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Abstract

Background: Meiotic recombination between homologous chromosomes provides natural combinations of genetic
variations and is a main driving force of evolution. It is initiated via programmed DNA double-strand breaks (DSB) and
involves a specific axial chromosomal structure. So far, recombination regions have been mainly determined by
experiments, both expensive and time-consuming.

Results: SPoRE is a mathematical model that describes the non-uniform localisation of DSB and axis proteins sites,
and distinguishes high versus low protein density. It is based on a combination of genomic signals, based on what is
known from wet-lab experiments, whose contribution is precisely quantified. It models axis proteins accumulation at
gene 5’-ends with a discrete approximation of their diffusion and convection along genes. It models DSB accumulation
at approximated gene promoter positions with intergenic region length and GC-content. SPoRE can be used for
prediction and it is parameterised in an obvious way that makes it easy to understand from a biological viewpoint.

Conclusions: When compared to Saccharomyces cerevisiae experimental data, SPoRE predicts axis protein and DSB
positions with high sensitivity and precision, axis protein density with an average local correlation r = 0.63 and DSB
density with an average local correlation r = 0.62. SPoRE outbreaks previous DSB predictors, which are based on
nucleotide patterning, and it reaches 85% of success rate in DSB prediction compared to 54% obtained by available
tools on a benchmarked dataset.
SPoRE is available at the address http://www.lcqb.upmc.fr/SPoRE/.
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Background
In sexually reproducing eukaryotes, the production of
gametes relies on meiosis, during which a diploid cell is
divided into four haploid cells. A critical step is homolo-
gous recombination between homologous chromosomes,
in which both crossover and non-crossover events occur,
resulting in a different gene content of the offspring
chromosomes. This allows evolution to explore differ-
ent allelic combinations through recombinations that are
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more likely to occur in some regions than others [1,2] and
that are initiated byDNAdouble-strand breaks (DSBs) [3].
The Spo11 protein, a transesterase highly conserved

through evolution [4] and required for meiotic recom-
bination in Saccharomyces cerevisiae [3], Caenorhabditis
elegans [5], Drosophila [6] andmammals [7], causes DSBs.
Two Spo11 proteins work in concert to cut both DNA
strands and, after the cleavage, each Spo11 is bound to a
DNA fragment [8]. This property has been used to make
a high-resolution DSB density map of the S. cerevisiae
genome [9] revealing that DSBs are more abundant before
gene starts [9]. It is also known that DSB frequency is
strongly correlated with GC-content [10,11], open chro-
matin structure [12-16] and histone methylation [17,18].
A specific chromosomal structure is formed during

meiosis, and plays a key role in recombination events. The
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formation of this structure is due to bonding of cohesin
and several other proteins on specific DNA sites, and
to their assembly in a protein complex forming an axis
[19-21]. The DNA lying outside protein binding sites
forms loops along the axis [11,22,23]. Axes of homolo-
gous chromosomes are themselves bound to each other by
transversal filaments made of (Zip1 in S. cerevisiae, Sycp1
in mammals) proteins, forming the so-called synaptone-
mal complex.
In S. cerevisiae, the structural axis is formed by cohesin

(Rec8), Red1 andHop1 proteins [19,20]. It has been shown
that proteins Mer2, Rec114, and Mei4 bind to DNA at
axis sites, rather than to loop sequences, and that their
association depends on Red1 and Hop1. In turn, Red1
deposition depends on Rec8 cohesin in certain regions,
but not in others, and in both cases, their local distribution
is very similar [24]. The global correlations are r = 0.88
between Red1 and Hop1, r = 0.57 between Red1 and
Rec8, and r = 0.38 between Hop1 and Rec8. Also, cohesin
(and Red1) density is higher in convergent regions, that is
intergenic regions characterized by two gene ends, and is
correlated with AT-content [25], but no specific cohesin-
DNA binding motif has been identified. Red1 density is
locally negatively correlated with DSB density (see Figure
two E in [24]).
Many questions remain open on the chromosomal

axis formation. Can we model the accumulation of axial
proteins and DSBs on the chromosomes entirely from
genomic factors? If so, what is the contribution made by
each one of them?
A number of genomic markers (like gene start, gene end,

