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Abstract

Natural epigenetic diversity has been suggested as a key mechanism in microevolutionary processes due to its capability to create

phenotypic variability within individuals and populations. It constitutes an important reservoir of variation potentially useful for rapid

adaptation in response to environmental stimuli. The analysis of population epigenetic structure represents a possible tool to study

human adaptation and to identify external factors that are able to naturally shape human DNA methylation variability. The aim of this

study is to investigate the dynamics that create epigenetic diversity between and within different human groups. To this end, we first

used publicly available epigenome-wide data to explore population-specific DNA methylation changes that occur at macro-geo-

graphic scales. Results from this analysis suggest that nutrients, UVA exposure and pathogens load might represent the main

environmental factors able to shape DNA methylation profiles. Then, we evaluated DNA methylation of candidate genes

(KRTCAP3, MAD1L1, and BRSK2), emerged from the previous analysis, in individuals belonging to different populations from

Morocco, Nigeria, Philippines, China, and Italy, but living in the same Italian city. DNA methylation of the BRSK2 gene is significantly

different between Moroccans and Nigerians (pairwise t-test: CpG 6 P-value = 5.2*10� 3; CpG 9 P-value = 2.6*10� 3; CpG 10 P-

value = 3.1*10� 3; CpG 11 P-value = 2.8*10� 3). Comprehensively, these results suggest that DNA methylation diversity is a source

ofvariability inhumangroupsatmacroandmicrogeographical scalesandthatpopulationdemographicandadaptivehistories,aswell

as the individual ancestry, actually influence DNA methylation profiles.
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Introduction

Epigenetics is a reversible molecular mechanism that is sup-

posed to play a role in many adaptive processes, along with

the classical ways to adapt represented by genetic and/or, in

the case of humans, cultural changes (Giuliani et al. 2015).

Several theories have been proposed to explain the role that

epigenetic variation may have played in human evolutionary

history (Gluckman et al. 2005; Jablonka & Lamb 2005;

Feinberg & Irizarry 2009; Shea et al. 2011; Klironomos et al.

2013), overall describing it as a sort of plastic interface be-

tween the genome and the environment. DNA methylation,

the first epigenetic mechanism discovered, constitutes a

source of phenotypic variability and several lines of evidence
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suggest that epigenetic modifications have the potential to

influence evolutionary processes (Szyf 2015). In addition,

many studies based on animal models observed that DNA

methylation patterns can be transmitted for generations

after the exposure to an environmental perturbation (i.e.,

toxins, hormone exposure, etc.), thus escaping transgenera-

tional erasure mechanisms (Lane et al. 2003; Seisenberger

et al. 2012). Changes in DNA methylation can be also lost

more rapidly than genetic ones and, therefore, they require

stronger selective pressures to be fixed in a population

(Klironomos et al. 2013). According to this view, population

epigenetics studies might represent a suitable tool for the

study of human adaptation and for the identification of envi-

ronmental factors able to shape DNA methylation variability

across human groups. In the last years, studies that simulta-

neously investigated patterns of both population epigenetic

and genetic structure have demonstrated that the individual’s

genetic background at specific loci influences DNA methyla-

tion profiles of distal and nearby genomic regions by remodel-

ling the conformation of chromatin itself (Lemire et al. 2015).

Therefore, the identification of genes and pathways whose

DNA methylation profiles change across populations, together

with the analysis of their genetic variability, could represent a

valuable approach for pinpointing strong environmental pres-

sures that acted (or that are still acting) on different human

populations (Fraser et al. 2012).

A recent epigenome-wide study conducted by using

Illumina 450k BeadChip investigated DNA methylation vari-

ability across human populations at a macro-geographical

level (i.e., by considering human groups belonging to different

continents, such as Africans, Europeans and Asians). From this

study emerged that selective pressures not only shaped the

genetic background of these populations, but also their DNA

methylation profiles (Heyn et al. 2013). In this article, the au-

thors identified population-specific DNA methylation patterns

using a single CpG analysis. However, the biological relevance

of fluctuations in DNA methylation levels of individual CpGs is

still debated (Wessely & Emes 2012), although changes in

DNA methylation in groups of adjacent CpG site—especially

in the CpG islands where CpGs methylation levels are corre-

lated—are more likely to have “a biological role”, because

they potentially affect chromatin structure. To our knowledge,

no replication studies have been performed on different co-

horts to confirm signals identified in such epigenome-wide

analyses, as well as to provide further information on the sur-

rounding CpGs sites.

Moreover, to date DNA methylation variability at a mi-

crogeographical level—considering variability inside each con-

tinent—has been poorly investigated and, to our knowledge,

only one study evaluated the DNA methylation variability

across rainforest hunter-gatherers and sedentary farmers

from Central Africa identifying genomic regions whose meth-

ylation is affected by recent changes in habitat and by histor-

ical lifestyle (Fagny et al. 2015).

On the basis of the above considerations, the aim of the

present study is 4-fold:

1) to exploit a new approach for the analysis of public

epigenome-wide datasets based on blocks of adjacent CpGs

(Bacalini et al. 2015) to identify hotspots of variability—that

likely have a functional role—between different populations;

2) to confirm the loci identified in the previous step in an

independent sample of individuals belonging to different

macro-geographical areas and living in Italy, by means of a

different technique (MALDI-TOF);

3) to assess DNA methylation variability at a microgeo-

graphical level, by considering variations among populations

belonging to the same macro-geographic area (e.g., African

and Asian groups);

4) to deepen the understanding of the genetic structure of

selected candidate genes in order to identify factors that could

impact on their epigenetic profiles.

