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Abstract: In sterile liver inflammation, danger signals are released in response to tissue injury to
alert the immune system; e.g., by activation of the NLRP3 inflammasome. Recently, IL-33 has
been identified as a novel type of danger signal or “alarmin”, which is released from damaged
and necrotic cells. IL-33 is a pleiotropic cytokine that targets a broad range of immune cells and
exhibits pro- and anti-inflammatory properties dependent on the disease. This review summarizes
the immunomodulatory roles of the NLRP3 inflammasome and IL-33 in sterile liver inflammation
and highlights potential therapeutic strategies targeting these pathways in liver disease.

Keywords: sterile liver inflammation; NLRP3 inflammasome; IL-1β; IL-33; ILC2; tregs

1. Introduction

Sterile inflammation occurs in response to tissue injury and cell death in the absence of
pathogens and triggers processes of regeneration and wound repair to maintain tissue homeostasis.
A variety of stimuli induce sterile inflammation including toxins, antigens, mechanical trauma,
and ischemia [1]. Importantly, if the sterile stimulus is not resolved, this drives chronic inflammation,
extensive tissue damage as well as fibrogenesis and can induce or aggravate a variety of diseases.
Sterile inflammation has been identified as a main component of the pathologies of nonalcoholic
steatohepatitis (NASH), alcoholic steatohepatitis, drug-induced liver injury, liver ischemia reperfusion
(I/R), and autoimmune hepatitis (AIH). In these sterile inflammation-associated liver diseases, different
danger signals, called damage-associated molecular patterns (DAMPs), are released from damaged
and dying cells and induce sterile liver inflammation; e.g., by activation of inflammasomes [2]. Sterile
inflammation-associated liver diseases are a severe health problem in the industrialized world with
very limited therapeutic options so far. Thus, understanding cellular and molecular mechanisms that
drive sterile inflammation will provide the opportunity to selectively target pathways involved in
sterile liver diseases. In this review, we will summarize the current knowledge about the inflammatory
function of the NLRP3 inflammasome in sterile inflammation-associated liver disease. We will further
provide an overview on the immunoregulatory role of a special type of DAMP or alarmin in sterile
liver inflammation-the cytokine interleukin (IL)-33.

2. Sterile Inflammation-Associated Liver Diseases

2.1. Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) is a result of overnutrition characterized by lipid
accumulation in hepatocytes in the absence of excessive alcohol consumption [3]. NAFLD is often
associated with obesity, hyperlipidemia, and insulin resistance [4], and can manifest as hepatic steatosis
without inflammation or fibrosis or as NASH, which is accompanied by cellular damage, inflammation,
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and fibrosis that can progress to cirrhosis and hepatocellular carcinoma [5,6]. A two-hit hypothesis
has been proposed to describe the mechanisms driving the progression of NASH. The first hit is
induced by lipid accumulation and lipotoxicity causing hepatocyte injury, but a second hit is required
for constant liver damage and includes inflammation, oxidative stress, mitochondrial dysfunction,
and lipid peroxidation [7]. It has been further suggested that underlying steatosis sensitizes the liver
to stressors of the second hit thereby facilitating progression of NASH in the steatotic liver [8,9].

2.2. Alcoholic Liver Disease

Excessive alcohol consumption leads to chronic liver disease. The clinical spectrum of alcoholic
liver disease (ALD) includes steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma [10].
The current hypothesis for alcohol-induced liver injury suggests that constant ethanol exposure results
in leakage of bacterial products from the gut and alters the gut microflora leading to an increase
in Gram-negative bacteria and serum lipopolysaccharide (LPS) levels in alcoholics [11]. Moreover,
alcohol-induced oxidative stress [12] and activation of the immune system [13,14] have been recognized
to cause liver injury. Alcohol regulates transcription factors related to lipid metabolism, promotes fatty
acid synthesis, and inhibits fatty acid oxidation leading to lipid accumulation in the liver. Hepatocyte
dysfunction, infiltration of inflammatory monocytes, and activation of liver resident macrophages
(Kupffer cells) are central to the pathogenesis of alcoholic steatohepatitis [15].

2.3. Drug-Induced Liver Injury

Drug-induced liver injury has been linked to over 1000 drugs and is a frequent cause of acute liver
failure. Clinical manifestations of drug-induced liver injury are acute hepatitis, cholestasis, jaundice,
or sinusoidal obstruction syndrome [16,17]. Disease severity depends on the drug, its concentration and
frequency of intake, its metabolization in the liver, but also on the patient’s age, sex, and body-mass
index [18–20]. Drug-induced liver injury is induced by direct hepatotoxic effects of a drug or a
reactive metabolite of a drug, which mediates protein dysfunction, lipid peroxidation, DNA damage,
and oxidative stress. This triggers hepatocyte death and the initiation of innate immune responses.
The analgesic acetaminophen (APAP) is a drug with hepatotoxic effects that rapidly causes hepatocyte
injury and development of necrosis. APAP overdose has been identified as one of the main reasons for
acute liver failure [16,17].

2.4. Liver Ischemia/Reperfusion (I/R) Injury

Liver I/R is a process that involves deprivation of blood flow and oxygen followed by their
restoration, leading to ischemic organ damage and inflammation-mediated reperfusion injury [21].
Hepatic I/R injury is a clinical complication of partial hepatectomy, liver transplantation, and trauma.
The hepatic immune response in I/R injury comprises two phases. In the first phase, the ischemic
insult causes oxidative stress and the production of reactive oxygen species (ROS) within the liver
resulting in Kupffer cell activation and oxidant-mediated hepatocyte death [22–24]. In the second phase,
reperfusion promotes injury by driving sterile inflammation, release of chemokines, inflammatory
cytokines, and infiltration of neutrophils [25,26]. Inflammation in liver I/R is initiated by activated
Kupffer cells that phagocytose necrotic hepatocytes, secrete inflammatory cytokines, and recruit other
immune cell populations, such as neutrophils and inflammatory monocytes [21,27].

2.5. Autoimmune Hepatitis (AIH)

AIH is an autoimmune liver disease present in acute and chronic forms. In AIH, loss of
tolerance against liver autoantigens leads to elevated serum aminotransferase levels, presence
of non-organ-specific autoantibodies with unknown function, hyperglobulinemia, progressive
destruction of the hepatic parenchyma, and development of liver fibrosis. Chronic AIH can progress
to liver cirrhosis, fulminant hepatic failure, and liver cancer [28–30]. The exact mechanisms leading
to immunity against hepatic autoantigens have not been fully clarified. However, impaired immune
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regulation by regulatory T cells (Treg) and differentiation of inflammatory Th17 cells have been
suggested to play a central role [28,31,32].

