Fitting SNN models with a high degree of

recurrence to spike train data may require additional constraints on overall connectivity statis-

tics such as sparsity, network in-degree and out-degree, as well as other network measures.

Fig 9. PSPM used to generate a LIF network operating near criticality. (A) Scaling relations for the avalanches of the PIF outputs. The size (left) and

duration (middle) distributions of the avalanches present in the PIF outputs (Methods). Data is presented in log-log plots so that the empirically fit

power laws are clear. The critical exponents for the size τ = 1.242 and duration α = 1.327 are fit through regression and used to predict a theoretical

value for the scaling constant βp = 1.351 between average avalanche size< S> and duration D. An observed value βo = 1.351 is obtained through

regression on the avalanche data. The predicted and observed values for the critical exponent β, a measure of the criticality of a system, agree reasonably

well with a difference of |βo − βp| = .006, indicating that the spike trains exhibit criticality. This is unsurprising given that the PIF’s weight matrix had its

maximum eigenvalue tuned to 1 (Methods). (B) The outputs of a naïve network with uniform initial network characteristics failed to exhibit criticality,

with both size and duration distributions deviating significantly from power laws. (C) After optimization, the size and duration distributions follow

power laws with impressive agreement between predicted and actual critical exponents |βo − βp| = .064. (D) The control condition, however, also

demonstrates a reasonable approximation of criticality albeit with larger disagreement between predicted and fit β: |βo − βp| = .128. This suggests that

synaptic scaling without neuron-by-neuron precision weight changes may be sufficient to generate criticality in an LIF network.

https://doi.org/10.1371/journal.pone.0229083.g009
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Perhaps promoting sparsity during training with regularization penalties could improve the

agreement between the model and the ground truth weight matrices. Given that many weight

matrices can generate the same outputs [52], it would also be worth exploring whether incor-

porating data sets with a variety of external inputs into training and imposing constraints on

weight matrix conectivity statistics, better agreement between resulting weight matrices may

be possible.

We did not benchmark our learning rules against other methods since we were primarily

interested in whether simple learning rules of this kind could learn the weights of an SNN,

especially in the case where the ground truth model is highly recurrent. Investigating the accu-

racy of learned weights for different learning algorithms would be an interesting direction of

future research.

In addition to studying supervised learning for SNNs in the context of connectome infer-

ence, we also analyzed the relative contribution of local learning rules and network-wide

homeostatic weight updates. We find that PSPM local learning rules are responsible for dra-

matic improvements in spike train similarity during learning, while random homeostatic

adjustments are insufficient to reproduce desired spike trains. However, dramatic changes in

avalanche statistics can occur solely through homeostatic changes.

Several previous strategies for supervised learning in SNNs employed gradient based meth-

ods, which require information about the neuron model and its post-synaptic potentials [23]

[24] [25] [26] [27]. Weight updates derived in the context of stochastic model neurons can

similarly be derived from gradient descent rules [28] [29] [30]. These targeted gradient-based

strategies can be contrasted with evolutionary search optimization of SNNs, which only

require a loss function that can be evaluated at each iteration [34] [35]. The strategy of PSPM

is a compromise between these competing views. The magnitude of the updates are still sto-

chastic, like in the case of evolutionary search, but the synapses are chosen on the basis of

which neurons fired in the recent past of the spike of interest. In addition, many of the previ-

ous studies on SNNs trained only one neuron that received many pre-synaptic inputs, motivat-

ing our study of learning weights that produce spike trains for an entire network [31] [32]

[33].

A limitation of PSPM is the presence of two free hyper-parameters involved in the learning

process. The maximum number of timesteps that can separate two paired spikes is set by the

user and is represented by the parameter acap. Likewise, the number of timesteps in the recent

past that should be considered when making synaptic updates is also set externally with the

parameter z. Although we do not require knowledge of the pre-synaptic potential, the choice

of z requires an a priori estimate of the amount of time in the past that is relevant to the pro-

duction or elimination of a given spike.

Another limitation of the present work is that each of our networks were simulated with

currents drawn from a single distribution and were trained to generate optimized outputs O
as similar as possible to reference outputs R when exposed to identical inputs. Further work

could elucidate the performance of PSPM when a network is trained on external input currents

drawn from a variety of distributions.

Further empirical work is required to benchmark the performance of various SNN learning

algorithms for connectome inference in highly recurrent networks. Assessing the differences

between the generative models produced during training for these various algorithms would

also be worth exploring.

Another interesting avenue of work would be to assess the hypothesis that PSPM is generat-

ing high-dimensional attractors in the network dynamics. As discussed in the introduction,

this issue has not been addressed in the present paper, but is worthy of further analysis. Indeed,

it would be interesting to demonstrate that PSPM or similar homeostatics-inspired processes
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are capable of producing dynamical attractors, as given the reasonable bio-realism of our neu-

ral network mode this could suggest a mechanism by which biological neural networks gener-

ate their own attractors. [43] [44] [45] [46]

In addition, future efforts may produce algorithms better suited to the above problems.

Problems related to features of the network structure itself may be of interest, including the

development of algorithms for replicating statistical properties of a reference network given

only the inputs and spiking output of that network. Such features include in-degree and out-

degree distributions, clustering coefficients, and the size distribution and number of cliques

present in the network.
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