For this purpose, firstly we performed a new analysis on the

existing human populations data (i.e., of African, Asian and

European ancestry) published by Heyn and colleagues (2013)

to identify genomic regions and associated pathways with a

high level of plasticity in terms of DNA methylation. These

genomic regions were then analyzed at higher resolution by

means of a MALDI-TOF technology (Sequenom, EpiTYPER

protocol). A total of 90 individuals of European, Asian, and

African ancestry, but all living in the same place (Bologna,

Italy), were typed and, in particular, we selected 17 individuals

from China, 13 from Philippines, 16 from Morocco, and 14

from Nigeria to investigate methylation variability at a mi-

crogeographical level. Patterns of population genetic structure

for the selected candidate genes were also investigated using

data from the 1000 Genomes Project (1000 Genomes Project

Consortium 2010) to check the correlation between genetic

and epigenetic population structures at these loci.

Materials and Methods

Samples Description

Already published data available in the public Gene Expression

Omnibus (GEO) database under accession number GSE36369

were used for a meta-analysis. These data include DNA meth-

ylation levels measured in lymphoblastoid cell lines (LCLs) of 96

Americans of European ancestry (EU), 96 Americans of African

ancestry (AFR) and 96 Han Chinese Americans (ASN). Mean

age was 37.3 ± 16.2 years for EU, 29.4 ± 9.9 for AFR and

36.2 ± 15.7 for ASN. In order to replicate the obtained results,

methylation data available from whole blood of 30 individuals

of different ancestry were considered. We used the methyla-

tion data from whole blood samples of 10 Americans of

European ancestry and 10 Asian Americans described in the

study of Heyn and colleagues (2013) (GSE36369), and of 10

Americans of African ancestry retrieved from Alisch et al.

(2012) (GSE36064).
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Whole blood of 90 individuals from Morocco (N = 16),

Nigeria (N = 14), Philippines (N = 13), China (N = 17) and Italy

(N = 30) collected in Bologna (Italy) before 1997 and stored at

�20 �C was analysed. Ethical approval for this experiment was

obtained from the ethics committee of the University of

Bologna (permission to DL in date 11/11/2015). No data re-

garding health status or the time of migration to Italy are

available for the subjects. The only available information is

that they live in Bologna (Italy).

New Analysis of Public Datasets

To identify differentially methylated regions (DMRs) between

the three examined populations we applied the bioinformatics

pipeline described in Bacalini et al. (2015). In brief, this ap-

proach is based on the analysis of groups of adjacent CpGs

because DNA methylation patterns of groups of CpGs are

more likely associated with functional variation than DNA

methylation changes of single CpGs. Accordingly, we divided

the Infinium 450k probes into four classes: 1) Class A: probes

in CpG islands and CpG islands-surrounding sequences (i.e.,

shores and shelves) that map in regions near genes, 2) Class B:

probes in CpG islands and CpG islands-surrounding regions

(i.e., shores and shelves) which do not map in genic regions, 3)

Class C: probes in genic regions which are not CpG rich 4)

Class D: probes in nongenic regions which are not CpG rich.

With the term “blocks of probes” (BOPs), we refer to groups

of Class A and Class B CpG probes localized in the same

island/shore/shelf. Class C and Class D were instead analysed

by a single CpG approach because these CpGs are too distant

to support an analysis based on groups of adjacent probes.

Ingenuity Pathway and Network Analyses

Pathway and network analyses were performed using

Ingenuity Pathway Analysis (IPA, Qiagen) by considering the

list of genes associated with Class A BOPs for each pairwise

comparison (i.e., AFR-EU, AFR-ASN, ASN-EU). We decided to

use these lists because Class A probes are located in genic

regions and are more likely associated to phenotypic changes.

For all the analyses conducted using the IPA software, we

reported statistically significantly enriched canonical pathways

together with the related P-values and the number of genes

involved in each pathway. Canonical pathways give a wealth

of information regarding what is known to occur at the cel-

lular level. In supplementary materials, molecular and cellular

functions were also reported, as well as the most significant

networks with their scores. The score is a numerical value used

to rank networks according to their degree of relevance to the

Network Eligible molecules in the dataset. The network Score

is based on the hypergeometric distribution and is calculated

with the right-tailed Fisher’s Exact Test (Calvano et al. 2005).

Comparison analyses were performed using IPA and by con-

sidering the aforementioned pairwise population groups com-

parisons. This approach allowed the identification of pathways

that are unique or shared between each comparison and

Fisher’s Exact Test P-values were reported for each of them.

The x-axis represents negative log P-values based on the prob-

ability that molecules identified were included in the prede-

fined IPA canonical pathways by true association as opposed

to inclusion of molecules based on chance alone.

Selection of Candidate Genes

BOPs of Class A identified in the three performed pairwise

comparisons were then analysed by considering a dataset

composed of 10 individuals of African origin, 10 individuals

of Asian origin and 10 individual of European origin. Absolute

pairwise differences between whole blood DNA methylation

of these three groups were calculated and the ANOVA test

was performed. The most significant CpGs selected according

to the calculated P-values, to the DNA methylation differences

in LCLs and in the dataset of whole blood samples described in

the study of Heyn and colleagues (Heyn et al. 2013) were thus

selected for further analyses. These CpGs sites are

cg21248554 (grch37/hg19 chr2: 27,665,151), cg16658412

(grch37/hg19 chr7:1,883,420) and cg15465743 (grch37/

hg19 chr11: 1,413,145) that mapped on the KRTCAP3,

MAD1L1 and BRSK2 genes, respectively. These sites are also

included in the list of “pop-CpGs” described by Heyn and

colleagues (Heyn et al.2013).

