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Abstract: A novel approach is presented for computing optode placements
that are adapted to specific geometries and tissue characteristics, e.g., in op-
tical tomography and photodynamic cancer therapy. The method is based on
optimal control techniques together with a sparsity-promoting penalty that
favors pointwise solutions, yielding both locations and magnitudes of light
sources. In contrast to current discrete approaches, the need for specifying
an initial set of candidate configurations as well as the exponential increase
in complexity with the number of optodes are avoided. This is demonstrated
with computational examples from photodynamic therapy.
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1. Introduction

In biological and medical sciences, diagnostic and therapeutic instrumentation based on visible,
near-infrared or near-ultraviolet light (referred to as optical imaging) is of special interest as it
is often non-invasive, the cost for the equipment is moderate, and data acquisition is usually fast
(compared to, e.g., MRI). However, the high scattering coefficient of biological tissues in the
visible spectrum can be a limiting factor for this technique as it causes photons to propagate in
a non-deterministic manner. This in turn makes measurements of superficial structures and the
selective illumination of deeper regions significantly more complicated. Due to the stochastic
nature of the photon paths, the optimal placement of the optodes is not trivial except for simple
regular geometries such as cylinders or spheres.

In recent years, there has thus been increased interest in computation-driven optimization of
optical hardware operating in strongly scattering tissues. For example, [1] used a singular value
analysis (SVA) of the sensitivity matrix (there called “weight matrix”) to compare measurement
setups which differed either in the optode spacing or the measurement type (reflectance vs.
transmittance setup). In [2], two optode configurations for a hybrid MRI/DOT measurement
device were compared, and the number of singular values above a certain threshold was used as
a quality criterion. The work in [3] applied the SVA approach to assess different fluorescence
tomography setups in two dimensions, while [4] performed comparisons of three-dimensional
setups.

A similar problem is faced in photodynamic therapy (PDT) [5], which is used for dermatolog-
ical and oncological treatments (e.g., esophageal cancers, especially at a stage where surgical
intervention is not indicated). It appears attractive to extend PDT to other carcinomas on epi- or
endothelial surfaces, and clinical trials are carried out for, e.g., cervix carcinomas. Some other
potential candidates, like mesotheliomas of the thoracic cavity (which are typically difficult
to treat), represent a special challenge. A major problem is the design of an appropriate light
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applicator. In the esophageal cavity, which has a simple geometry, the laser light can be read-
ily applied using a cylindrical scattering device. In contrast, the geometry of the intrathoracic
cavity is very complex. The application of a standard esophageal applicator is not recommend-
able because its area of treatment is small and curved and therefore the illumination would be
inhomogeneous. Homogeneity of the irradiation is, however, a crucial design criterion, as in-
homogeneities can lead to locally ineffective treatment on the one hand and local overdoses on
the other hand. This can have serious consequences, including lethal overdoses [6].

In the past, some designs for flexible light diffusers have been proposed, where a typical
solution is to use cylindrical or spherical diffusers in a bag filled with a scattering medium.
These are applicable after pneumonectomia, if blood accumulations at the surface of the bags
are prevented by continuous rinsing [7–10]. Some regions like the sinus diaphragmaticus are
difficult to access and have to be illuminated separately. This can be achieved with wedge-
shaped illuminators [11]; however, positioning of these illuminators and homogenization of the
illumination is difficult. Another approach is to fill the thorax with a biologically non-hazardous
scattering medium (e.g., with intralipid), which can also be used for rinsing to avoid blood
accumulation. Typically, a spherical diffuser is used for illumination. However, it is difficult to
control the dose rate with this approach. This method has also been applied to cases where lung
tissue was not resected [8]. In general, both methods try to achieve homogeneous fluence using
real-time dosimetry and manual repositioning of the light diffuser. An interesting alternative
consists in textile-based diffusers, where special optical fibers are integrated in a textile. These
diffusers are very flexible but suffer from inhomogeneous illumination and a low transmission
rate [12, 13]. Recently so called “light blankets” with arrays of cylindrical diffusers [14] or a
spirally-wound side-glowing fiber [15] embedded in a bag filled with intralipid were presented.
They are easy to fabricate but still show inhomogeneities, especially at the corners. Due to the
need for a homogeneous fluence rate, it is of great interest to optimize the placement of these
fibers to obtain improved illumination using minimal energy.

