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OBJECTIVES: Single nucleotide variants (SNVs) are the most common type of genetic variation among humans.
High-throughput sequencing methods have recently characterized millions of SNVs in several thousand
individuals from various populations, most of which are benign polymorphisms. Identifying rare disease-
causing SNVs remains challenging, and often requires functional in vitro studies. Prioritizing the most likely
pathogenic SNVs is of utmost importance, and several computational methods have been developed for this
purpose. However, these methods are based on different assumptions, and often produce discordant results.
The aim of the present study was to evaluate the performance of 11 widely used pathogenicity prediction
tools, which are freely available for identifying known pathogenic SNVs: Fathmn, Mutation Assessor, Protein
Analysis Through Evolutionary Relationships (Phanter), Sorting Intolerant From Tolerant (SIFT), Mutation
Taster, Polymorphism Phenotyping v2 (Polyphen-2), Align Grantham Variation Grantham Deviation (Align-
GVGD), CAAD, Provean, SNPs&GO, and MutPred.

METHODS: We analyzed 40 functionally proven pathogenic SNVs in four different genes associated with
differences in sex development (DSD): 17b-hydroxysteroid dehydrogenase 3 (HSD17B3), steroidogenic factor
1 (NR5A1), androgen receptor (AR), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR).
To evaluate the false discovery rate of each tool, we analyzed 36 frequent (MAF40.01) benign SNVs found in
the same four DSD genes. The quality of the predictions was analyzed using six parameters: accuracy, precision,
negative predictive value (NPV), sensitivity, specificity, and Matthews correlation coefficient (MCC). Overall
performance was assessed using a receiver operating characteristic (ROC) curve.

RESULTS: Our study found that none of the tools were 100% precise in identifying pathogenic SNVs. The highest
specificity, precision, and accuracy were observed for Mutation Assessor, MutPred, SNP, and GO. They also
presented the best statistical results based on the ROC curve statistical analysis. Of the 11 tools evaluated,
6 (Mutation Assessor, Phanter, SIFT, Mutation Taster, Polyphen-2, and CAAD) exhibited sensitivity 40.90, but
they exhibited lower specificity (0.42-0.67). Performance, based on MCC, ranged from poor (Fathmn=0.04) to
reasonably good (MutPred=0.66).

CONCLUSION: Computational algorithms are important tools for SNV analysis, but their correlation with
functional studies not consistent. In the present analysis, the best performing tools (based on accuracy, preci-
sion, and specificity) were Mutation Assessor, MutPred, and SNPs&GO, which presented the best concordance
with functional studies.
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’ INTRODUCTION

The term ‘‘differences in sex development’’ (DSD) refers to
congenital conditions in which chromosomal, gonadal, or
anatomical sex development is atypical (1). They can be
classified into three major categories: sex chromosome DSDs,
46,XX DSDs, and 46,XY DSDs (2). Most causes of DSDs are
genetically determined, and several genes have been foundDOI: 10.6061/clinics/2021/e2052
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to be associated with the DSD phenotype (3). Recent studies
in individuals with DSDs have characterized numerous
single nucleotide variants (SNV) in several genes, most of
which are benign polymorphisms. However, distinguish-
ing rare disease-causing SNVs from rare polymorphisms
remains challenging. Functional studies for disease associa-
tion variants are often used, but are laborious and time-
consuming (4,5).
Many methods have been developed for the computa-

tional prediction of the pathogenicity of SNVs, which are
based on evolutionary conservation, protein structure/func-
tion, or assembly parameters, such as allelic diversity, patho-
genicity, and association with genome-wide association
studies (6). Studies analyzing the performance of prediction
programs have been completed using a large number of
missense variants (7). In the present study, we compared the
performance of 11 widely used pathogenic prediction tools in
the analysis of proven pathogenic DSD-causing SNVs in four
different genes.

’ MATERIAL AND METHODS

Dataset
We analyzed 40 disease-causing SNVs in four different

genes associated with DSD: 17b-hydroxysteroid dehydrogen-
ase 3 (HSD17B3), steroidogenic factor 1 (NR5A1), androgen
receptor (AR), and luteinizing hormone/chorionic gonadotro-
pin receptor (LHCGR). All pathogenic allelic variants have
been published with functional studies showing loss of
function activity (Table 1). To evaluate the false discovery
rate of each tool, we selected 36 frequent benign SNVs
(MAF40.01) found in the same DSD genes (Table 1).

Prediction Methods
We selected 11 widely used pathogenic prediction tools

freely available on the Web: Fathmn, Mutation Assessor,
Protein Analysis Through Evolutionary Relationships (Phan-
ter), SIFT (Sorting Intolerant From Tolerant), Mutation Taster,
Polymorphism Phenotyping v2 (Polyphen-2), Align Grantham

Table 1 - Single Nucleotide Variants (SNV) in DSD-related genes used for prediction analysis.