DNA Extraction and Bisulfite Treatment

Genomic DNA was extracted from 150ml of whole peripheral

blood using the QIAamp 96 DNA Blood Kit (QIAGEN, Hilden,

Germany). For Sequenom EpiTYPER assay, 1,000 ng of DNA

were bisulfite-converted using the EZ-96 DNA Methylation Kit

(Zymo Research Corporation, Orange, CA) with the following

modifications of the manufacture’s protocol: bisulfite conver-

sion was performed with thermal conditions that repeatedly

varied between 55 �C for 15 min. and 95 �C for 30 s for a total

of 21 cycles; after the desulfonation and the cleaning steps,

bisulfite-treated DNA was eluted in 100ml of water.

EpiTYPER Assay on MALDI-TOF Platform

Quantitative analysis of methylation status of CpG sites in

candidate genes was performed by the EpiTYPER assay

(Agena Bioscience Inc., San Diego, CA previously Sequenom

Inc.), a MALDI-TOF mass spectrometry-based method.

Bisulfite-treated DNA was PCR-amplified and then processed

following manufacturer’s instructions. DNA methylation levels

of 16 CpG sites nearby cg 21248554 (GRCh37/hg19 chr2:

27,664,896-27,665,359), 13 CpG sites nearby cg 16658412

(GRCh37/hg19 chr7: 1,883,322–1,883,759) and six CpG sites

nearby cg 15465743 (GRCh37/hg19 chr11:1,413,109–

1,413,442) were measured. The following bisulfite specific

primers were used:

F-AGGAAGAGAGTTTGGTATTTGGTGTTAAGTGGTTT and

R-CAGTAATACGACTCACTATAGGGAGAAGGCTAAAAACTA
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ATCTCCACTCTTCATAACA for the BRSK2 gene; F-AGGAAGA

GAGGGTAAGGGTAGTTTTAGGGTAAGGA and R- CAGTAATA

CGACTCACTATAGGGAGAAGGCTAAACCTAAACCTTCTCAA

CAACC for KRTCAP3 and F-AGGAAGAGAGTGAAGATTTATTT

TTGGAGTGGGTA and R- CAGTAATACGACTCACTATAGGGA

GAAGGCTTAACACCAACCAAAACACACCTAA for the

MAD1L1 gene.

Statistical Analyses

Genome-wide DNA methylation values were in part obtained

by public database (GSE36369 and GSE36064). Color bias

adjustment, background level adjustment and quantile nor-

malization across arrays were performed using the lumi pack-

age (Du et al. 2008). Probes on chromosome X and Y, probes

containing missing b-values and those showing SNPs with a

frequency>1% within their sequence were removed, as sug-

gested in Heyn et al. (2013). For Class A and Class B, BOPs

methylation values were compared between groups by using

the MANOVA function implemented in the car R package.

BOPs containing one or two CpG probes were excluded

from the analysis and MANOVA was applied on sliding win-

dows of three consecutive CpGs within the same BOP. For

each BOP, the lowest P-value among those calculated for the

different sliding windows was retained. For Class C and Class

D, the methylation values of single CpG site was compared

between groups using the ANOVA function implemented in

the car R package. Benjamini–Hochberg False Discovery Rate

was computed to account for the adopted multiple testing

procedures and by using the function mt.rawp2adjp imple-

mented in the multtest R package.

For the candidate genes analysis, the MassArray R package

was used to test whether bisulfite conversion reactions run to

completion (Thompson et al. 2009). CpG sites with missing

values in more than 20% of samples were filtered out, to-

gether with samples with missing values in more than 20% of

CpG sites.

For the analysis of genetic structure at the BRSK2,

MAD1L1 and KRTCAP3 genes, we considered genotypes

of individuals from 15 populations sequenced by phase 3

of the 1000 Genomes Project: five of East Asian origin

(i.e., Han Chinese in Beijing—CHB, Japanese in Tokyo—

JPT, Southern Han Chinese—CHS, Kinh in Ho Chi Minh

City—KHV), five of European origin (i.e., Utah Residents

with Northern and Western European ancestry—CEU,

Toscani in Italy—TSI, Finnish in Finland—FIN, British in

England and Scotland—GBR, Iberian population in Spain—

IBS), five of African origin (i.e., Yoruba in Ibadan, Nigeria—

YRI, Luhya in Webuye, Kenya—LWK, Gambian in Western

Divisions in The Gambia—GWD, Mende in Sierra Leone—

MSL, Esan in Nigeria—ESN). Data were filtered for allelic

state (i.e., only biallelic loci were retained), then a pruned

subset of SNPs in approximate linkage equilibrium with each

other was generated (Auton et al. 2015) and monomorphic

loci were excluded. Discriminant analysis of principal compo-

nents (DAPC) was applied allowing the description of homo-

geneous genetic clusters using few synthetic variables. For

the analysed genes, Fst values for each SNP were also esti-

mated according to the Wright formula.