3. The Inflammasome

3.1. Inflammasome Function

Sterile inflammation amplifies liver damage by activation of inflammasomes, which are
cytosolic multiprotein complexes essential for a rapid response of the innate immune system to
the presence of pathogen-associated molecular pattern (PAMPs), derived from invading pathogens,
and damage-associated molecular pattern (DAMPs) induced as a result of endogenous stress [33].
Recognition of PAMPs and DAMPs by germline-encoded pattern-recognition receptors expressed by
innate immune cells leads to inflammasome activation resulting in activation of the protease caspase-1
and secretion of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 [34] that play a critical
role in liver disease. Inflammasome activation can also cause pyroptosis, an inflammatory cell death
associated with cellular lysis and release of intracellular content into the extracellular space [35]. In the
absence of pathogens, DAMP-induced inflammation is termed sterile inflammation [33].

3.2. Inflammasome Activation

Full inflammasome activation requires two distinct signals. First, recognition of Toll-like receptor
(TLR) ligands, such as lipopolysaccharide (LPS), through their respective TLRs or binding of the
cytokines tumor necrosis factor α (TNFα) and IL-1β to their cytokine receptors induces activation of
the NF-κB pathway and production of pro-IL-1β and pro-IL-18 precursors. In the absence of a second
signal, the cytokine precursors are inactive and remain inside the cell. The second signal is induced by a
variety of endogenous DAMPs including adenosine triphosphate (ATP), reactive oxygen species (ROS),
high mobility group box 1 (HMGB1) protein, host DNA, uric acid, and cholesterol crystals [34,36,37].
These DAMPs are detected by a family of pattern-recognition molecules termed nucleotide-binding
oligomerization domain-like receptor (NLR) [38]. Each of the NLR members can assemble a complex
with a caspase-recruiting domain thereby generating a protein complex responsible for binding and
autoproteolytic cleavage of pro-caspase-1 into active caspase-1 that in turn cleaves pro-IL-1β and
pro-IL-18 to mature IL-1β and IL-18, which enables secretion of these cytokines [39–41]. Of note,
DAMPs are also recognized by receptors that are usually activated by PAMPs, for example TLRs [42].
Others, like the purinergic P2X7 receptor, appear to be uniquely activated by DAMPs [43].

3.3. IL-1β and NLRP3 Inflammasome

In principle, there are different inflammasome complexes named by the protein forming the
scaffold (e.g., NLRP3, NLRC4, AIM2) but ultimately, all regulate activation of caspase-1 and secretion
of mature IL-1β [34,44]. IL-1β is a potent pro-inflammatory cytokine that plays a key role in
innate and adaptive immunity. IL-1β recruits IL-1 receptor (IL-1R)-expressing effector cells like
neutrophils and monocytes and induces Th17-cell differentiation, thereby amplifying inflammation
and autoimmune diseases [45,46]. One well studied inflammasome is the NLRP3 inflammasome,
which contributes to the development of sterile liver inflammation in ALD and NAFLD [47–49].
Hepatic NLRP3 activation is achieved by different DAMPs, among others by release of intracellular
ATP in response to cell death, hypoxia/ischemia, and pathogen infection [50]. Extracellular ATP
levels are tightly regulated by ectonucleotidases, particularly CD39, which converts ATP to adenosine
monophosphate [51,52]. Extracellular ATP stimulates the purinergic P2X7 receptor that induces NLRP3
inflammasome activation through a decrease in intracellular potassium levels or through generation of
ROS [53–55].

Overall, inflammasome activation induces a strong pro-inflammatory response and therefore
must be well regulated. There is an increasing body of evidence that inflammasome dysregulation
drives pathogenesis in diseases like multiple sclerosis, obesity, type 2 diabetes, Alzheimer’s disease,
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atherosclerosis, inflammatory bowel disease, and tumorigenesis [56–58]. Consequences of NLRP3
hyperactivation were illustrated by using Nlrp3 knock-in mice that were seriously impaired in
growth and survival and developed severe liver inflammation and fibrosis associated with hepatocyte
pyroptosis, neutrophil infiltration, and hepatic stellate cell (HSC)-mediated collagen deposition [59].
Thus, understanding inflammasome activation and regulation will provide the possibility to
therapeutically interfere with processes of inflammation and fibrosis in the liver.

4. NLRP3 Inflammasome Activation in Sterile Inflammation-Associated Liver Diseases

The concept of DAMPs driving inflammation has been intensively investigated in sterile liver
disease. During tissue damage, dying hepatocytes release DAMPs that act on neighboring cells to
trigger inflammation and tissue regeneration. Persistence of these signals in chronic disease aggravates
inflammation and leads to excessive scarring and loss of liver function. Inflammasome components
were identified in hepatocytes, Kupffer cells, liver sinusoidal endothelial cells (LSEC) and HSC [60,61].
In this section, we will focus on the NLRP3 inflammasome and summarize the recent findings of its
function in sterile liver disease. An overview of inflammasome components in sterile liver disease and
their potential as therapeutic targets are listed in Tables 1 and 2, respectively.

Table 1. List of inflammasome components in sterile liver disease.

Disease Inflammasome Components References

NAFLD

Elevated NLRP3 and IL-1β levels correlated with liver fibrosis in NASH patients
and were increased in different murine models of diet-induced steatohepatitis [62–66]

Nlrp3−/− mice showed marked protection from diet-induced liver injury
whereas disease pathology was accelerated in Nlrp3 knock-in mice

[62,64,67]

Caspase-1 activation in Kupffer cells triggered progression of
diet-induced steatohepatitis [68,69]

Extracellular ATP activated the NLRP3 inflammasome in diet-induced
steatohepatitis and P2rx7−/− mice showed reduced liver fibrosis [70]

Cholesterol crystals were found in steatotic hepatocytes of patients and mice
with NASH, which induced NLRP3 and caspase-1 activation in Kupffer cells [48,71,72]

ALD

Elevated serum IL-1β levels were shown in patients with ALD [73,74]

NLRP3/caspase-1-mediated IL-1β production by Kupffer cells aggravated
murine ALD [47]

Kupffer cell-derived IL-1β activated invariant NKT cells, which in turn
promoted alcohol-induced liver injury by recruiting neutrophils [75]

Extracellular ATP and uric acid were released from alcohol-damaged
hepatocytes and stimulated IL-1β production in liver immune cells [76,77]

The miRNA miR-148a inhibited NLRP3 inflammasome activation in alcohol-fed
mice and levels of hepatic miR-148a were reduced in patients and mice with ALD [78]

Drug-Induced
Liver Injury

Extracellular ATP induced IL-1β production in Kupffer cells and aggravated
murine APAP-induced liver injury [79]

The P2rx7 antagonist A438079 and soluble CD39 reduced APAP-induced necrosis [79]

Free DNA was released by apoptotic hepatocytes, which induced NLRP3
inflammasome activation in LSEC and neutrophil recruitment in APAP-induced

liver injury
[80]

Lack of P2rx7, IL-1R and treatment with IL-1β or the pan-caspase inhibitor
Z-VD-fmk did not alter pathology of APAP-induced liver injury [81,82]
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Table 1. Cont.