Gene/Protein
Pathogenic allelic
Variant

Benign allelic
variant Reference

HSD17B3
17b-hydroxysteroid dehydrogenase
ENST00000375263
NP_000188

p.Ser65Leu p.Val25Met (8)
p.Arg80Gln p.Val31Leu (8)
p.Ala203Val p.Gly289Arg (9)
p.Val205Glu p.Ile102Phe (8)
p.Phe208Ile p.Glu114Lys (8)
p.Glu215Asp p.Arg45Trp (8)
p.Ser232Leu p.Arg45Gln (10)
p.Met235Val p.Ser65Ala (10)
p.Pro282Leu p.Ile223Val (8)
p.Cys268Tyr (11)

NR5A1
Steroidogenic factor 1
ENST00000373588.8
NP_004950

p.Val15Met p.Glu11Asp (11)
p.Val20Leu p.Gly146Ala (12)
p.His24Tyr p.Val173Met (12)
p.Arg39Pro p.Gly178Arg (13)
p.Met78Ile p.Tyr211Cys (11)
p.Gly91Ser p.Pro235Leu (14)
p.Pro235Leu p.Thr296Met (15)
p.Trp279Arg p.Val355Met (13)
p.Arg313Cys (13)
p.Leu437Gln (14)

AR
Androgen receptor
ENST00000374690.8
NP_000035

p.Cys579Phe p.Ala45Gly (16)
p.Phe582Tyr p.Gln59Leu (16)
p.Arg710Thr p.Gln87His (17)
p.Gly724Asp p.Gln91Lys (18)
p.Gly750Asp p.Gly216Arg (17)
p.Ala765Thr p.Leu272Phe (17)
p.Arg774His p.Leu341Met (17)
p.Leu812Pro p.Val731Met (18)
p.Arg855Cys p.Arg856Leu (17)
p.Asp864Gly (17)

LHCGR
Luteinizing hormone/chorionic gonadotropin receptor
ENST00000294954
NP_000224

p.Ile374Thr* p.Ala57Thr (19)
p.Thr392lle* p.Ile103Lys (19)
p.Phe194Val* p.Tyr113His (20)
p.Glu354Lys* p.Ala118Glu (21)
p.Leu502Pro* p.Lys126Asn (22)
p.Met398Thr** p.Lys137Asn (23)
p.Leu547Arg** p.Val144Leu (24)
p.Asp564Gly** p.Phe611Val (25)
p.Ala568Val** p.Cys543Tyr (26)
p.Ile575Leu** p.Gly504Ser (27)

*Inactivating variants – phenotype: Leydig cell hypoplasia.
**Activating variants – phenotype: GIPP (gonadotropin-independent precocious puberty).
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Variation Grantham Deviation (Align-GVGD), CAAD, Pro-
vean, and SNPs&GO (Table 2).

Statistical Analysis
The quality of the predictions was analyzed using six

parameters: accuracy, precision, negative predictive value
(NPV), sensitivity, specificity, and Matthews correlation
coefficient (MCC). In the equations below, tp, tn, fp, and fn
refer to true positive, true negative, false positive, and false
negative, respectively.

The MCC (43) is an important statistics tool that is widely
used in bioinformatics as a performance metric, as it is
not affected by the differing proportions of neutral and
pathogenic datasets predicted by the different programs.
Additionally, we also assessed the overall performance of
deleterious prediction with the receiver operating character-
istic (ROC) curve and area under the curve (AUC), using
MedCalc for Windows, version 15.0 (MedCalc Software,
Ostend, Belgium). ROC curves are an indicator of probabi-
lity and performance for classification problems at various
threshold settings, and AUCs represent the degree or
measure of separability. Together, they indicate how capable
a model is of distinguishing between classes. The higher the
AUC, the better the model is at predicting an outcome (44).

We randomized the results of prediction of SNV present
in the DDS genes as pathogenic or benign, based on the
classification given by each program. The classifications
‘‘probably benign’’, ‘‘benign’’, ‘‘low’’, and ‘‘neutral’’, pro-
vided by Fathmn, Mutation Assessor, Phanter, SIFT, Muta-
tion Taster, Provean, and Polyphen-2, were considered as
benign. The classifications ‘‘possibly damaging’’, ‘‘probably
damaging’’, ‘‘high’’, ‘‘medium’’, ‘‘deleterious’’, and ‘‘dama-
ging’’, were considered as pathogenic. For CAAD, which
uses numeric scores, values p10 were classified as benign,
and those 410 were classified as pathogenic. Align-GVGD
also used numeric scores, which were classified as benign up
to 25, and anything above was classified as pathogenic.

’ RESULTS

Based on the results for each program, none of the tools
were 100% precise in identifying pathogenic SNVs. The
values for the parameters measured are listed in Table 3, and
include all pathogenic and benign variants. Phanter had the
highest precision in the classification of pathogenic variants
(38 out of 40 known to be pathogenic), followed by Muta-
tion Taster and Polyphen-2 (both 37 out of 40 known to be
pathogenic). Align-GVGD correctly classified fewer known
pathogenic SNVs than any other tool (33 of 40 known to be
pathogenic). Phanter and Mutation Taster both classified a
high number of know benign SNVs as pathogenic (21 and 17,
respectively, of 36).
Mutation Assessor, MutPred, and SNPs&GO presented

more consistent results regarding the nature of the SNVs

Table 4 - Performance of the prediction algorithms.