GC-richness) associated to high-density sites have been
highlighted by experiments [10,26-29], but, once com-
bined together, how well do they explain the frequency
of occurrence of proteins or DSBs in a given site along
the axis? In other words, can we create a mathematical
model, based on genomic markers, and a tool that can
predict axial proteins and DSB? With a rapid increase
of sequenced genomes, it is highly desirable to develop
automated methods for timely identifying recombination
hotspots.
Computational predictions of recombination hotspots

have been based on nucleotide sequence content. These
approaches take into account, more [30] or less [31,32]
explicitly, sequence order effects. But the accuracy
of these algorithms still needs further improvement
and more formal mathematical approaches, considering
mechanisms of chromatin remodeling during meiosis,
could be a possible way to proceed.
Here, we provide a mathematical framework, called

SPoRE for “SPots of REcombination”, that allows us to
model axis proteins and DSB localization and density
along chromosomes. SPoRE models axis proteins and
DSB distributions based on genomic information. For axis

proteins, SPoRE uses gene stop codon positions and gene
lengths as its only input, while for DSBs, it uses the order
of the genes defining intergenic regions, intergenic region
lengths and GC-richness. Based on these genomic mark-
ers, SPoRE models S. cerevisiae experimental data for
Red1 and Spo11 distributions [9,24] accurately. We used
SPoRE to make predictions on three more yeast species,
Lachancea kluyveri, Kluyveromyces lactis and Schizosac-
charomyces pombe. Finally, we compared it to available
tools predicting DSB hotspots and coldspots, and demon-
strated its higher performance.

Results and discussion
Themodel and the algorithm
SPoREmodeling of axis proteins and DSBs relies on a gen-
eral principle that can be summarized in two main steps
(Figure 1). First, it defines a set of positions on the genome
where proteins might accumulate, and sets a weight for
each of these positions according to gene annotation. This
weight is used as an indicator of the density of the pro-
teins. In the second step, it makes a smooth curve using
a Gaussian kernel of the distribution of weights along the
genome.
This main computational core in SPoRE, takes as input

a genome and its gene annotation, and provides as output
the modeling curves describing DSBs and axis proteins
distribution along the whole genome (Figure 2). A list of
Transcription Factor Binding Sites (TFBS) can be pro-
vided as input for more accurate promoter region detec-
tion. This intermediate output is used by SPoRE to provide
four kinds of data: 1. It produces the curves modeling the
density of DSBs and axis proteins along thewhole genome,
in a format that is ready for browsing (see Additional file
1: Figure S1). 2. Given a list of intervals on the genome, it
predicts whether they are hot or cold spots for DSBs. 3.
Given a list of intervals on the genome, it predicts whether
they are axis sites. 4. Given an experimental curve defined
over the genome, it compares the DSB and axis proteins
model curves with experimental data and provides Pearson
and Spearman local correlation coefficients between
them. Also, it compares the peaks of the model curves
with the peaks of the experimental curve, computing PPV
and sensitivity.
SPoRE can be easily used. It takes as input a genome

and its associated gene annotation, and all its parame-
ters are automatically computed on the input genome.
Also, SPoRE works on scaffolds, not only on fully assem-
bled chromosomes, since its minimal requirement is ORF
annotation.

Analysis of convergent and divergent regions
Our intuition on the positioning of high-density hotspots
for axis proteins and DSBs was developed with the anal-
ysis of the S. cerevisiae experimental data in [9,24]. In
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Figure 1 Summary of SPoREmodeling approach. Two main steps constitute the approach and they are described from top to bottom (center).
First, SPoRE considers a set of positions to which it assigns weights. Axis proteins (red) and DSBs (blue) involve convergent genes and divergent
genes, respectively. In the drawing, locations with non-zero weight are indicated by colored vertical bars (height represents importance) and
triangles: convergent genes for axis proteins and divergent regions for DSBs display the highest weights (top). Then, SPoRE smooths the distribution
of weights with a Gaussian kernel (bottom) modeling, in this way, the diffusion of the proteins around their main sites. The red box on the left (A; axis
proteins) and the blue box on the right (B; DSB) describe some details of SPoRE models.