Disease Inflammasome Components References

Liver I/R

Elevated NLRP3 and IL-1β levels were shown in liver I/R injury in a variety of
studies and Nlrp3−/− and Casp-1−/− mice showed improved disease pathology [83–88]

ROS activated the NLRP3 inflammasome in Kupffer cells in liver I/R injury by
promoting association of TXNIP with NLRP3 [83,89]

Extracellular histones activated the NLRP3 inflammasome in Kupffer cells in
liver I/R injury through generation of ROS leading to recruitment of neutrophils

and monocytes
[84]

HMGB1 triggered hepatic I/R injury by activation of the NLRP3 inflammasome [85]

HSF1 regulated NLRP3 inflammasome activation in liver I/R injury by
suppressing expression of XBP1, an activator of the NLRP3 inflammasome [90]

AIH

Elevated IL-1β levels in patients with AIH were correlated with aggravation
of hepatitis [31]

Elevated levels of NLRP3, IL-1β, caspase-1, ROS production and
pyroptosis-mediated cell death were shown in murine ConA-induced hepatitis [91–94]

ConA induced NLRP3 inflammasome activation and IL-1β production
in macrophages [94]

An IL-1R antagonist suppressed ConA-induced hepatitis by diminishing ROS
production and NLRP3 inflammasome activation [93]

The miRNA miR-223 negatively regulated NLRP3 expression and attenuated
liver injury in an experimental AIH model [95]

Table 2. Potential therapeutic strategies targeting the NLRP3 inflammasome pathway in sterile
liver disease.

Disease Therapeutic Strategy References

NAFLD

The cholesterol-lowering drug ezetimibe reduced cholesterol crystal formation
and fibrosis in murine diet-induced steatohepatitis [96]

The small molecule NLRP3 inhibitor MCC950 inhibited Kupffer cell activation
and attenuated inflammation and fibrosis in murine diet-induced steatohepatitis [48,72]

ALD

Inhibition of uric acid synthesis with allopurinol and treatment with probenecid,
which depletes uric acid and blocks ATP-induced P2rx7 signaling, improved

pathology of murine alcohol-induced liver injury
[77]

The hepatoprotective substance Gentiopicroside inhibited P2rx7-mediated
NLRP3 inflammasome activation and ameliorated pathology of murine ALD [97]

Drug-Induced
Liver Injury

The P2rx7 antagonist A438079 or soluble CD39 inhibited extracellular ATP
signaling and reduced murine APAP-induced liver injury and mortality [79]

Aspirin and benzyl alcohol were protective in APAP-induced pathology probably
by inhibiting the NLRP3 inflammasome activation and neutrophil infiltration [80,98]

Liver I/R

The ROS inhibitor N-acetylcysteine inhibited NLRP3 inflammasome activation
and attenuated murine liver I/R injury [83]

Blockage of IL-1β signaling by an anti-IL-1β antibody improved disease
pathology of murine liver I/R injury [85]

AIH An IL-1R antagonist diminished ROS production and NLRP3 inflammasome
activation and suppressed liver inflammation in murine ConA-induced hepatitis [93]

4.1. NAFLD

Several studies have revealed that the NLRP3 inflammasome drives sterile inflammation in
NAFLD. In NASH patients, increased NLRP3 [62,63] and IL-1β levels were shown and positively
correlated with liver fibrosis [64]. Elevated NLRP3 and mature IL-1β levels were also demonstrated in
different murine diet-induced steatohepatitis models [63,65,66]. Moreover, Nlrp3−/− mice showed
marked protection from liver injury and fibrosis whereas tamoxifen-induced Nlrp3 knock-in mice
were characterized by accelerated hepatic injury and fibrogenesis [62,64,67]. Further, pharmacological
inhibition of the NLRP3 inflammasome by the inhibitor BAY 11-7082 reduced caspase-1 activation as
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well as IL-1β production, and ameliorated diet-induced steatohepatitis [99]. Progression of NASH was
associated with NLRP3 inflammasome activation in hepatocytes [63], and activation of caspase-1 in
Kupffer cells [68]. Strikingly, both Casp1−/− mice and Kupffer cell-depleted wildtype mice showed less
severe diet-induced steatohepatitis [68,69] indicating that caspase-1 in Kupffer cells plays an important
role in the pathogenesis of NASH.

Activation of the inflammasome pathway in NASH can be mediated by extracellular ATP since
P2X7 receptor-deficient (P2rx7−/−) mice developed markedly reduced liver fibrosis in diet-induced
steatohepatitis [70]. Moreover, free cholesterol, a lipotoxic lipid present in NASH patients and mice
with diet-induced steatohepatitis, was shown to promote NASH progression [100–102]. High levels
of free cholesterol lead to cholesterol crystal formation, which act as DAMP and activate the NLRP3
inflammasome [103,104]. Cholesterol crystals were found in steatotic hepatocytes of patients with
NASH but not steatosis and in mice with diet-induced steatohepatitis [48,71]. One study reported
activation of the NLRP3 inflammasome and caspase-1 in Kupffer cells surrounding cholesterol
crystal-containing hepatocytes thereby linking lipotoxicity with inflammation. Moreover, exposure
of HepG2 cells to palmitic acid was shown to induce lipotoxicity and release of microvesicles,
which in turn triggered NLRP3 inflammasome activation and IL-1β release after internalization by
macrophages [105]. As an interesting therapeutic approach, the cholesterol-lowering drug ezetimibe
was used leading to reduced cholesterol crystal formation and fibrosis [96]. Blockage of NLRP3
inflammasome activation in Kupffer cells through the small molecule inhibitor MCC950 was tested
as another therapeutic option in NASH. MCC950 did not prevent cholesterol crystal formation
and development of steatosis but inhibited Kupffer cell activation and reduced inflammation and
fibrosis [48,72].

In NASH pathology, not only DAMPs but also PAMPs play a role and it has been proposed
that both act together and worsen liver injury. Free fatty acids, which are elevated in NASH
patients [106], have been suggested to function as DAMPs and together with TLR ligands activate
the NLRP3 inflammasome [63,107]. Palmitic acid in conjunction with the TLR4 ligand LPS or the
synthetic TLR2 ligand Pam3CK4 was shown to cooperatively induce NLRP3 inflammasome activation
in hepatocytes and Kupffer cells, respectively, whereas the fatty acid alone did not activate the
NLRP3 inflammasome [63,107]. In contrast, a direct palmitic acid-induced NLRP3 inflammasome
activation and subsequent IL-1β production in Kupffer cells was also reported [67]. It has been further
suggested that free fatty acids indirectly trigger NLRP3 inflammasome activation by inducing cell
death [108]. One study correlated palmitic acid-induced hepatocyte death with up-regulation of
NLRP3 inflammasome and IL-1β levels and indicated that DAMPs, released from dying hepatocytes,
rather than free fatty acids drive NLRP3 inflammasome activation in NASH [63].