Results

In Silico Epigenome-Wide Analyses

A recently developed region-centric approach based on the

identification of BOPs (Bacalini et al. 2015) was applied for

the analysis of publicly available data generated with the

Infinium 450k assay (Heyn et al. 2013) to detect popula-

tion-specific epigenomic signatures. First, we analysed a

panel of 288 samples (96 AFR, 96 ASN and 96 EU). After

quality check and filtering procedures, we retained for the

analysis 440,793 out 485,577 loci. The entire pipeline of

analysis is described in details in the materials and methods

section and an overview is reported in supplementary fig. S1,

Supplementary Material online.

According to the bioinformatics pipeline proposed by

Bacalini et al, we identified 77, 217 and 301 BOPs in Class

A that discriminated AFR and EU, AFR and ASN, EU and ASN

respectively (q-values<5*10� 8). By considering these loci,

a multidimensional scaling was computed and reported in

fig. 1A. Then, methylation values of the top ranking re-

gions—according to lowest q-values and filtering only signif-

icant BOPs containing at least two adjacent differentially

methylated CpG sites—were reported in fig. 1B.

A total of 15, 43 and 122 BOPs belonging to Class B re-

sulted differentially methylated in the AFR/EU, AFR/ASN, and

EU/ASN comparisons, respectively (q-values<10� 8).

Methylation values of probes belonging to Class C and Class

D were compared between the examined groups by ANOVA.

A total of 53, 161 and 1,815 CpG probes mapping in Class C

and 62, 107 and 1,559 mapping in Class D were proved to be

differentially methylated between AFR and EU, AFR and ASN,

EU and ASN, respectively (q-values<10� 8). Frequencies of

differentially methylated BOPs/CpGs are reported in supple-

mentary table. 1S, Supplementary Material online.

The list of Class C probes was used to perform a single

CpG-based analysis. As regards the AFR-EU Class C DMRs,

we identified two genes that were differentially methylated

in more than one CpG: the PRDM16 locus, which codes for a

protein involved in the differentiation of brown adipose tissue,

and MLPH that codes for melanophilin, a protein found in

pigment producing cells such as melanocytes. The observed

AFR-ASN Class C DMRs were instead located in genes in-

volved in UDP glucuronosyltransferase. In particular, the

CpGs cg07952421 and cg10632656 are located in correspon-

dence of the binding site of the transcription factor POLR2A

that is responsible for messenger RNA synthesis located up-

stream the UGT2B17. Similarly, the ASN-EU comparison

Epigenetic Variability Across Human Populations GBE
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pointed to Class C DMRs related to genes involved in cellular

glucoronidation (Tukey & Strassburg 2000).

Because Class A BOPs map in CpG islands and surrounding

regions associated to genes, variation in their methylation

status is more likely to have phenotypic consequences.

Therefore, candidates to be further characterized with a tar-

geted gene approach were selected from Class A BOPs.

According to Class A BOPs, we reported 40 genes (supple-

mentary table 2S, Supplementary Material online) that re-

sulted differentially methylated between populations in both

our region-centric approach and in the paper published by

Heyn and colleagues (Heyn et al. 2013) that performed a clas-

sical single site analysis.

Pathway, Network and Gene Analyses

We performed pathway and network analyses by considering

the list of Class A BOPs differentially methylated between the

studied populations. Pathway analysis performed on the 77

genes corresponding to the AFR-EU DMRs identified molecu-

lar and cellular functions linked to cell morphology, cell death,

cellular assembly, and organization (supplementary fig. 2S-A,

Supplementary Material online). In particular, results reported

in supplementary fig. 2S-B, Supplementary Material online

show enrichment of DMRs located in genes involved in gap

junction signalling, 14-3-3-mediated signalling, GM-CSF sig-

nalling, remodelling of epithelial adherens junction, as well as

in the cardiac hyperthrophy regulated by NFAT and in the

assembly of RNA polymerase I complex. Network analysis gen-

erated a network including 40 genes of the examined list

(supplementary fig. 2S-C, Supplementary Material online).

AFR-ASN DMRs are located in the MAD1L1 gene, one of

the accelerated regions (HAR3) typical of the human lineage

(Pollard et al. 2006; Hubisz & Pollard 2014). As displayed in

supplementary fig. 3S-B, Supplementary Material online, most

of the AFR-ASN DMRs mapped in genes involved in cellular

immune response pathways, such as those related to antigen

presentation, OX40 signalling, which has been proved to be

important in T cell priming and cytokine production, Cd42

signalling, and antiviral innate immunity mediated by RIG1-

like receptors. Also genes involved in the NF-kB activation by

virus were affected by methylation changes. Network analysis

identified three main networks that include 25, 23, and 23

genes, respectively (supplementary fig. 3S-A, Supplementary

Material online).

Finally, EU-ASN DMRs predominantly mapped on genes

involved in glycosaminoglycans biosynthesis (Dermatan

Sulfate Biosynthesis, Chondroitin Sulfate Biosynthesis) (supple-

mentary fig. 4S-B, Supplementary Material online), as well as

FIG. 1.—Multidimensional scaling (MDS) considering the BOPs in Class A that discriminated AFR and EU, AFR and ASN, EU and ASN, respectively (A).