The purpose of this work is thus to present a general approach to compute adapted optode
locations for different geometries, tissue types, and applications. The method is based on con-
sidering this task as an optimal control problem for a partial differential equation describing
the diffusion of photons in a strongly scattering medium, where the location of optodes are
modeled as a continuous “source field”. The crucial step—first proposed in [16]—is to include
a penalty term that favors pointwise solutions. In this way, both locations and magnitudes of
the light sources to be placed are obtained in a single step. The main advantage of this ap-
proach over previously published—discrete—methods is that no initial maximal or minimal
configuration needs to be specified (although an allowable region can be enforced), and that
a combinatorial problem with exponential complexity is avoided. In addition, the algorithm is
not based on stochastic (e.g., Monte Carlo) methods but is fully deterministic, which eases the
verification of the outcome significantly. Finally, the approach is flexible and can incorporate a
wide variety of objective criteria (e.g., photon flux over a given boundary section) by changing
the target functional. The proposed approach is demonstrated in the context of optimizing the
illumination pattern in the photodynamic treatment of intrathoracic cancer.

The rest of this work is organized as follows. In section 2.1, the specific mathematical model
for photon diffusion is given. Section 2.2 presents our optimal control framework for optode
placement, whose numerical solution is described in section 2.3. The setup of the numerical
experiments used for demonstrating our approach can be found in section 3, and the results are
presented in section 4. A discussion of the proposed method in section 5 concludes the work.

#167135 - $15.00 USD Received 20 Apr 2012; revised 5 Jun 2012; accepted 5 Jun 2012; published 26 Jun 2012
(C) 2012 OSA 1 July 2012 / Vol. 3,  No. 7 / BIOMEDICAL OPTICS EXPRESS  1734



2. Theory

During photodynamic treatment of cancer, a photosensitizer such as Photofrin is injected in-
travenously. Afterwards, the cancerogeneous site is illuminated with red to near-infrared light
from sources in a diffuser which is applied directly on the region of interest, i.e., in the in-
trathoracic cavity. The absorption of energy by the photo-activable drug leads to the formation
of cytotoxic singlet oxygen, which destroys cancer cells selectively. The challenge is to homog-
enize the light intensity as both under- and overexposure can lead to ineffective treatment [17].

2.1. Mathematical model

We use the diffusion approximation of the radiative transfer equation to model the steady state
of light propagation in a scattering medium [18]. This leads to a stationary elliptic partial dif-
ferential equation for the photon distributionϕ ∈ H1(Ω),

{

−∇ · (κ(x)∇ϕ(x))+ µa(x)ϕ(x) = q(x) in Ω,

κ(x)~n(x) ·∇ϕ(x)+ρϕ(x) = 0 onΓ.
(2.1)

The geometry of the object is given by the domainΩ ⊂ R
d, d ∈ {2,3} being the number

of spatial dimensions, with boundaryΓ whose outward normal vector is denoted by~n. The
medium is characterized by the absorption coefficientµa, the reduced scattering coefficientµ ′

s,

and the diffusion coefficientκ =
[

1
d (µa + µ ′

s)
]−1

. The coefficientρ models the reflection of a
part of the photons at the boundary due to a mismatch in the index of refraction. Finally, the
source termq models the light emission of the embedded optodes.

For the optimal control approach, we also require the solutionp ∈ H1(Ω) of the adjoint
equation

{

−∇ · (κ(x)∇p(x))+ µa(x)p(x) = f (x) in Ω,

κ(x)~n(x) ·∇p(x)+ρ p(x) = 0 onΓ
(2.2)

for given f ∈ L2(Ω). Both equations should be understood in the weak sense.

2.2. Optode placement optimization

Since optodes act as discrete light sources, the source term can be modeled asq(x) =

∑N
j=1q jδ (x− x j) for q j ∈ R+ andx j ∈ Ω, 1≤ j ≤ N, whereδ denotes the Dirac distribution

(i.e.,
∫

f dδ (x) = f (0) for all continuous functionsf ). A straightforward approach for optimiz-
ing the placement of the optodes (as was done, e.g., in [19]) would identify a set ofM ≫ N
possible optode locationsx1, . . . ,xM and chose the bestN locations such that a certain perfor-
mance criterionJ(q) is minimized. The corresponding optimal source magnitudesq j would
then be computed in a second step.