understanding these data, we focused on convergent and
divergent regions, instead of considering the start and the
end of genes as previously done (compare Additional file
1: Figure S2 to Additional file 1: Figure S3). The plots,
reported in Additional file 1: Figure S2A-F, highlight char-
acteristics of the data when displayed for convergent and
divergent intergenic regions. Notice that in [25], it was

already observed that meiotic cohesin preferably accumu-
lates in convergent regions (Additional file 1: Figure S2A),
with an extreme bias against regions in which transcrip-
tion is diverging (Additional file 1: Figure S2B).
By focusing at convergent and divergent regions, we

observe (and provide with that a precise numerical evalu-
ation) that:

Figure 2 SPoRE flowchart. SPoRE takes several input files (brown boxes); the input in the orange box is optional. SPoRE implements the
construction of the modeling curves for axis proteins and DSBs, as described in Figure 1 (blue box, top), and uses these curves as input for 4
algorithmic tasks (bottom blue boxes; outputs in grey boxes): 1. The prediction of DSB hotspots. Starting from a list of genomic regions, it decides
whether these regions are susceptible to DSB or not; 2. The prediction of axis proteins sites. As in 1, it makes predictions starting from a list of
genomic regions provided by the user; 3. The production of ready for browsing output files describing the axis proteins and the DSB modelling
curves (see Additional file 1: Figure S1); 4. The comparison of SPoRE models (solid line) to experimental data (dashed lines).
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1. The local negative correlation between Red1 and
DSBs localizations observed in [24,25] physically corre-
sponds to convergent and divergent regions, where con-
vergent regions present high average Red1 density and
almost no presence of DSBs (Additional file 1: Figure
S2A and D), while divergent regions present a high aver-
age Spo11 density and an important decrease in Red1
(Additional file 1: Figure S2B and E);
2. Red1 density is much higher at gene 3’-ends than

it is at gene 5’-ends, and yet even higher when we con-
sider only convergent intergenic regions, having two gene
3’-ends (Additional file 1: Figure S2A and C);
3. DSB density is twice as high in divergent regions, hav-

ing two gene starts, than in tandem regions, that is inter-
genic regions between co-directional genes (Additional
file 1: Figure S2E-F);
4. DSB peaks are localized in promoter regions. This

observation has already been made long ago [28], and
was confirmed with the high-resolution DSB density in
[9], in which the authors found that 88.2% of DSBs over-
lap with promoters. This can be seen in the DSB dis-
tribution in large divergent regions (Additional file 1:
Figure S4C-D). For the vast majority of intergenic regions
(of< 800nt in length), the DSB peaks appear roughly cen-
tered in the middle of divergent regions (Additional file 1:
Figure S2E-F), this position well approximating promoter
locations.
From [24], we also observed that:
5. The shape of the distribution of Red1 proteins along

genes (Additional file 1: Figure S5A), highlights a lin-
ear increase of the amount of Red1 proteins towards
the gene end. On single genes this increasing distribu-
tion is not sharply distinguishable but when considering
all genes together, it becomes gradually more pro-
nounced in longer genes. In particular, the area under
the distribution curves increases proportionally to gene
length.
6. The distributions of Rec8 and Hop1 in intergenic

regions have a shape similar to the Red1 distribution
(see Additional file 1: Figure S10).

Axis proteinsmodel
In a first attempt, axis proteins could be modeled by using
gene 3’-ends as reference positions and by associating to
each position a weight corresponding to the length of
the relative gene. This simple model implies that con-
vergent regions are governed by weights defined as the
“sum” of two gene lengths, that tandem regions are mod-
eled by the length of only one gene, and that divergent
regions are ignored. It captures well some characteristics
observed in S. cerevisiae experimental data: convergent
regions host about the double amount of Red1 compared
to tandem regions, when we subtract the base noise level
(see Additional file 1: Figure S2A and Additional file 1:

Figure S2C) and the amount of Red1 at gene 3’-ends
augments with gene length (Additional file 1: Figure S4A).
SPoRE is based on this simple model but it also

describes, in an explicit way, the spread of Red1 proteins
along the gene. This Red1 spreading is likely due to two
processes, one of diffusion and one of convection of pro-
teins. Since experimental measures of diffusion constants
produced highly varying values depending on the organ-
ism and on the protein [33], and that measures of con-
vection constants are also organism and gene dependent
[34], we cannot directly use them to model the curves in
Additional file 1: Figure S5A. Then, we discretely approx-
imated the curves through a linearly increasing curve that
begins at the start of the gene and increases to its maxi-
mum value at the gene end, as in Additional file 1: Figure
S5C. Since we wish the amount of axis proteins per gene to
be proportional to gene length, we set the “triangle” height
to be the same for all genes. As a consequence, the area of
the triangle is proportional to gene length, as described by
experimental data (Additional file 1: Figure S5A).
The precise mathematical formulation of SPoRE model

is the following. First we define the raw curve before
smoothing:

h(x) =
∑
g∈G

1[ag ,bg ](x).
x − ag
bg − ag

where G is the set of all genes and x the position (in
nucleotides) on the genome, ag is the position of the start
codon of g, and bg is the position of its stop codon. The
function 1[a,b](x) has value 1 if x ∈ [a, b] and 0 otherwise.
Then we apply a kernel-based smoothing with a Gaus-

sian kernel to h(x). Namely, we compute the convolution
with a Gaussian kernel K to obtain the final function fRed1
which is our Red1 model curve:

fRed1(x) = (h ∗ K)(x) =
∫ +∞

−∞
h(x) · e−

(t−x)2
2σ2smooth .dt

where σsmooth is 1500 nucleotides.

DSBmodel
SPoRE localizes DSBs in promoter regions. Since these
regions are not easily identifiable, SPoRE follows a few
rules to approximate their position in an intergenic region:
1. if the region is convergent, then no DSB is supposed
to occur in it, 2. if the region is between two co-oriented
genes (tandem region), then DSBs are located at the cen-
ter of the intergenic region, accounting for the promoter
of the starting gene, 3. if the region is divergent, then
DSBs are located at two positions, at 1/3 and at 2/3 of
the intergenic region respectively, corresponding to the
two promoters. In cases 2 and 3, the amount of DSBs is
also modeled to be dependent on the average GC-content
within a window (see Methods). If TFBS are available,
SPoRE can use them to identify the promoter region of
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a gene and replace the location identified by steps 2 and
3 above with a more accurate evaluation of the promoter
location.
SPoRE adds one more contributing factor to the above

model: the intergenic region length. For this, it makes sure
that the contribution of very long intergenic regions would
not be penalized by high weights, and fixes a maximum
weight threshold to a value IRLmax.
Formally, SPoRE modeling curve fDSB(x) is defined as:

∑
g∈G

min(irlg , IRLmax)·(max(0, gc(pg)−GCmin))
2·e−

(x−pg )2

2σ2smooth

where G is the set of all genes, x the position (in
nucleotides) on the genome, irlg is the intergenic region
length before the gene (on the strand where g is lying). The
position pg depends on both the orientation of g and the
position of gene g′ preceding g; gc(pg) is the smoothedGC
content at position pg . Let [ a, b] be the intergenic region
and a be the start codon position of g, then:

pg =
{
a + (b − a)/2 if g and g′ are on the same strand
a + (b − a)/3 if g and g′ are on opposite strands

The two thresholds IRLmax and GCmin are defined as
IRLmax = μIRL + σIRL and GCmin = μGC − 3σGC,
where μIRL (μGC) and σIRL (σGC) are mean and standard
deviation of the distribution of intergenic region lengths
(GC content) over the whole genome. The quadratic term
describes a preferred DSB concentration in regions with a
higher GC content.
This model takes into account the observation that

divergent regions host about the double amount of DSBs
compared to tandem regions (indeed, 2 gene starts instead
of 1 in an intergenic region influence twice as much the
average DSB density) and that, at large scale, on the thou-
sands of base pairs scale, GC-content correlates withDSBs
[10].