Line plot of methylation values of the first top ranking regions— according to lowest q-values and filtering only significant BOPs containing at least two

adjacent differentially methylated CpGs (B).
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in genes, such as CAPN5, NOS1, PPP3CC, PRKCZ, involved in

nNOS signalling and in the superpathway of citrulline

metabolism.Pathway analysis also revealed enrichment of

genes involved in nutrient sensing mediated by G-protein-cou-

pled receptor (GPCR) of the enteroendocrine cells. Specific

DNA methylation signatures were observed in the UVA-

Induced MAPK signalling, proline degradation and intrinsic

prothrombin activation pathways. Network analysis revealed

a number of plausible networks (supplementary fig. 4S-A,

Supplementary Material online), four of which (network 1,

3, 4, 5) shared many genes and pathways, although network

2 included genes involved mainly in dermatological character-

istics. Network 1 is reported in supplementary fig. 4S-C,

Supplementary Material online.

Comparative Analysis on Pathways Including Populations
DMRs

To identify the most informative pathways among those de-

scribed for each population, we applied a comparative and

integrative analysis. In fig. 2, the pathways identified accord-

ing to each pairwise comparison (EU-ASN, AFR-ASN, and AFR-

EU) are reported. The calculated significance (P-values) indi-

cates the probability of association of molecules identified in

each pair of comparisons to the canonical pathway by random

chance alone. We observed that some pathways are signifi-

cant in all the comparisons and that a subset of them may be

considered as a signature related to local adaptations, such as

in the case of NF-kB activation by viruses (supplementary fig.

5S, Supplementary Material online), GPCR-mediated nutrient

sensing in enteroendocrine cells (supplementary fig. 6S,

Supplementary Material online), UVA-induced MAPK signal-

ling (supplementary fig. 7S, Supplementary Material online).

Comparative analysis identified 11 pathways typical of the

ASN populations, such as dermatan sulfate biosynthesis (and

the late stage), chondroitin sulfate biosynthesis (and the late

stage), PTEN signalling, OX40 signalling, and the antigen pre-

sentation. Only two pathways turned out to be typical of AFR

populations, that is, the activation of IRF by the cytosolic pat-

tern recognition receptor and the role of RIG1-like receptors in

antiviral innate immunity. Finally, no pathways typical of EU

populations emerged, although the possibility that this result is

due to the reduced number of considered genes (N = 77, AFR-

EU) cannot be excluded.

Candidate Gene DNA Methylation Variability between
Macro-Geographic Groups

The three most significant CpGs (according to Class A BOPs P-

values and differences in DNA methylation levels) observed in

the LCL dataset, in the whole blood dataset and in the study of

Heyn et al. (2013) were selected for further analyses. DNA

methylation levels of 16 CpG sites nearby cg21248554

(KRTCAP3 gene, GRCh37/hg19 chr2:27,665,151), 13

nearby cg16658412 (MAD1L1 gene, GRCh37/hg19 chr

7:1,883,420) and six nearby cg15465743 (BRSK2 gene,

GRCh37/hg19 chr11:1,413,145) were thus measured in a

new sample group composed of 17 Chinese, 13

Philippines, 16 Moroccans, 14 Nigerians and 30 Italians re-

cruited in Italy (see materials and methods section for de-

tails). The observed DNA methylation patterns were

compared across populations for each genomic region and

the average values were calculated for individuals of Asian,

European, and African ancestry (fig. 3).When considering

the region located in the KRTCAP3 gene, DNA methylation

values of the CpGs sites nearby cg21248554 showed a con-

comitant hypomethylation in individuals of African origins,

but not in people of European or Asian ancestry (fig. 3A).

Individuals of African origins presented lower values of DNA

methylation than subjects of European and Asian ancestry

also at the region located in the MAD1L1 gene, as well as for

CpGs sites nearby cg16658412 (fig. 3B). DNA methylation

levels of CpGs located in the BRSK2 gene were lower in

individuals of Asian origin than in Europeans and Africans

(fig. 3C). A detailed description of significant sites for each

pair of population comparisons is reported in fig. 3.

Candidate Gene DNA Methylation Variability within
Macro-Geographic Groups

To investigate differences within each area (i.e., at the mi-

crogeographic level), we analysed the diversity of individuals

who belong to different African populations (i.e., Moroccans

and Nigerians) and to different Asian populations (i.e.,

Chinese and Philippines).Pairwise t-test between individuals

from Morocco and Nigeria, as well as between individuals

from China and Philippines were performed by considering

DNA methylation levels of the candidate regions located in

the KRTCAP3, MAD1L1 and BRSK2 genes. In particular,

KRTCAP3 and MAD1L1 showed similar DNA methylation

values within macro-geographic groups, with t-tests not re-

vealing statistically significant differences. On the contrary, the

BRSK2 gene showed differences between individuals of

Moroccan and Nigerian ancestries (pairwise t-test: CpG 6 P-

value = 5.2*10� 3; CpG 9 P-value = 2.6*10� 3; CpG 10 P-

value = 3.1*10� 3; CpG 11 P-value = 2.8*10� 3). In fig. 4,

mean DNA methylation levels of all populations were reported

according to their microgeographic category. .

Population Genetic Structure at the Identified Candidate
Genes

Because the possible genetic influence on DNA methylation

levels, we investigated patterns of population genetic structure

at the three identified candidate genes by taking advantage

from the whole genome data produced for 15 worldwide

human groups by the 1000 Genomes Project (Auton et al.

2015). Indeed, elucidating these patterns could be crucial to

disentangle the role of genetics in driving the differences ob-

served in DNA methylation levels. Genomic localizations and
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FIG. 2.—Comparative pathway analysis considering the three pairwise comparisons between AFR-EU (light blue), AFR-ASN (medium blue) and EU-ASN

(dark blue). The bar indicate -log(P-value) for each comparison. P-value indicates the probability of association of molecules identified in each pair of

comparisons to the canonical pathway by random chance alone.
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numbers of SNPs considered in the analyses are listed in sup-

plementary table 3S, Supplementary Material online.