To avoid the combinatorial complexity of this discrete approach, instead of specifying the
optode locations beforehand, we optimize the (distributed) source termq directly while adding
a penalty term that promotessparsityof q, i.e., smallness of its support{x ∈ Ω : q(x) 6= 0}.
This has the added advantage that the numberN of optodes need not be specified in advance.
Since we are looking for point sources, this requires searching forq in the space of regular
Borel measures (which includes the Dirac distribution). Following [20], we are thus led to the
optimization problem

min
q∈M (Ω)

J(q)+α‖q‖M ,
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whereM (Ω) is the space of regular Borel measures, i.e., the dual of the spaceC0(Ω) of con-
tinuous functions with compact support onΩ, with norm

‖q‖M = sup
f∈C0(Ω)
‖ f‖C≤1

∫

Ω
f dq,

which reduces to
‖q‖M =

∫

Ω
|q(x)|dx= ‖q‖L1

for q ∈ L1(Ω). This is related to the well-known fact thatL1 norms promote sparsity in op-
timization. The penalty parameterα controls the sparsity of the solution: The largerα, the
smaller the support ofq.

Motivated by the application in PDT, we chose as performance criterion the deviation from
a constant illuminationz in an observation regionωo ⊂ Ω such thatJ(q) := 1

2‖ϕ|ωo −z‖2
L2(ωo)

,

whereϕ|ωo denotes the restriction ofϕ to ωo. Due to the linearity of the forward problem,
we can takez= 1 Wm−2 without loss of generality. After optimization, the magnitude of the
resultant sources can be linearly scaled to achieve the required illuminationz. In addition, we
restrict the possible light source locations to a control regionωq ⊂ Ω, which does not overlap
with the observation regionωo (i.e., ω̄q ∩ ω̄o = /0), and enforce non-negativity of the source
termq (which represents the optodes). This leads to the following optimization problem:

min
ϕ∈H1(Ω),q∈M (ωq)

1
2
‖ϕ|ωo −z‖2

L2(ωo)
+α‖q‖M (ωq) subject to (2.1) andq≥ 0. (2.3)

It was shown in [21] that this problem has a solutionq∗ ∈ M (ωq), which can be approximated
by a sequence of functionsqγ ∈ L2(ωq) for γ → ∞ satisfying

qγ + γ min(0,pγ +α) = 0, (2.4)

wherepγ is the solution of (2.2) with right hand sidef := ϕγ −zandϕγ is the solution of (2.1)
with right hand sideqγ . Equation (2.4) can be solved using a semismooth Newton method which
is superlinearly convergent; see [21]. To globalize the Newton method and closely approximate
the solutionq∗ of (2.3), we use a continuation scheme inγ where we iteratively solve the
problem for an increasing sequenceγn, using the previous solution as initial guess.

2.3. Finite element discretization

The discretization needs to account for the fact that the functionsqγ converge to measures as
γ increases. We therefore employ the finite element discretization proposed in [22], where the
photon densityϕγ and the adjoint variablepγ are discretized using piecewise linear elements
on a given triangulationT, while the source termqγ is discretized using linear combinations of
Dirac distributions centered at the interior nodesxi , 1≤ i ≤ N(T), of T:

qγ =
N(T)

∑
i=1

qiδ (x−xi).

In practice, the number of nodesN(T) will be determined by the need to resolve the geometry
of the domain and the required accuracy of the solution of the forward model (2.1). Although
further refinement of the triangulation increases the number of possible optode locations, the
sparsity-promoting property of the minimized functional discourages placing additional op-
todes. In fact, it was shown in [22] that for a given discretization of the forward model, the
computed sources (forγ → ∞) are optimal among all (non-discretized) measures.
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Algorithm 1 SemismoothNewton method with continuation
1: for m= 1, . . . ,m∗ do
2: setγ = 2(m−1), ϕ0 = p0 = d0 = 0
3: for k = 0, . . . ,k∗ do
4: solve (2.5) forϕk+1, pk+1

5: computedk+1 from (2.6)
6: if dk+1 = dk then
7: setq(m) = γ min(0,pk+1|ωq +α)
8: break
9: end if

10: end for
11: end for

Since the linear finite element basis functions form a nodal basis, the right hand side in the
weakformulation of (2.1) for a piecewise linear basis functionej becomes

〈qγ ,ej〉 =
N(T)

∑
i=1

qi〈δ (x−xi),ej〉 = q j ,

i.e., the mass matrix is the identity. Introducing the stiffness matrixA corresponding to (2.1) and
the observation mass matrixMo with entriesMi j =