Comparison with experimental data
SPoRE has been constructed to predict DSB and axis pro-
teins distribution along chromosomes, and tomeasure the
importance of different factors in this prediction. To eval-
uate how accurate SPoRE modeling is, we performed four
types of analysis:
a. experimental data on Red1 [9] and Spo11 [24] proteins
obtained for the S. cerevisiae genome were considered
and the local/global Pearson and Spearman correlations
between SPoREmodeling curves and experimental curves
were computed. The distribution of peaks, characteriz-
ing sites of highest protein concentration, along the two
curves was studied. Several models, characterized by dif-
ferent combinations of genomic signals, were tested to
numerically evaluate the impact of each signal.

b. Coherence of SPoRE predictions was tested on two
experimental datasets [24,35] related to axis proteins and
DSBs.
c. SPoRE was run on four yeast species.
d. SPoRE was compared to existing DSB predictors, all
based on machine learning [30-32].

SPoREmodel and axis proteins in S. cerevisiae
SPoRE model (that is model 3 in Table 1) is based on
the hypothesis that axis proteins accumulate at the end of
genes, that genic region length is the main factor for pro-
tein density, and that taking into account protein diffusion
and convection along the gene improves precision. SPoRE
reaches average Pearson local (global) correlation r = 0.63
(r = 0.54; Additional file 1: Figure S7A) and Spearman’s
local (global) correlation ρ = 0.63 (ρ = 0.60). We note
that lower correlations are obtained when an increasing
distribution of proteins along the gene is omitted (model 2
in Table 1): Pearson’s local (global) correlation is r = 0.58
(r = 0.52), and Spearman’s local (global) correlation is
ρ = 0.54 (ρ = 0.51).
Red1 localization is well predicted by the position of the

peaks of SPoRE modeling curve (Figure 3). For instance,
along all chromosomes, 62% of real peaks are found by our
model at a distance of at most � = 1 kb from a predicted
peak (74% at 1.5 kb), and 62% of the predicted peaks are at
most 1 kb away from a real peak (73% at 1.5 kb). Sensitivity
and PPV at increasing� values are illustrated by the curve
plot in Figure 4A. We notice that random models, based
on random selections of spots along the genome (see
Methods), give much lower PPV and sensitivity values.
It is worth noticing that the usage of constant weights

makes the model performance very poor, as the corre-
lation with real data falls down to r = 0.14 (model 1
Table 1). Strictly speaking, even the positional analysis
of the peaks, as discussed above, is dependent on appro-
priate weight values, because a smoothing is performed
before extracting the peaks (Gaussian window with σ =
1.5 kb). Therefore, peaks result from the accumulation of
high weights and they are not simply modeling gene ends.
This is why model 1 (Table 1) has much lower PPV and
sensitivity than model 2.
Finally, since experimental data highlight the existence

of a background noise inducing a basic level of Red1
distribution along chromosomes, we verified whether,
by including a fixed noise level in SPoRE model (see
Methods), predictions in S. cerevisiae would be improv-
ing the fit or not. A minor improvement in Pearson
correlation coefficients (local at r = 0.64 and global at
r = 0.56) is observed.

SPoREmodel and DSBs in S. cerevisiae
The SPoRE model (that is model 6 in Table 1) assumes
that DSBs concentrate in gene promoter positions, and
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Table 1 Performance of SPoRE and othermodels for axis proteins and for DSBs