As regards the BRSK2 gene, DAPC suggested the presence

of three distinct population clusters, one including African

groups, one composed by individuals of European ancestry,

and one entailing East Asians (fig.5A). We then selected the

SNPs with the highest Fst values between populations of

European ancestry and population of nonEuropean ancestry,

in the attempt to disentangle the causes of the differences in

DNA methylation patterns described in fig. 4. When Fst values

were computed for all possible EU/nonEU comparisons, only

two SNPs (rs61869028 and rs34805614) turned out to signif-

icantly differentiate these population groups (AFR-EU

Fst = 0.23, P-value<0.01 and 0.07, respectively; ASN-EU

Fst = 0.33 and 0.26, respectively, P-values<0.01).

DAPC identified only two main population clusters when

variation at the KRTCAP3 gene was considered. It is to note

that this subdivision is the result of the analysis of a modest

number of SNPs in KRTCAP3, although the other two genes

included a considerably higher number of genetic variants.

The first group corresponded to African populations, although

the second one included both Europeans and Asians (fig. 5B).

This pattern is in agreement with the differences identified via

epigenetics analysis, assigning individuals of African origin

apart from European and East Asian ones. We calculated Fst

values to search for the most informative variants responsible

FIG. 3.—Line plots of average DNA methylation levels at BRSK2, KRTCAP3 and MAD1L1 calculated for each macro-geographic group of populations,

DNA methylation of African individuals were reported in red, of Europeans in blue and of individuals of Asian origin in green. For each CpGs sites of each

region, P-values (pairwise t-test) for AFR-EU, AFR-ASN and EU-ANS were reported.
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for genetic differentiation at this locus between AFR

and nonAfrican individuals. The SNPs that significantly differ-

entiated these populations were rs780108, rs1260327,

rs780105, rs780110, rs1728911, (Fst AFR-ASN 0.61, 0.60,

0.59, 0.53, 0.51 and Fst AFR-EU 0.28, 0.25, 0.26, 0.23,

0.21, respectively; P-value< 0.01).

For the MAD1L1 gene (fig. 5C), DAPC identified three main

clusters: the first included African populations, the second is

made up of individuals of European ancestry, and the third

included only East Asians. In particular, LD1 enabled to differ-

entiate individuals of African ancestry from nonAfricans, as

already suggested by DNA methylation patterns. The SNPs

driving such differentiation were rs73288707, rs55934553,

rs6968659, and rs3839699 (Fst AFR-ASN 0.29, 0.23, 0.36,

0.49 and Fst AFR-EU 0.28, 0.23, 0.35, 0.36, respectively; P-

values< 0.01).

Discussion

This study explored population-specific DNA methylation

changes that occur at both macro- and microgeographic

scales. We applied a new bionformatics pipeline to analyze

publicly available epigenome-wide data, we selected the three

so identified most significant CpGs and we analysed DNA

methylation levels at these candidate genes in independent

populations, in order to investigate the dynamics that create

epigenetic diversity between and within different human

groups.

Genome-Wide Analysis

We performed a pathway analysis on the most variable genes

in terms of methylation levels, to get new hints on the envi-

ronmental stimuli that have the potential to create epigenetic

variability in humans. Accordingly, we reasoned that an

oscillation of DNA methylation levels of single CpGs could

be less informative than variations at many CpGs located in

functional elements, such as islands, shores or shelves. With

this approach based on block of probes, we identified 40 loci

that resulted differentially methylated between populations

and in accordance to results presented by Heyn and col-

leagues (Heyn et al. 2013) based on a single probe analysis.

These two different statistical approaches revealed a double

validated subset of genes that more likely could be crucial in

generating phenotypic variability in different human groups.

The most interesting results come from comparative anal-

ysis that suggested population-specific variations at pathways

linked to diet, UVA exposure and pathogens load. It is impor-

tant to note that, although DNA methylation is a tissue specific

mechanism, some studies have actually addressed the corre-

spondence between methylation levels of certain loci in

immune cells and methylation levels in other tissues (Ai et al.

2012; Li et al. 2012; Marsit & Christensen 2013).

In all comparisons, we identified the pathway of GPCR-

mediated nutrient sensing in enteroendocrine cells, the first

level where stimuli from the gut lumen are detected. Some

authors supposed that taste-signalling molecules of the gas-

trointestinal mucosa might participate in the functional detec-

tion of nutrients and harmful substances in the lumen, thus

preparing the gut to absorb them or to initiate a protective

response (Sternini et al. 2008). Moreover, these cells partici-

pate in the circuit that starts from gastrointestinal tract until

the activation of gut-brain axis (Sternini et al. 2008).