∫

ωo
eiej dx, we obtain the discrete optimality

system










Aϕγ −qγ = 0,

−Moϕγ +AT pγ = −Moz,

qγ + γ min(0,pγ |ωq +α) = 0,

Eliminatingqγ using the last equation and applying a semismooth Newton method, cf. [21], we
have to solve for(ϕk+1, pk+1) the block system

(

A Dk

−Mo A

)(

ϕk+1

pk+1

)

=

(

−αdk

−Moz

)

, (2.5)

whereDk is a diagonal matrix with the entries of the vectordk,

dk
j =

{

γ if (pk|ωq) j < −α,

0 else,
(2.6)

on the diagonal. It can be shown that the semismooth Newton method has converged once
dk+1 = dk holds. After the finalpk has been computed, the corresponding control can be ob-
tained from (2.4). The complete procedure is given in Algorithm 1.

3. Materials and methods

The optimization algorithm described in section 2.2 is implemented in Python using the open
source finite element library FEniCS [23]. The parameters in Algorithm 1 are set tom∗ = 34
(such thatγ∗ ≈ 1010) andk∗ = 20. To model a textile-based diffuser, the material parameters
in (2.1) are taken asµa = 10−4 mm−1, µ ′

s = 10−1 mm−1, andρ = 0.1992. The influence of the
parameterα is illustrated by comparing the results for different values ofα specified below.

The meshes for the light diffusers containing the optodes are created with the commercial
mesh generator Hypermesh™. To demonstrate the behavior of the optimization algorithm for
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(a) Single-curved models.

� �� �� ��

(b) Double-curved models.

Fig. 1. Two-dimensional model geometries (numbers denote curvatureκ).

different geometries, we first consider simple two-dimensional spline models which represent
the cross-section of an infinitely long pad. This geometry mimics that of an array of parallel
cylindrical diffusers embedded in a scattering substrate. Five single-curved models and four
double-curved models with increasing curvatureκ were created as shown in Fig. 1. The di-
mensions correspond approximately to a width of 10 mm and height of 120 mm. In all cases,
the regionωo in which the illumination should be homogenized are the left and right outer
lines (indicated in orange in Fig. 1). The regionωq where optodes are allowed to be placed is
a single line equidistant from both (indicated by a dashed line in Fig. 1). The meshes for the
single-curved models of curvatureκ = 5, 10, 20, 40, and 60 consist of 61038, 61789, 67160,
80664, and 105322 finite elements, respectively. The double-curved models of curvatureκ = 5,
10, 15, and 20 are comprised of 62349, 70735, 82119, and 104220 finite elements, respectively.

The photodynamic treatment is simulated by embedding the light diffuser model in the in-
trapleural space of a realistic three-dimensional human thorax model that is constructed from
a stack of CT images. The approximate dimensions are: height 100 mm, width 150 mm, thick-
ness 10 mm. The observation regionωo is defined as the outer and inner surface of the model,
andωq is an interior manifold equidistant from both (see Fig. 2;ωq is indicated in purple). The
generated mesh consists of 81770 elements.

The results are evaluated quantitatively for different values of the sparsity-controlling pa-
rameterα. The coefficient of variationcv of the resultant photon densityϕγ over the ob-
servation regionωo and the numberN of sources after the optimization procedure serve as
quality measures. For the latter, the nodes in the control regionωq satisfyingqγ > 10−16 are
counted. We compare the results forα ∈ {0.1,0.01,0.001}for the two-dimensional models and
α ∈ {0.2,0.4, . . . ,1.8} for the three-dimensional model.

4. Results

The quantitative results for the two-dimensional geometries are given in Table 1 for the single-
curved models and in Table 2 for the double-curved models. As can be seen by comparing the
number of active nodesN with the total number of nodes for each model, the algorithm in-
deed produces discrete sources that can be used as optode positions. The obtained coefficients
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(a) Top oblique view

(b) Front oblique view (c) Side oblique
view

Fig. 2. Three-dimensional model. The admissible manifoldωq for optodes is indicated in
purple.

of variationcv indicate that a homogeneous illumination of the desired region is possible at
least forα < 0.1, demonstrating the feasibility of the proposed approach. The robustness of
the algorithm with respect to geometry is illustrated by the fact that the achieved variations do
not depend very much on the curvature. It can also be observed how the penalty parameterα
determines the tradeoff between the number of active optodes and the homogeneity of the illu-
mination in the region of interest: larger values ofα yield fewer optodes but less homogeneous
illumination, again independent of curvature.