Axis proteins - Red1

Model description Pearson Spearman
correlation correlation

Id Positions Weights Loc Glo Loc Glo

1 Gene ends 1 0.14 0.11 0.13 0.11

2 Gene ends Gene length 0.58 0.52 0.54 0.51

3 Diffusion along gene Gene length 0.63 0.54 0.63 0.60
DSB - Spo1

Model description Pearson Spearman
correlation correlation

Id Positions Weights Loc Glo Loc Glo

1 Gene starts 1 0.34 0.28 0.68 0.65

2 Gene starts Gene length 0.26 0.21 0.65 0.63

3 Promoters 1 0.48 0.40 0.74 0.71

4 Promoters IRL 0.50 0.41 0.74 0.70

5 Promoters GC 0.58 0.52 0.75 0.72
6 Promoters GC × IRL 0.62 0.56 0.76 0.72
Local and global Pearson and Spearman correlation coefficients have been calculated between different model curves and S. cerevisiae experimental data for axis
proteins [9] and DSBs [24]. Bold characters highlight best performance. Different models are characterized by different weighting factors (column “weights”). For DSB
analysis, GC is GC-content smoothed with a Gaussian kernel of 1000 nucleotides; IRL is the intergenic region length, or IRLmax if the region is too large (see Methods).
SPoRE model for axis proteins is number 3, and for DSBs is number 6. Values are output of the SPoRE program (Figure 2, bottom right). See also the correlation curves
for models 3 and 6 in Additional file 1: Figure S7. All p-values associated to both Pearson and Spearman global correlations are lower than 10e−15 (even for weak
correlations such as 0.11). Highest correlations are highlighted in boldface.

that intergenic region length and GC-content are key fac-
tors for explaining DSB density. SPoRE displays a local
Pearson correlation r = 0.62 and a Spearman correla-
tion ρ = 0.76 with experimental data [9]. The heatmap
of the experimental Spo11 distribution curve [9] and the
Spo11 SPoREmodeling curve, reported in Figure 5, shows
a sharp diagonal confirming the accurate prediction of the
model and in particular the precise prediction of regions
with high DSB density or DSB absence.

Localization of DSB high-density spots is well pre-
dicted by the position of the peaks of our modeling curve
(Additional file 1: Figure S6). For instance, 64% of the
predicted peaks are found at most � = 150 nt away
from a real peak (PPV) and 68% of the real peaks are
found at less than 150 nt away from a predicted peak
(sensitivity). Sensitivity and PPV at increasing � val-
ues are reported in Figure 4B. In comparison, a random
model based on a random selection of spots in intergenic

Figure 3 SPoREmodel for axis proteins compared to experimental data in S. cerevisiae chromosome 3. Red1 density curve [24] (black) and
SPoRE axis proteins modelling curve (green) on chromosome 3. Colored circles on the top of the plot mark peaks of the curves.
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Figure 4 SPoRE performance in detecting axis proteins and DSB hotspots for S. cerevisiae. Peaks localisation (not density) in SPoRE curves is
compared to peaks localisation in experimental curves for axis proteins [9] (A) and DSBs [24] (B). Positive Predictive Value (PPV) and Sensitivity
(see Methods) obtained with SPoRE models (number 3 for axis proteins and number 6 for DSBs) are reported for increasing values of the parameter
�, representing the maximum distance allowed between two peaks to say that they match. The vertical bars in the plots correspond to � = 1 kb
and 1.5 kb in A and to � = 150 nt and 300 nt in B. Different randommodels are used to analyze SPoRE behavior (see Methods): best PPV/sensitivity
over 1000 simulations (blue), PPV/sensitivity for a p-value of 5% (green), average PPV/sensitivity over 1000 simulations.

regions (see Methods), displays much lower PPV and
sensitivity.
Although SPoRE identifies a subset of the peaks found

by the model at constant weights (see sensitivity in model
3, Table 1), it clearly predicts better their heights when
GC-richness and, to a lesser extent, intergenic region
length are considered. The performance of these different
models is reported in Table 1.
Finally, we tested whether the knowledge of TFBSs

in S. cerevisiae [36], leading to a more accurate pro-
moter region localization, improves SPoRE predictions or
not. There is no improvement on peak heights predic-
tion (Pearson and Spearman local and global correlation
coefficients do not increase). For peak localization, PPV
slightly increases to 67% and sensitivity to 69% for � =

150 nt, and we conclude that a precise estimation of
promoter regions helps modeling DSB localization. The
effect of TFBS availability in modeling remains limited
though.