Performance Fathmn Mutation Assessor Phanter SIFT Mutation Taster Polyphen-2 Align-GVGD MutPred CAAD Provean SNPs&GO

Accuracy 0.56 0.79 0.70 0.74 0.74 0.76 0.54 0.83 0.79 0.75 0.82
Precision 0.56 0.73 0.64 0.69 0.69 0.73 0.54 0.85 0.75 0.74 0.84
Specificity 0.16 0.61 0.42 0.53 0.53 0.53 0.22 0.83 0.67 0.69 0.83
Sensitivity 0.88 0.95 0.95 0.92 0.93 0.93 0.83 0.83 0.90 0.80 0.80
NPV 0.50 0.92 0.88 0.86 0.86 0.84 0.53 0.81 0.86 0.76 0.79
MMC 0.04 0.60 0.44 0.50 0.50 0.51 0.06 0.66 0.59 0.50 0.63

Table 3 - Predictions by algorithms.

Type

of SNV

Classification

by the sites Fathmn

Mutation

Assessor Phanter SIFT

Mutation

Taster Polyphen-2

Align-

GVGD MutPred CAAD Provean SNPs&GO

Pathogenic
(n=40)

Pathogenic 35 38 38 36 37 37 33 33 36 32 32
Benign 5 2 2 4 3 3 7 7 4 8 8

Benign
(n=36)

Pathogenic 27 14 21 16 17 13 28 6 12 11 6
Benign 9 22 15 18 19 13 8 30 24 25 30

Table 2 - Basis of the in silico prediction algorithms.

Program Name URL and Key reference Basis Reference

Fathmn http://fathmm.biocompute.org.uk/ Evolutionary conservation (28),(29),(30)
Mutation Assessor http://mutationassessor.org/r3/ Evolutionary conservation (31)
Phanter http://www.pantherdb.org/ Evolutionary conservation (32)
SIFT https://sift.bii.a-star.edu.sg/ Evolutionary conservation (33)
Mutation Taster http://www.mutationtaster.org/ Protein structure/function and Evolutionary conservation (34)
Polyphen-2 http://genetics.bwh.harvard.edu/pph2/ Protein structure/function and Evolutionary conservation (35)
Align-GVGD http://agvgd.hci.utah.edu/ Protein structure/function and Evolutionary conservation (36)
MutPred http://mutpred.mutdb.org/index.html Protein structure/function and Evolutionary conservation (37)
CAAD https://cadd.gs.washington.edu/ Protein structure/function and Evolutionary conservation (38)
Provean http://provean.jcvi.org/index.php Protein structure/function (39)
SNPs&GO http://snps.biofold.org/snps-and-go//snps-and-go.html Protein structure/function (40),(41),(42)
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(pathogenic or benign). MutPred had the highest accuracy,
precision, and specificity (0.83, 0.85, and 0.83, respectively),
as seen in Table 4. Mutation Assessor has the highest
sensitivity of all the tools evaluated, although five other
tools (Phanter, SIFT, Mutation Taster, Polyphen-2, and
CAAD) exhibited sensitivity 40.90, however, they were
found to have lower specificity (0.42-0.67). Based on MCC,
performance ranged from poor (Fathmn=0.04) to reasonably
good (MutPred=0.66). Fathmn and Align-GVGD exhibited
the worst performance, with a high number of false positive
results (MMC=0.04 and 0.06, respectively).
The comparative predictive performance of each tool was

evaluated using the AUC scores from ROC plots and the true
negative rate (TNR, or specificity) as measurements. The
analysis was separated into random groups, since the pro-
gram analyzed a maximum of six samples at a time (Figure 1).
The AUC values varied from low (Mutation Taster=0.55) to
reasonably good (SNPs-&-GO=0.89), and two programs
(Fathmn and Align-GVD) for which the MMC values were
poor (0.04 and 0.06, respectively), improved in the statistical
analysis made using the ROC curve (0.67 and 0.57, respec-
tively). The other programs did not see a change in their
statistical values at the same level.

’ DISCUSSION

In the present study, we analyzed and compared the
abilities of 11 widely available tools for predicting the
pathogenicity of SNVs. Although some algorithms are based
on the same data sets, they differ in the database for
conservation analysis and structural attributes. They also
differ in the information required to run the predictions, as
some programs request the accession number of the gene,
others the protein change, nucleotide change, or chromoso-
mal position.
Overall, we found that Mutation Assessor, MutPred, and

SNPs&GO were the most reliable predictors for SNV classi-
fications. They also exhibited the best AUC results. The
accuracy of all tools evaluated ranged from poor to reason-
ably good (MMC=0.04-0.66). These results are consistent
with what has been shown in previous studies (7,9), which is
that the number of samples used in the analysis did not
influence the statistical result as much.
In conclusion, computational algorithms are impor-

tant screening tools for prioritizing and identifying
disease-causing SNVs, but their correlation with func-
tional studies is not consistent. In the present analysis,

the highest-performing tools were Mutation Assessor,
MutPred, and SNPs&GO.
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