The UVA-induced MAPK signalling is another pathway af-

fected by methylation changes across all comparisons, sug-

gesting that a further level of adaptation to UVA exposure in

different human populations could be mediated by DNA

methylation changes. This is a fundamental finding because

many genetic studies showed that pigmentation genes have

FIG. 4.—Average DNA methylation for the six CpGs analysed in the BRSK2 gene. Red lines indicate individuals of African origin (from Nigeria and

Morocco), blue line indicate Europeans (Italian individuals) and green lines indicate individuals of Asians origin (from China and Philippines).
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undergone positive selection (Sturm & Duffy 2012). It has

been suggested that dark skin pigmentation could have

been selected as a protective trait against the deleterious ef-

fects of solar UV exposure in tropical climate areas. On the

other side, lighter skin types may have been selected in the

northern hemisphere due to low UVR exposure that allows the

optimal level of vitamin D3 synthesis (Jablonski & Chaplin

2010; Arciero et al. 2015). However, this hypothesis is

highly debated (Robins 2009) and some authors suggested

that this is inconsistent with the fact that no pigmentation

gene variants have been found to be associated with serum

vitamin D levels in GWAS (Wang et al. 2010) or with blood

folate concentrations (Tanaka et al. 2009). A possible addi-

tional interpretation of these observation could be consistent

with the model proposed by Klironomos and colleagues

(Klironomos et al. 2013), in which early adaptation via epige-

netic mutations causes a reduction of selective constraints on

genetic variables. The strength of selection operating on the

genetic variants could be weakened because epigenetic vari-

ability in the same pathway can generate an additional level of

phenotypic variation (Schmitz et al. 2011; Klironomos et al.

2013). These considerations are in line with recently published

data that showed how combination of DNA methylation var-

iation and genetic polymorphisms could improve the evolution

of adaptive phenotypes (Fagny et al. 2015).

Pathway and network analyses showed that methylation

levels of genes involved in response to pathogens change in

many of the performed comparisons. When AFR and ASN

FIG. 5.—DAPC scatterplots related to the BRSK2 (A), KRTCAP3 (B) and MAD1L1 (C) genes and computed by considering 15 populations of African,

Asian and European origins. The plots represent individuals as dots and populations as inertia ellipses. Eigenvalues and principal components considered in

the analysis are displayed in left and right squares.
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groups were compared, many DMRs resulted located in genes

involved in OX40 signalling pathway, Cdc42 signalling, anti-

gen presentation pathway and role of RIG1-like receptors in

antiviral innate immunity, which turned out to be the most

significant pathways.The ASN-EU comparison revealed in-

stead significant pathways involved in the Dermatan Sulfate

Biosynthesis (DS) and Chondroitin Sulfate Biosynthesis (CS).

Despite the high number of functions of these pathways

(e.g., central nervous system development, wound repair, in-

fection, growth factor signalling, morphogenesis, and cell di-

vision, etc.), it is interesting to note that an increasing number

of pathogens, including viruses, parasites, and bacteria, have

been shown to use cell-surface DS for their attachment to host

cells (Menozzi et al. 2002; Trowbridge & Gallo 2002). These

results are in agreement with those obtained by Heyn and

colleagues (Heyn et al. 2013) that identified many pop-

CpGs in genes involved in immune response, indicating that

their methylation patterns have been likely shaped by local

pathogen landscapes. This issue was recently discussed also

in Bierne et al. (2012). As pathogens exert a very strong influ-

ence on human genetic/epigenetic variation, some authors

suggested that local pathogens diversity constitutes one of

the main selective pressures having acted through human

evolution (Fumagalli et al. 2011). We can hypothesize that

epigenetic variation can provide a further level of variability

important to counteract pathogens impact. Moreover, a

recent study published by Marr and colleagues (Marr et al.

2014) elucidated the possible role of DNA methylation in path-

ogens response by demonstrating that intracellular parasites

can alter the host cell DNA methylation patterns, altering gene

expression that could lead to disease conditions. An example is

represented by the uropathogenic Escherichia Coli that, in

uroepithelial cells, can induce down-regulation of CDKN2A

(a cell cycle inhibitor), thus potentially increasing cell prolifer-

ation and pathogens persistence (Tolg et al. 2011). However,

the exact mechanism by which DNA methylation contributes

to pathogens response remains unclear and we do not have

enough data to understand whether DNA methylation vari-

ability represents a way to adapt to pathogens infection (in

order to maintain the survival of the organism) or a way for the

pathogens to maintain their survival. We also identified NF-kB

activation by virus as a significant pathway including genes

whose level of DNA methylation change in all the performed

comparisons. It is noteworthy that this pathway is activated by

different virus, such as EBV, HIV1, HSV, HBV, and CMV

(Santoro 2003; Schroder et al. 2004), which increased their

diffusion in the last century shaping DNA methylation profiles

and thus producing population specific patterns.

Candidate Gene Analysis

A candidate gene approach was applied to the three most

robust signals emerged from genome-wide analyses: BRSK2, a

Serine/threonine-protein kinase that is abundantly expressed

in pancreatic islets and that plays a key role in polarization of

neurons and axonogenesis, cell cycle progress, as well as in

insulin secretion (Chen et al. 2012; Wang at al. 2012; Friemel

et al. 2014); KRTCAP3, a keratinocyte-associated protein

(Andres et al. 2009; George et al. 2011; Han et al. 2013;

Khan et al. 2014); MAD1L1, a component of the mitotic spin-

dle-assembly checkpoint associated with chromosomal stabil-

ity, whose methylation levels have been demonstrated to vary

according to treatment with phytoestrogens, which are natu-

rally present in a high number of edible plants, such as lupin,

fava beans, soybeans, kudze, and psoralea (Karsli-Ceppioglu

et al. 2015).

In details, hypomethylation at KRTCAP3 and MAD1L1

genes was observed in African individuals, although hypo-

methylation at BRSK2 characterized East Asian subjects.

According to this scenario, we demonstrated that differences

between populations affect a larger gene region and not only

one CpG site, further revealing that DNA methylation differ-

ences between populations are extended also to the CpGs

flanking those implemented in the Illumina 450k BeadChip.