Coherence of SPoRE predictionswith two large-scale
experimental datasets
SPoRE modeling curves can be used for comparison with
experimental data of different origin. In this respect, we
considered two different datasets.
First, as mentioned in the introduction, it has been

shown previously that Red1 and Hop1 patterns are influ-
enced by Rec8 (cohesin) patterns [24]. Hop1, for instance,
is distributed almost like Red1 (local correlation is
r = 0.92, global is r = 0.88) with which it interacts [37,38].
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Figure 5 Heatmap of the experimental Spo11 distribution curve [9] and the Spo11 SPoRE curve on the S. cerevisiae genome. Pairs of
y-values belonging to the two curves have been recorded every 10nt along the chromosomes, and a total amount of about 1.2 millions points
(y1, y2) were identified, where y1 and y2 are the y-coordinates of the experimental and modeling curves, respectively. In the plot, the y-coordinates
have been replaced by their ranks to allow for better visualization. The x-axis reports ranks from the experimental curve and the y-axis reports ranks
from the SPoRE modeling curve. Each square in the plot describes the number of points falling into the corresponding interval of rank values. The
dark red square on the top right collects picks with the highest y-ranks and the red square on the bottom left collects points in the experimental
curve displaying no Spo11 accumulation, and therefore no DSBs.

On the other hand, Rec8 is more abundant around cen-
tromeres than Red1/Hop1, although local variations are
the same. Therefore, Rec8 global correlation with Red1
is only r = 0.57, while its local correlation is still r =
0.83. Because of these correlations, we expect SPoRE to
be locally well correlated with Hop1 and Rec8 (data from
[24]). Indeed, we find that SPoRE model has a local cor-
relation of r = 0.62 with Hop1 and r = 0.60 with
Rec8, compared to r = 0.64 with Red1. This confirms
that the three axial proteins share SPoRE local distribu-
tion patterns. Consistently, if we look at global correlation
coefficients, SPoRE is well correlated withHop1 (r = 0.55)
and Red1 (r = 0.56) but weakly correlated with Rec8
(r = 0.33).
Second, we compared SPoRE curves to histone

trimethylation data. It has been observed before that
H3K4 trimethylation (H3K4me3) is linked to DSBs [17].
Then, we computed correlations between H3K4me3 (data
from [35]) and SPoRE modeling curve for Spo11. We find
r = 0.25, which is comparable to r = 0.21 obtained
when we correlate H3K4me3 and DSB experimental data.
Similarly, with Spearman coefficients, we find ρ = 0.61

between H3K4me3 and our model, and ρ = 0.52 between
H3K4me3 and DSB experimental data. We conclude that
SPoRE model is consistent with this known interaction.
Both these examples confirm that the modeling curves

are faithful approximations of experimental curves and
that biological conclusions can be safely derived from
them.

SPoRE predictions on several yeast species
The large number of sequencing projects on yeast clades
and the upcoming new projects (still a few today) explor-
ing the molecular biology of yeast species encourages
the usage of predictive tools for learning about the
distribution of DSB and axial proteins sites, to start
comparative studies on yeasts across clades. We run
SPoRE on Lachancea kluyveri and Kluyveromyces lac-
tis. The genome of L. kluyveri shows a particularly high
GC-content on the left-arm of the C chromosome (see
Additional file 1: Figure S8) and SPoRE predicts a higher
concentration of DSBs in this chromosomal arm. We note
that the number of peaks within the C-left arm is compa-
rable to other chromosomal arms, and that SPoRE detects



Champeimont and Carbone BMC Bioinformatics 2014, 15:391 Page 9 of 14
http://www.biomedcentral.com/1471-2105/15/391

the same number of peaks (353) than model 4, which
excludes the GC factor. Namely, the GC factor in SPoRE
exclusively influences DSB density and not DSB posi-
tioning, and the high number of DSBs predicted along
the C-left arm is a consequence of SPoRE higher peaks
rather than SPoRE higher number of peaks. Experiments
in L. kluyveri are expected to confirm SPoRE prediction in
the C-left arm of the C chromosome.
We have also run SPoRE on Schizosaccharomyces pombe