4.2. ALD

NLRP3/caspase-1 mediated induction of IL-1β expression in Kupffer cells was identified as a
driver of ALD pathology in murine model of chronic ethanol consumption and pharmacological
blockade of IL-1R signaling was proven to be beneficial for alcohol-induced liver injury [47].
A pathogenic role of this cytokine was also suggested for ALD patients that showed elevated IL-1β
levels [73,74]. Kupffer cell-derived IL-1β was found to trigger activation and recruitment of invariant
NKT cells, which in turn drive liver inflammation by expressing the pro-inflammatory cytokine
TNFα and recruiting inflammatory neutrophils. In this study, iNKT cell-deficient Jα18−/− mice
and Nlrp3−/− mice were used and both developed less severe ethanol-induced liver damage and
steatosis [75]. The fact that NLRP3 inflammasome activation is crucial for ALD progression was
reproduced by a follow up study [76], however, another study proposed a protective role since in this
case, Nlrp3−/− mice were more susceptible to ethanol-induced liver injury [109].

Extracellular ATP and uric acid were identified as DAMPs elevated in alcohol-induced liver
injury [77]. Both were released from alcohol-damaged hepatocytes and stimulated IL-1β production
in liver immune cells [76,77]. Interestingly, pharmacological inhibition of uric acid synthesis with
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allopurinol or treatment with probenecid, which depletes uric acid and blocks ATP-induced P2rx7
signaling, improved pathology, and therefore might be potential therapeutic strategies for the treatment
of ALD [77]. Gentiopicroside, a substance with hepatoprotective properties, also displayed beneficial
effects on ALD severity, which was attributed to inhibition of P2rx7-mediated NLRP3 inflammasome
activation [97]. The miRNA miR-148a was identified as an inhibitor of NLRP3 inflammasome
activation in ALD. Levels of miR-148a were substantially decreased in livers of patients with ALD
and in alcohol-fed mice. As miR-148a is a suppressor of the thioredoxin-interacting protein (TXNIP),
this led to TXNIP overexpression in hepatocytes facilitating their pyroptosis. Moreover, lack of
miR-148a-mediated suppression of TXNIP favored its association with NLRP3 and activated the
inflammasome pathway. Conclusively, miR-148a delivery to hepatocytes was shown to prevent
inflammasome activation and attenuated ALD pathogenesis [78] (Figure 1).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 26 
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Figure 1. Mechanisms of NLRP3 inflammasome activation and inhibition in alcoholic liver disease
(ALD). Constant ethanol exposure results in leakage of bacterial products, termed as microbe-associated
molecular pattern, from the gut that trigger TLR-mediated signal 1. Extracellular ATP, uric acid,
and ROS are elevated DAMPs in ALD and induce signal 2 leading to NLRP3 inflammasome activation
and cleavage of pro-caspase-1 into active caspase-1, which in turn cleaves pro-IL-1β into mature
IL-1β thereby enabling secretion of this inflammatory cytokine. Released IL-1β induces activation
and recruitment of iNKT cells that produce TNFα and recruit inflammatory neutrophils. NLRP3
inflammasome activation and IL-1β release can be prevented by substances that inhibit P2rx7-mediated
signaling as well as miRNA-148a, which is a suppressor of TXNIP required for inflammasome activation.
MAMPs: microbe-associated molecular pattern, DAMPs, danger-associated molecular pattern, TXNIP,
thioredoxin-interacting protein, miRNA: micro RNA, ATP: adenosine triphosphate, ROS: reactive
oxygen species, P2rx7: purinergic P2X7 receptor, iNKT: invariant natural killer T cell, TNFα: tumor
necrosis factor α. The red symbol illustrates inhibition of uric acid by allopurinol. The arrow means
that activation of TLR signaling induces expression of NLRP3 and IL-1b mRNA in the nucleus.
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4.3. Drug-Induced Liver Injury

A variety of studies have indicated that the inflammation-induced aggravation of APAP-induced
liver injury is driven by hepatic infiltration of neutrophils and inflammatory monocytes [110–113]
mediated by release of DAMPs [114–116]. Extracellular ATP was shown to function as DAMP in
APAP-induced pathology that induced IL-1β expression in Kupffer cells and aggravated liver injury.
Inhibition of extracellular ATP signaling by using the P2rx7 antagonist A438079 or by administration of
soluble CD39 markedly reduced APAP-induced necrosis and mortality demonstrating the importance
of this DAMP for APAP pathology [79]. Furthermore, in APAP-induced liver injury, apoptotic
hepatocytes were shown to release free DNA, which in turn activated TLR9 expressed by LSEC [80].
Usually, TLR9 recognizes bacterial DNA, however, it was found that TLR9 is also activated
by mammalian DNA that was modified by DNase-mediated cleavage and aberrant methylation
and oxidative damage [117,118]. Free DNA-mediated TLR9 signaling in LSEC induced NLRP3
inflammasome activation, IL-1β production, and subsequent neutrophil infiltration [80]. The relevance
of TLR9 as potential therapeutic target in APAP-induced liver injury was illustrated by two studies
demonstrating that lack of TLR9 signaling ameliorated tissue damage [80,98]. Direct targeting of the
NLRP3 inflammasome was also proposed as therapeutic option. Aspirin and benzyl alcohol were
protective in APAP-induced pathology and it has been suggested that this was mediated through
inhibition of NLRP3 inflammasome activation and neutrophil infiltration [80,98].

Thus, the NLRP3 inflammasome has been identified as a driver of sterile inflammation in
APAP-induced liver injury by inducing hepatic neutrophil recruitment. However, the role of the NLRP3
inflammasome and neutrophils in APAP-induced liver injury have been controversially discussed in the
literature. Several studies could not support the assumption that neutrophils aggravate APAP-induced
liver injury [119–121]. It was further shown that lack of P2rx7 or IL-1R did not ameliorate disease
pathogenesis and also treatment with IL-1β or the pan-caspase inhibitor Z-VD-fmk had no effects on
liver damage indicating that ATP and IL-1β have no inflammatory function in APAP-induced liver
injury [81,82,122]. The role of the NLRP3 inflammasome in APAP-induced liver damage is discussed in
detail by Woolbright et al. [123] and it becomes quite obvious that further work is needed to establish
whether the inflammasome pathway might be a therapeutic target in this condition.

4.4. Liver I/R

Production of ROS by Kupffer cells has been proposed as a critical factor for sterile inflammation
in liver I/R injury [124]. ROS function as DAMP and activate the NLRP3 inflammasome by promoting
association of TXNIP with NLRP3 [89] thereby linking oxidative stress with inflammation. Inhibition
of Kupffer cells by gadolinium chloride and administration of the ROS inhibitor N-acetylcysteine
attenuated liver injury and IL-1β production supporting the critical role of Kupffer cells and ROS
in hepatic I/R [83]. Extracellular histones were identified as new DAMPs that activated the NLRP3
inflammasome in Kupffer cells through TLR9-dependent generation of ROS, which in turn aggravated
hepatic damage by recruitment of neutrophils and inflammatory monocytes [84]. Further, HMGB1 is
another DAMP that was found to trigger hepatic I/R injury [85].