The qualitative behavior of the computed sources for each value ofα is shown in Fig. 3(a)
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and Fig. 3(b) for a representative single-curved (κ = 20) and double-curved model (κ = 15), re-
spectively, where the relative strength of the sources is coded by height. (Note when comparing
Tables 1 and 2 with Fig. 3 that neighboring active nodes appear as a single peak and thus can
be taken as a single optode.) While for the single-curved model andα = 0.1, the distribution of
optodes agrees well with the intuitive choice of equally spaced optodes of approximately equal
magnitude, the other values indicate that a better illumination can be achieved with stronger
sources towards the tips of the model. It should be pointed out that even in the former case, the
number of optodes to be distributed is not obvious. For the double-curved models, the results
indicate that optodes should be placed preferentially in regions where the curvature changes.

For reference, Fig. 4 shows the corresponding photon densitiesϕγ (in Wm−2, normalized
to unit mean) plotted along part of the observation region (left line in Fig. 1), illustrating how
the parameterα and the model geometry influence the homogeneity of the illumination in this
region. As expected, photon fluence shows the most pronounced inhomogeneities close to the
borders. In the case of the single curved model, a nearly sinusoidal ripple pattern arises in more
than 80 % of the target region, while in the double curved model the ripple is superimposed on
a step-profile with the steps located approximately at the zero-crossing points of the curvature.
With α = 0.1, the peak–peak fluctuations are still around 40 % of the mean value even far away
from the borders, which may be considered as unsatisfactory. However, when decreasing alpha
to 0.01 or less, the ripple remains within a few percent, which is sufficient, especially when
comparing this value to other sources of fluctuations of the irradiation such as local absorp-
tion changes by tissue inhomogeneities, bleeding, or inhomogeneities of the distribution of the
photosensitizer.

The quantitative results for the three-dimensional model are shown in Table 3. Forα =
1.8, no controls are placed and thus the photon density is zero. This is consistent with the
theory, which predicts that there is a threshold value forα above which the optimal control is

Table 1. Results for single-curved models. Shown are the numberN of active nodes and
the coefficient of variationcv of the photon density in the observation domain for different
curvaturesκ and values ofα .

κ 5 10 20 40 60

α 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

N 22 49 59 18 51 83 15 56 66 20 51 62 22 68 147
cv 2.52e-1 1.82e-2 5.40e-3 2.96e-1 2.07e-2 6.17e-3 1.78e-1 1.96e-27.95e-3 1.68e-1 2.53e-2 1.09e-2 1.21e-1 2.02e-2 1.57e-2

Table 2. Results for double-curved models. Shown are the numberN of active nodes and
the coefficient of variationcv of the photon density in the observation domain for different
curvaturesκ and values ofα .

κ 5 10 15 20

α 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

N 12 50 134 19 40 148 26 49 60 33 77 130
cv 1.65e-1 2.48e-2 1.51e-2 2.03e-1 2.88e-2 2.45e-2 2.24e-1 3.27e-22.94e-2 4.92e-1 3.47e-2 3.09e-2

Table 3. Results for three-dimensional model. Shown are the numberN of active nodes and
the coefficient of variationcv of the photon density in the observation domain for different
values ofα .

α 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2

N 0 12 150 250 333 409 498 637 884
cv — 1.85e+0 5.64e-1 3.59e-1 2.65e-1 2.04e-1 1.56e-1 1.13e-1 6.72e-2
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(a) Single-curved model (κ = 20)
(b) Double-curved model (κ = 15)

Fig. 3. Optode positions and relative magnitudes (height-coded) for representative single-
curved and double-curved models for three different values of alpha (from top to bottom:
α = 0.1, α = 0.01,α = 0.001).
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(a) Single-curved model (κ = 20)
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(b) Double-curved model (κ = 15)

Fig. 4. Photon densitiesϕγ (in Wm−2, normalized to unit mean) plotted along part of
the observation region (left line in Fig. 1) for representative single-curved and double-
curved models for three different values of alpha (from top to bottom:α = 0.1, α = 0.01,
α = 0.001).

identically zero; cf. [22, Proposition 2.2].
Figure 5 shows location and magnitude (color coded) of the computed optodes and the cor-

responding photon densities (in Wm−2, normalized to unit mean) forα = 1.2, α = 0.8, and
α = 0.4. Due to the nonuniform curvature of the model, a homogeneous illumination is harder
to achieve than in the two-dimensional case, especially at the borders of the target region. How-
ever, forα < 1.2, the inhomogeneities in the interior are usually within 10%, and the few hot
spots of 30 % would still be acceptable. Although of course the specific placement may be dif-
ficult to realize in practice, the qualitative distributioncan be useful information in the initial
design process.