Notably, in our replication study we used whole blood sam-

ples for methylation analysis. Although we cannot completely

exclude influence of heterogeneous cell composition of whole

blood on observed methylation patterns, we noted that esti-

mated methylation levels are similar to those reported by Heyn

and colleagues (Heyn et al. 2013) and measured in LCLs.

DNA methylation differences at the KRTCAP3, MAD1L1

and BRSK2 genes were observed in individuals living in

Bologna (Italy), as well as in the study published by Heyn

and colleagues that includes individuals living in America

(Heyn et al. 2013). This indicates that ancestry is the principal

factor that influences DNA methylation profiles at these loci.

The different environments (American and Italian city) seems

not to have a crucial role in shaping DNA methylation profiles

of these regions. Although more data on gene expression and

protein analysis are needed to draw further conclusions, these

findings strongly suggest that the examined genomic regions

have high probability to have exerted an important role in the

recent evolutionary history of human populations.

Moreover, the examined populations allowed us to per-

form comparisons aimed at investigating epigenetic variability

within macro-geographic areas (i.e., Africa, Asia).

Noteworthy, BRSK2 methylation showed differences between

individuals from Morocco and from Nigeria (pairwise t-test:

CpG 6 P-value = 5.2*10� 3; CpG 9 P-value = 2.6*10� 3;

CpG 10 P-value = 3.1*10� 3; CpG 11 P-value = 2.8*10� 3),

pointing to high methylation diversity between populations

belonging to the same continent, even if characterized by

appreciably different demographic histories. A possible hy-

pothesis for the observed pattern includes the European influ-

ence (in terms of both cultural and genetic admixture) evident

on people from Morocco (and vice versa) (Henn et al. 2012;

Botigué et al. 2013). To our knowledge, this level of variability
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has never been addressed before because information regard-

ing the countries of origin are missing in most studies.

It is noteworthy that this peculiar methylation pattern has

been observed only for the BRSK2 region and not for MAD1L1

and KRTCAP3 genes. This could indicate that microgeographic

dynamics differently shaped some genomic regions according

to their biological function. This variability among African pop-

ulations is in line with the recent findings of Fagny and col-

leagues (Fagny et al. 2015) that investigate the effect of

changes in subsistence strategies and ecological habitats on

methylation profiles by considering Central African

populations.

In the study by Heyn and colleagues (Heyn et al. 2013), a

high proportion of genetic polymorphisms associated with

methylation profiles were identified, suggesting a close link

between genetic variability and DNA methylation values, at

least for one third of the CpGs that were differentially meth-

ylated across populations. However, a limit of that study and

of the present one was that no deep genomic characterization

(i.e., by sequencing) of these individuals was available. In the

attempt to partially overcome this issue, we have taken ad-

vantage of whole genome sequence data provided by the

1000 Genomes Project to explore full genetic variation at

the three identified candidate genes in 15 human populations

belonging to the same continents of origin of the examined

subjects. Elucidating these patterns could be crucial to disen-

tangle the role of genetics in driving the differences observed

in DNA methylation levels, although the individuals considered

in the present analysis belong to two different cohorts.

Appreciable population genetic structure was observed for

the KRTCAP3 and MAD1L1 genes, potentially accounting also

for the identified DNA methylation differences. However,

Heyn and colleagues (Heyn et al. 2013) did not identify

meQTL for the CpGs located in MAD1L1 and KRTCAP3. This

could be due to the fact that their data were generated by a

microarray approach that captures only a subset of genetic

variation actually present in the genome (i.e., generally

common SNPs initially discovered in populations of

European origins). Our results suggest that the potential role

of the genetic context nearby the pop-CpGs on chromatin

structure, and therefore on DNA methylation profiles,

cannot be ruled out. Instead, population genetic structure at

BRSK2 seems to be different. In the cohort of samples living in

Italy, individuals from Nigeria and Asia shared similar values of

DNA methylation, although three main clusters made up of

Asian, African and European individuals could be identified

from a genetic perspective, suggesting that DNA methylation

profiles of BRSK2 cannot be explained by the genetic structure

of the region alone. A panel of genetic variants with high Fst

values that might contribute to the observed epigenetic vari-

ability was thus identified for the three genes. Further studies

aimed at considering levels of both genetic and epigenetic

variability, together with gene expression data, are needed

to elucidate these complex dynamics.

In conclusion, we identified functional pathways whose

methylation levels vary across different human groups and

we pinpointed nutrients, UVA exposure and pathogens load

as some of the main environmental stimuli that are able to

shape DNA methylation profiles of human populations.

Moreover, the analysis of three candidate genes has shown

a further level of epigenetic variability, also within a single

continent (i.e., Africa), suggesting that different demographic

and adaptive histories, as well as peculiar ecological niches,

actually influence individuals DNA methylation profiles to-

gether with their genomic background. The extent of the

transgenerational inheritance of the observed diversity is lar-

gely unknown. Recent studies showed how certain epigenetic

variants could be transmitted across generations (Lane et al.

2003; Seisenberger et al. 2012) but to date, further efforts

must be devoted to the study of cases of epigenetic inheri-

tance and to characterize the underlying mechanisms.

However, it is well known that environmental changes could

modulate DNA methylation profiles in a population specific

way with the possibility of an indirect effect on the population

genetic background (e.g., mutation rates, local transposition

or recombination rates) (Richards 2008).

Supplementary Material

Supplementary figures S1–S7 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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