Up-regulation of the NLRP3 inflammasome and IL-1β expression in hepatic I/R injury have been
shown in a variety of studies [83,84,86–88], and lack of NLRP3 or caspase-1 [84] or blockage of IL-1β
with an anti-IL-1β antibody [85] improved disease pathology further reinforcing the importance of the
NLRP3 inflammasome for liver I/R pathogenesis. The findings in Casp1−/− mice were not confirmed
by another study and the authors suggested a caspase-1-independent function of NLRP3 and proposed
that NLRP3 is involved in the regulation of neutrophil function [87]. However, gene silencing of NLRP3
by hydrodynamic tail vein injection of a pNALP3shRNA ameliorated disease pathology associated
with reduced caspase-1 activation, IL-1β production and neutrophil infiltration [86], strongly indicating
that NLRP3 inflammasome activation aggravates liver I/R injury.

The heat shock transcription factor 1 (HSF1) was identified as a regulator of NLRP3 inflammasome
activation in liver I/R. HSF1 is induced in response to oxidative stress and facilitates cell survival [125].
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Mice with a myeloid-specific HSF1 deletion displayed exaggerated liver I/R damage, increased NLRP3
and IL-1β expression, and neutrophil recruitment. Lack of myeloid HSF1 also reduced β-catenin levels
but enhanced expression of the transcription factor X-box-binding protein (XBP1), which is an activator
of the NLRP3 inflammasome. In the proposed mechanism, HSF1 induces β-catenin expression and the
HSF1/β-catenin axis suppresses expression of XBP1 and subsequent NLRP3 inflammasome activation
in liver I/R injury [90].

4.5. AIH

Concanavalin (Con)A-induced hepatitis is a well accepted murine model of immune-mediated
liver injury, reflecting several immune mechanisms responsible for liver pathology of acute
autoimmune hepatitis (AIH). ConA-induced hepatitis is driven by T-cell and macrophage activation,
massive pro-inflammatory cytokines production and hepatocyte death thereby mimicking pathogenic
features of AIH [126–128]. Recent studies have indicated that the NLRP3 inflammasome drives
pathogenesis of ConA-induced hepatitis. These studies illustrated that liver pathology was
accompanied by production of ROS [91,92] and elevated levels of NLRP3, IL-1β, caspase-1 and
pyroptosis-mediated cell death [93]. Lack of NLRP3 or caspase-1 ameliorated liver injury and was
associated with reduced IL-1β production [93,94]. Moreover, ConA was shown to induce NLRP3
inflammasome and caspase-1 activation and IL-1β production in macrophages in vitro [94]. The critical
role of IL-1β/NLRP3 in the pathogenesis of ConA-induced hepatitis was also supported by an
intervention study using an IL-1R antagonist that suppressed hepatic inflammation by diminishing
ROS production and NLRP3 inflammasome activation [93]. IL-1β also appears to be involved in
the pathology of human AIH since IL-1β levels were elevated in AIH patients and correlated with
aggravation of hepatitis [31]. So far, there is no evidence for extracellular ATP-mediated activation
of the NLRP3 inflammasome in AIH. However, one study, which did not link P2rx7 signaling with
inflammasome activation, reported that P2rx7−/− mice were markedly protected from liver damage
in ConA-induced hepatitis [129]. Based on the findings in other sterile inflammation-associated liver
diseases, one might speculate that the suppressive effect is due to impaired NLRP3 inflammasome
activation in the absence of P2rx7.

Regulation of NLRP3 gene expression by miRNAs has been suggested as a mechanism involved
in immune regulation in AIH. The miRNA miR-223 negatively regulates NLRP3 expression [130],
and in a murine AIH model induced by hepatic S100 injection, application of exosomes containing
miR-223 decreased NLRP3 and caspase-1 expression and attenuated liver injury [95].

5. The Alarmin IL-33

5.1. Molecular Biology

IL-33 is a member of the IL-1 family of cytokines and has been identified as the only ligand
for suppression of tumorigenicity 2 (ST2) receptor that belongs to the IL-1 receptor family [131].
IL-33 is a nuclear cytokine, which is released after cell death as a consequence of severe tissue
injury. Upon synthesis, cytosolic IL-33 translocates to the nucleus where it associates with chromatin.
The N-terminal domain of IL-33 contains a nuclear localization sequence and a chromatin-binding
domain and is essential for its nuclear translocation [132]. So far, passive release from necrotic cells
has been reported as main mechanism for appearance of extracellular IL-33. There are two forms of
IL-33: full-length IL-33 (pro-IL-33) and mature IL-33. Pro-IL-33 is located in the nucleus but its nuclear
function is not clear [133]. Since deletion of the N-terminal domain leads to sustained IL-33 release and
lethal inflammation [134], nuclear binding of IL-33 to chromatin has been suggested as a mechanism
to restrict its pro-inflammatory activity in homeostasis. Upon release, pro-IL-33 is often cleaved by
serine proteases into mature IL-33, which has a higher biological activity than pro-IL-33 and cannot
translocate into the nucleus [135].
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5.2. The IL-33 Receptor ST2

Both IL-33 forms mediate cytokine function by binding to their receptor ST2 that forms a
heterodimeric complex with the IL-1R accessory protein. Signaling via ST2 activates the MyD88
and NFκB pathways subsequently inducing cell activation, differentiation, and survival as well as
expression of cytokines and chemokines [136,137]. ST2 has two main splice variants dependent on the
promotor being used: the transmembrane form ST2 and the soluble form sST2. While ST2 mediates
IL-33 signaling, sST2 acts as a decoy receptor for extracellular IL-33 thereby restricting its biological
activity after release [138].

5.3. IL-33 Expression and Immune Cell Regulation

IL-33 is constitutively expressed in the nuclei of human endothelial cells, epithelial cells,
keratinocytes, fibroblast, smooth muscle cells, and glial cells [139]. In mice, epithelial cells rather than
endothelial cells, and also hepatocytes constitutively express IL-33. However, during inflammation,
IL-33 expression is induced in a variety of cell types including endothelial cells [140–142].

It has been proposed that IL-33 acts as an “alarmin” released in response to cell damage and
necrosis to alert the immune system [143]. IL-33 stimulates activation of ST2-expressing lymphoid
and myeloid cells such as Th2 cells, type 2 innate lymphoid cells (ILC2), regulatory T cells (Tregs),
NKT cells, CD8+ T cells, M2 macrophages, neutrophils, eosinophils, basophils, mast cells, and NK
cells [144]. IL-33 has been initially identified as an inducer of Th2-cell differentiation and type 2 cytokine
production [131]. Beyond that, IL-33 induces activation and expansion of a Treg subset expressing ST2
that predominantly localizes in non-lymphoid organs. IL-33/ST2 signaling further ensures proper
Treg function during inflammation and Treg adaption to the inflammatory environment [145–147].
IL-33 also activates ILC2, a lymphoid cell population of the innate immune system, to express the
type 2 cytokines IL-5 and IL-13 and the epidermal growth factor amphiregulin (AREG), by which
they contribute to tissue regeneration upon injury [148–150]. Moreover, IL-33 facilitates macrophage
polarization into an alternatively activated M2 phenotype [151], and promotes DC-mediated Treg
expansion by inducing IL-2 expression in DCs [152].