(a) optodes,α = 1.2 (b) photon density,α = 1.2

(c) optodes,α = 0.8 (d) photon density,α = 0.8

(e) optodes,α = 0.4 (f) photon density,α = 0.4

Fig. 5. Optode positions and magnitudes (left) and photon densities (right; inWm−2, nor-
malized to unit mean) for the three-dimensional model and three different values ofα .

5. Discussion

The proposed approach is able to generate reasonable optodeconfigurations adapted to specific
geometries, even in situations (such as complex three-dimensional models) where optimal se-
tups are not intuitively obvious. Our method also yields relative strengths of the optodes to be
placed, which would otherwise have to be computed in a separate step. Furthermore, the algo-
rithm is deterministic and does not require a-priori knowledge such as an initial set of candidate
locations or the number of optodes after optimization, which on the contrary is provided by our
approach. The method can be used as a tool during the initial design process to estimate the
number of sources required as well as their location and relative strengths.

By formulating the optode placement problem as a continuousoptimization problem, the
combinatorial complexity inherent in discrete approachesis avoided. This is critical for achiev-



ing an efficient optimization technique and—to our knowledge—has not been presented before
in the contextof diffuse optical imaging. As an example, our Python implementation required
about three minutes on a MacBook Pro (2.16 GHz Intel Core2 Duo with 2 GByte RAM) for the
single-curved model withκ = 5. Our approach could therefore also be used in an interactive
setting, where the engineer will adapt design parameters, such as the optical coefficients of the
diffuser, based on the outcome of an optimization run.

While the number of desired optodes is correlated with the penalty parameterα, it is not
directly controllable. This drawback is analogous to the problem of finding the “best” regular-
ization parameter in image reconstruction (e.g., for diffuse optical tomography), where typically
the determination of the parameter is left to the user or is based on heuristics. Certainly, one
could think about finding a good parameter through successive optimization runs, e.g., with
decreasing values ofα if the user specified an upper bound on the number of optodes.

The achieved results are satisfactory from the mathematical point of view; but of course they
should also be discussed in an engineering context. In particular, it may be difficult to place
many sources in a more or less irregular pattern. The number of optodes depends on the required
uniformity of the surface fluence. A reasonable value in practice would be a CV of 0.05. Table
1 shows CVs (for single-curved pads) below 0.03 for around 50 optodes, but up to 0.25 for less
than 25 optodes. The numbers for the double-curved pad are only slightly greater. This means
that the between 40 and 50 required sources can be expected. In practice, such a design can
be approximated comparatively easily with parallely arranged cylindrical polymer diffusers of
sufficiently small radius, which are fed by individual optical fibers. Instead of a fixed grid of
diffusers, one can imagine dense bundles of uniformly spaced diffusers where only those close
to the optimal positions are connected to the laser source. This would allow a very flexible use
and adaptive homogenization of the fluence dependent on the individual anatomical situation
(e.g., curvature), which is certainly desirable in the context of a personalized optimization. Such
a concept can be realized by using fiberoptic switches with many channels. In three dimensions,
the sources may be fiber-coupled spherical diffusers or simply open-ended fibers. Due to the
higher number of potential positions (637 for a CV of 0.11, see Tab. 3), the construction of
a flexible structure here may be difficult, and pre-fabricated pads that are adapted to a certain
anatomical target geometry appear more realistic than a truly adaptive system.

Although a rigorous sensitivity analysis has not yet been carried out, our experience indicates
that the computed photon density distributions are relatively robust to small perturbations of
the optode locations and magnitudes. Similarly, we did not observe significant changes in the
results due to small random perturbations of the optical parameters. This can be attributed to
the linearity and the strong diffusivity of the model (2.1). Such robustness is very important for
practical implementations because it means that the result is not very sensitive to manufacturing
tolerances.

One of the main advantages of the optimal control approach is its flexibility. For example,
it is straightforward to extend the underlying model to include, e.g., inhomogeneous material
properties or to replace the diffusion approximation by a more complicated model such as the
radiative transfer equation. It is also possible to consider different objective criteria such as the
photon flux through a given (boundary or internal) surface by changing the functionalJ(q). In
principle, the approach can be applied to the problem of optimal experiment design for optical
tomography, if the objectiveJ(q) is based on a suitable sensitivity term. However, this extension
of our method is subject to future work.
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