5.4. IL-33 in Inflammatory Diseases

IL-33 is a pleiotropic cytokine, which is well illustrated in the diverse range of diseases in whose
pathologies IL-33 exert very different functions. A pathogenic role of IL-33 has been described in
airway diseases. In patients with asthma, IL-33 levels were elevated and correlated with disease
severity [153]. IL-33 promoted airway hyperreactivity in murine influenza virus infection by activation
of IL-13-expressing lung ILC2 [154], and induced airway inflammation by driving recruitment
of eosinophils [155] and M2 macrophage polarization [151]. Also, in patients with rheumatoid
arthritis, higher levels of IL-33 were correlated with more severe disease [156], and blockage of
IL-33/ST2 signaling ameliorated murine collagen-induced arthritis associated with decreased IFNγ
production [157]. In inflammatory bowel disease (IBD), divergent functions of IL-33 have been depicted.
On the one hand, mucosal IL-33 levels correlated with disease severity in IBD patients and in mice with
experimental colitis [158], and lack of IL-33 or ST2 attenuated dextran sodium sulfate-induced colitis by
protection against IL-33-mediated epithelial damage [159] and enhanced wound healing response [160].
On the other hand, administration of IL-33 protected mice in experimental colitis through expansion
of Tregs [161], and induction of AREG expression in gut ILC2 [149]. In organ transplantation,
IL-33 treatment prolonged murine cardiac allograft survival by expansion of immunosuppressive
myeloid-derived suppressor cells and intragraft Tregs [162]. IL-33 can also induce different immune
responses dependent on the treatment regime. In acute graft-versus-host disease after allogeneic
hematopoietic cell transplantation, IL-33 administered during the peak of the inflammatory response
increased type 1 cytokine expression and aggravated mortality [163] whereas IL-33 treatment before
body irradiation expanded ST2+ Tregs and accelerated acute lethality [164].
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Thus, IL-33 exerts pro- and anti-inflammatory function dependent on the disease. On the one
hand, IL-33 drives immunity by promoting type 2 or type 1 immune responses, eosinophilia, ILC2
activation, M2 macrophage polarization, and epithelial cell damage whereas on the other hand, IL-33
suppresses inflammation by expansion of Tregs and activation of myeloid-derived suppressor cells.
IL-33 can further facilitate tissue repair by inducing AREG expression in ILC2. It is worth noting that
by these mechanisms, IL-33 may also be involved in pathological processes of tissue regeneration,
fibrosis, and carcinogenesis in chronic inflammation (Figure 2).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  11 of 26 
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Figure 2. Immune regulatory function of IL-33 in inflammatory diseases. In homeostasis, IL-33 is
located in the nucleus where it is associated with chromatin. IL-33 is released from necrotic cells and
activates a variety of lymphoid and myeloid immune cells expressing the IL-33 receptor ST2. Dependent
on the disease, IL-33 exerts very different functions. On the one hand, IL-33 can drive inflammation
while on the other hand it also supports immunosuppression. ILC2: type 2 innate lymphoid cell, Treg:
regulatory T cell, NKT: natural killer T cell, NK: natural killer cell, M2ϕ: M2 macrophage, Neutro:
neutrophil, Eos: eosinophils, Baso: basophil. MC: mast cell, MDSC: myeloid-derived suppressor cell,
AREG: amphiregulin.

6. IL-33/ST2 Axis in Sterile Inflammation-Associated Liver Diseases

There is some evidence that IL-33 is involved in the pathology of liver diseases. In general, IL-33
has been proven as a pathogenic marker in patients with acute liver failure and acute-on-chronic liver
failure [165], liver cirrhosis [166] as well as chronic hepatitis B virus infection [167] or hepatitis C virus
infection [168]. IL-33 has been further suggested as pro-fibrotic factor that is associated with liver
fibrosis in chronic liver disease in mice and humans [169]. The immunoregulatory function of IL-33 in
liver inflammation is still under investigation and in the next section, we will summarize the current
studies regarding the role of the IL-33/ST2 axis in sterile liver inflammation and provide an overview
in Table 3.
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Table 3. Role of IL-33/ST2 in sterile liver diseases.

Disease Role of IL-33/ST2 References

NAFLD

Serum IL-33 and ST2 levels were elevated in patients with NASH and mice with
diet-induced steatohepatitis [170–172]

Il33−/− mice showed no altered pathology of diet-induced steatohepatitis [172]

IL-33 treatment attenuated steatosis but aggravated fibrosis in diet-induced steatohepatitis [170]

Galectin-3 regulated IL-33-induced expression of the pro-fibrotic cytokine IL-13 in hepatic
macrophages in diet-induced steatohepatitis [173]

ALD

Serum IL-33 and sST2 levels were elevated in patients with severe decompensated ALD
but not in patients with compensated ALD and heavy drinkers [174]

Serum levels of IL-33 were not elevated in alcohol-fed mice and lack of IL-33 did not affect
pathogenesis of alcohol-induced liver injury [174]

Hepatic IL-33 expression was increased in murine alcohol-induced liver injury [47]

Drug-Induced
Liver Injury

Hepatocytes released IL-33 that induced neutrophil infiltration in murine APAP-induced
liver injury [175]

Il1rl1−/− mice developed initial liver damage but were protected against progression to
extensive necrosis in APAP-induced liver

[175]

Liver I/R

LSEC released IL-33 in murine hepatic I/R injury that induced formation of NETs by
neutrophils, which promoted hepatocyte death and Kupffer cell activation [176]

IL-33 treatment after liver I/R increased NET formation and liver injury [176]

IL-33 treatment before liver I/R reduced hepatocyte death by induction of Bcl-2 [177]

sST2-Fc attenuated hepatic I/R injury by inhibiting Kupffer cell activation [178]

AIH

Elevated serum IL-33 levels correlated with liver injury in AIH patients and both IL-33
and sST2 levels were decreased after immunosuppression therapy [179]

NKT cells induced IL-33 expression in hepatocytes in murine ConA-induced hepatitis [180]

TRAIL regulated IL-33 expression in hepatocytes during ConA-induced hepatitis [181]

IL-33 aggravated ConA-induced liver injury by activation of hepatic ILC2 [182]

Blockage of IL-33 attenuated liver injury in two experimental models of AIH [179,183]

Il1rl1−/− mice showed aggravated ConA-induced liver injury and reduced Treg numbers [184]

Il33−/− mice showed exaggerated pathology of ConA-induced hepatitis, increased NK cell
infiltration and reduced frequency of ST2+ Tregs

[181,185]

IL-33 pre-treatment expanded hepatic ST2+ Tregs and suppressed ConA-induced hepatitis [182,184]

IL-33 treatment together with ConA challenge aggravated ConA-induced hepatitis [183]

6.1. NAFLD

There are conflicting data about the role of IL-33 in the pathogenesis of NAFLD. In NASH,
predominantly endothelial cells, and HSC up-regulate expression of nuclear IL-33 [170]. Elevated
IL-33 and ST2 levels were determined in NASH patients [170] and mice with diet-induced
steatohepatitis [170–172]. However, the contribution of IL-33 to disease pathology remains less
clear since lack of endogenous IL-33 did neither affect fibrosis nor immune cell composition in the
liver [172]. In contrast, exogenous IL-33 induced opposing effects on disease progression as steatosis
was attenuated while hepatic fibrosis was exacerbated. The beneficial effect of exogenous IL-33 on
steatosis was attributed to a shift from an inflammatory Th1 response to an anti-inflammatory Th2
response. It was suggested that the concurrent pro-fibrotic effect of IL-33 might be mediated by
induction of IL-13 expression in ILC2 [170] as shown in murine models of hepatic fibrosis, in which
ILC2-derived IL-13 activated HSC, the key drivers of hepatic fibrosis [166]. The pro-fibrotic effect of
exogenous IL-33 in NASH pathology was confirmed by another study and correlated with an increased
frequency of IL-13-expressing monocytes/macrophages. The β-galactosidase-binding lectin galectin-3
was identified as a regulator of the IL-33/ST2 pathway in NASH since it enabled IL-33-induced
ST2 expression in macrophages as a prerequisite for IL-13 production [173]. The divergent effects of
exogenous and endogenous IL-33 in NASH have been discussed and were attributed to unphysiological
systemic IL-33 levels after IL-33 treatment, which might affect other immune cells than locally released
IL-33, differences in the used mouse models, and a potential suppressive effect of nuclear pro-IL-33.
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The authors hypothesized that pro-IL-33 suppresses inflammatory cytokine expression that might
compensate the pro-fibrotic effect of IL-33 released during NASH. In contrast, administration of
high concentrations of exogenous IL-33 might overcome the inhibitory effect of pro-IL-33 leading to
aggravated fibrosis in diet-induced steatohepatitis [172].

6.2. ALD

So far, there is no direct evidence that IL-33 plays a role in ALD. In one study, IL-33 and sST2
levels were compared in patients with different stages of ALD and were only enhanced in patients
with severe decompensated ALD but not in patients with compensated ALD or heavy drinkers [174].
In mice, hepatic IL-33 expression was increased in alcohol-fed mice [47] whereas serum levels of IL-33
and sST2 were not elevated and lack of IL-33 did not affect alcohol-induced liver injury. Low hepatic
cell death in the currently available models of ALD has been suggested as reason for the missing effect
of IL-33 on disease pathology [174] fitting to the human data where only patients with the severest
form of ALD showed elevated IL-33 levels.

Interestingly, an IL-33-independent function of ST2 has been proposed in ALD. While lack of
IL-33 did not alter pathology, ST2 deficiency aggravated alcohol-induced steatosis and liver damage
associated with NFκB activation and inflammatory cytokine expression in hepatic macrophages.
In mild alcohol-induced liver injury without substantial cell death, ST2 was suggested as negative
regulator of NFκB in macrophages thereby limiting their inflammatory activity [174].

6.3. Drug-Induced Liver Injury

The knowledge about the function of IL-33 in drug-induced liver injury is very limited yet. One
study reported that in APAP-induced liver injury, formation of massive necrosis was associated with
the release of IL-33 by hepatocytes and neutrophil infiltration. Lack of ST2 did not impair initial liver
damage but prevented progression to extensive necrosis and it was concluded that IL-33 amplifies
liver damage by neutrophil recruitment [175].

6.4. Liver I/R

It is well known that neutrophils are critical for the pathology of hepatic I/R injury. Neutrophils
were shown to exacerbate liver I/R injury by IL-33-induced formation of neutrophil extracellular traps
(NET) in the liver sinusoids that induced hepatocyte death and Kupffer cell activation. Mechanistically,
LSEC released IL-33 during hepatic I/R injury that induced NET formation in ST2-expressing
neutrophils [176,186]. Administration of IL-33 immediately after liver I/R increased NET formation
and liver injury [176] whereas IL-33 pre-treatment reduced neutrophil infiltration and hepatocyte
death by inducing expression of the anti-apoptotic protein Bcl-2 [177].

A potential beneficial effect of sST2 on liver I/R pathology was tested by using an expression
plasmid coding for a murine soluble ST2-human Fc fusion protein (sST2-Fc). Overexpression of sST2-Fc
reduced liver I/R injury and the authors proposed that sST2-Fc prevented TLR4-mediated Kupffer
cell activation and subsequent pro-inflammatory cytokine production [178]. A decoy function of sST2
for IL-33 released during hepatic I/R injury was not addressed in this study but this might be an
interesting point since IL-33 levels were increased in patients undergoing liver resection [176] and in
mice after liver I/R [176,177].

6.5. AIH

Divergent effects of the IL-33/ST2 axis have been described in ConA-induced hepatitis. NKT
cells were shown to induce strong nuclear IL-33 expression in hepatocytes during ConA-induced liver
injury [180] that was regulated by TNF-related apoptosis-inducing ligand (TRAIL) [181]. We have
recently demonstrated that hepatic release of IL-33 was associated with formation of large necrotic
lesions during ConA-induced hepatitis and aggravation of disease pathology by activation of hepatic
ILC2s expressing IL-5 and IL-13. This was associated with infiltration of inflammatory eosinophils.
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Therefore, we suggested that ILC2-derived IL-5 contribute to hepatic eosinophil activation and
recruitment thereby promoting liver inflammation and tissue damage [182]. The findings that blockage
of IL-33 signaling through an anti-IL-33 antibody reduced NKT-cell activation and ameliorated disease
pathogenesis and that pre-treatment with sST2-Fc attenuated liver injury [183] further supported the
pro-inflammatory role of IL-33 in ConA-induced hepatitis. A beneficial effect of anti-IL-33 antibody
treatment on disease pathology was also demonstrated in an experimental AIH model induced by
injection of S-100 antigen. Moreover, in patients with AIH, increased serum levels of IL-33 were
positively correlated with liver injury and inflammatory cytokine production and both IL-33 and sST2
levels decreased after immunosuppression therapy [179].

In contrast to these studies, a protective effect of IL-33 and ST2 in ConA-induced hepatitis was
also described. Lack of ST2 aggravated liver injury and increased inflammatory cytokine expression
while the number of Tregs was reduced [184]. IL-33 deficiency also rendered mice more susceptible to
ConA-induced liver injury [181,185] and this was addressed to increased NK cell infiltration together
with a reduced frequency of Tregs expressing ST2 [185]. The assumption that ST2+ Tregs contribute to
immune regulation in ConA-induced hepatitis was promoted by another study showing an enhanced
frequency of this Treg subset in the inflamed liver. Moreover, administration of IL-33 before induction
of hepatitis expanded hepatic ST2+ Tregs and potently suppressed liver injury [182]. The protective
effect of IL-33 pre-treatment on disease pathology was reproduced by another study [184] while
administration of IL-33 together with ConA exacerbated liver injury and necrosis [183]. Since ST2+

Tregs have been described as an activated Treg subset with potent immunosuppressive function in
inflammation [145–147], it could be speculated that absence of ST2+ Tregs in ST2-deficient mice and
defective activation of this Tregs subset in IL-33-deficient mice might be responsible for the observed
aggravated liver injury in ConA-induced hepatitis (Figure 3).
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Figure 3. Immune regulatory function of IL-33 in ConA-induced hepatitis. In homeostasis, IL-33 is
located in the nucleus of hepatocytes. During ConA-induced hepatitis, activated NKT cells, CD4+ T
cells and macrophages produce the inflammatory cytokines TNFα and IFNγ subsequently leading
to hepatocyte death by necrosis and release IL-33 in liver tissue. Extracellular IL-33 activates ILC2,
which is associated with hepatic infiltration of inflammatory eosinophils. IL-33 also activates ST2+

Tregs that might exert immunosuppressive function in sterile liver inflammation. ConA: concanavalin
A, Mϕ: macrophage, NKT: natural killer T cell, TNFα: tumor necrosis factor α, IFNγ: interferon γ, HC:
hepatocyte, ST2: suppression of tumorigenicity 2, Treg: regulatory T cell, ILC2: type 2 innate lymphoid
cells, Eos: eosinophils.

7. NLRP3 Inflammasome and IL-33 in Sterile Inflammation-Associated Liver Diseases

Initially, the NLRP3 inflammasome pathway has been proposed to be involved in the maturation
of IL-33. IL1β and IL-33 are members of the IL-1 family of cytokines and both are intracellularly
produced as pro-cytokines [131]. Similar to IL-1β, cleavage of pro-IL-33 into mature IL-33 by caspase-1
was indicated to be essential for optimal biologic activity [131]. However, this finding was not
supported by other studies. In contrast, it was reported that pro-IL-33 is biologically active and that
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caspase-1 processing resulted in inactivation rather than activation of IL-33 [187]. Another study
found no evidence that IL-33 is a physiological substrate for caspase-1 and instead demonstrated
efficient processing by the apoptosis-associated caspase-3 and -7 that attenuated the biological activity
of IL-33 [188], whereas serine proteases were shown to process IL-33 into mature forms with increased
biological activity [135]. Moreover, caspase-1-deficient macrophages were able to release IL-33 after
LPS stimulation [189] strongly indicating that the NLRP3 inflammasome and caspase-1 are dispensable
for IL-33 maturation.

It appears that both the NLRP3 inflammasome and the IL-33 pathway can become activated
in sterile inflammation-associated liver diseases. Whether these pathways act synergistically or
antagonistically in sterile liver inflammation is still largely unknown. One study suggests a link
between NLRP3 inflammasome and IL-33 signaling in diet-induced steatohepatitis. The authors
proposed that NLRP3 inflammasome-induced IL-1β expression by macrophages contributed to necrotic
hepatocyte death and release of IL-33, which in turn induced expression of the pro-fibrotic cytokine
IL-13 in macrophages that might promote HSC activation, fibrogenesis, and progression of NASH [173].
In ConA-induced hepatitis, lack of IL-33 was associated with increased hepatic IL-1β expression and
more severe liver injury, however, a possible link between the NLRP3 inflammasome and IL-33 was not
analyzed [185]. In contrast, other studies found no interaction between both pathways. Alcohol-fed
mice showed up-regulation of both NLRP3/caspase-1 and pro-IL-33 in the liver. However, since
comparable levels of cleaved hepatic IL-33 protein were found in Casp1−/− mice, it was suggested
that cleavage of IL-33 occurred independently of NLRP3/caspase-1 in alcohol-induced liver injury [47],
fitting to the studies mentioned above. Further, in a murine model of acute viral hepatitis, Il33−/−

mice showed no altered expression of IL-1β [190].
Despite the weak evidence for an interaction of the NLRP3 inflammasome and IL-33 pathway

in sterile liver inflammation, a NLRP3-IL-33 axis has been shown in other diseases. In house
dust mite-induced allergic lung inflammation, a regulatory role of caspase-1 on IL-33 release has
been proposed. The authors found that caspase-1 restrained expression of cleaved IL-33 and that
up-regulation of airway inflammation in Casp1−/− mice correlated with higher bioactive IL-33
expression and increased lung infiltration of eosinophils [191]. In contrast to this study, lack of
caspase-1 reduced eosinophilia and mature bioactive lung IL-33 levels in an asthma exerbation
model [192]. Another study showed that IL-33 treatment reduced NLRP3 inflammasome activation and
IL-1β production in microglia and intracerebral monocytes in experimental cerebral malaria thereby
ameliorating pathology in the brain [193]. In helminth infection, NLRP3 inflammasome activation and
IL-1β production in the intestine were identified as mechanism to prevent parasite rejection and to
establish chronic infection by suppressing expression of IL-33 [194]. It was further shown in vitro that
IL-33 can induce IL-1β production by bone marrow-derived mast cells [195]. Based on these findings
and the fact that both the NLRP3 inflammasome and IL-33 pathway play a role in the pathology of
most of the sterile inflammation-associated liver diseases, it would make sense to study a possible
NLRP3-IL-33 axis in sterile liver inflammation in more detail.

8. Conclusions

There is compelling evidence that activation of the NLRP3 inflammasome leads to progression
of sterile inflammation-associated liver diseases and therefore, components of this inflammatory
pathway represent promising new therapeutic targets. IL-33 has been proven as a pathogenic factor
in chronic liver disorders, however, its particular role in sterile liver inflammation is not yet fully
understood. It appears that IL-33 drives sterile liver inflammation by mediating activation of ILC2,
Kupffer cells, neutrophils, and eosinophils while on the other hand, IL-33 also suppresses disease
severity by promoting Treg function. Thus, targeting IL-33 (e.g., by using an anti-IL-33 antibody)
must be well considered and is dependent on the main pathway triggered by IL-33 in a given liver
disease. The situation is further complicated by the finding that treatment with recombinant IL-33
as therapeutic option in sterile liver inflammation often results in different outcomes dependent on
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time point and duration of IL-33 administration. However, further studies are required to elucidate
whether targeting of the IL-33/ST2 axis might be a novel therapeutic strategy for treatment of sterile
inflammation-related liver disease.
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