where recombination is known to be partially depen-
dent on DNA motifs. As expected in this species [39],
SPoRE predicts a large number of DSBs in large intergenic
regions. It should be noticed that in S. pombe, diver-
gent and tandem regions are unusually large compared
to other yeast species. In S. cerevisiae, L. kluyveri and
K. lactis for instance, the mean length of divergent and
tandem regions, is approximately 700nt while it is 1200nt
for S. pombe (Additional file 1: Figure S9). Since SPoRE
favors DSBs in tandem and divergent regions, and since
the size of these regions plays an explicit role in the model,
SPoRE prediction confirms the previous observations.
When comparing SPoRE predictions with the DSB dis-

tribution in S. pombe [40], results are much less accurate
than with S. cerevisiae. We get a local Pearson correlation
of r = 0.36 (global correlation is r = 0.26). Spearman
correlation is better with ρ = 0.43 (global correlation is
ρ = 0.42). This can be explained by the major differ-
ences between S. cerevisiae and S. pombe. As explained by
[40], in S. pombe, DSB do not occur in most promoters
and can occur in convergent regions. More precisely, in
S. cerevisiae, 91% of divergent intergenic regions contain a
DSB peak, while this number is only 70% in S. pombe. In
S. cerevisiae the ratio between the number of DSB per kb
in divergent versus convergent regions is around 14, while
it is only 3 in S. pombe. Both these observations are in
contradiction with our model, and that explains its poor
performance for this species.

Comparison between SPoRE and other predictive tools
Several tools, based on nucleotide sequence analysis (con-
sidering k-mers, for k ≥ 2) have been proposed [30-32] as
predictors of recombination or DSB hotspots.
We compared to the most recent one, iRSpot-PseDNC

[30], which improved above the others. In [30], the authors
compared their predictions of DSB sites against 452
hotspots on chromosome IV extracted from the same
Spo11 experimental data [9] that we compared to. They
found that their program predicts as hot 347 of these
hotspots, corresponding to a true positive rate of 77% [30].
When applying the same test to our model, we predicted
as hot 361 of these 452 hotspots, corresponding to a true
positive rate of 80%. However, to perform a proper bench-
mark, negative instances (coldspots) should be included
in the test set, so that the false positive rate can also be

measured. We therefore enlarged the dataset by adding
452 randomly chosen coldspots in the same experimental
data and on chromosome IV (see Methods). On this sym-
metric test set, the overall success rate of iRSpot-PseDNC
falls to 54% against 85% for our model (see Methods),
compared to an expected 50% for a random prediction.
This is due to the fact that iRSpot-PseDNC detects 309
false positives (false positive rate is 68%) while we only
detect 43 of them (false positive rate is 10%). This shows
that iRSpot-PseDNC is little better than random in detect-
ing DSB hotspots. It should be noted that comparison
is realized on hotspot sites localization but that no pre-
diction on protein density is made by iRSpot-PseDNC,
contrary to SPoRE, where estimations of density can be
directly inferred from the modeling curve.
We also extended this benchmark over the whole S. cere-

visiae genome by considering all the 3600 hotspots dis-
covered in [9], together with 3600 randomly chosen
coldspots. The accuracy of SPoRE in that case is 84%
(close to 85% for chromosome IV). Its predictive perfor-
mance can also be measured with a ROC curve by varying
the density threshold, in which case the area under the
curve is 0.90 (see Additional file 1: Figure S11). iRSpot-
PseDNC success rate on properly identifying hotspots
and coldspots is 55% (comparable to the 54% obtained
on chromosome IV; due to the nature of iRSpot-PseDNC
output, no ROC curve can be produced).
A second test was realized on the same dataset used

in [30] to compare iRSpot-PseDNC to IDQD [31]. This
dataset, defined in [31], is composed of 490 hot ORFs
and 591 cold ORFs, where the hot ORFs describe a set
of recombination hotspots. Notice that a recombination
hotspot is expected to be located close to a DSB site but
not the vice versa, and that SPoRE cannot be directly
used for predicting recombination hotspots since it was
designed to predict DSB hotspots.
Hence, we decided to test howmuch the smoothed GC-

content, which we used as a factor in SPoRE, contributes
to the identification of recombination hotspots. By using
only GC-content, we obtained an accuracy of 83% (see
Methods), against the 80% reached by IDQD and the
85% reached by iRSpot-PseDNC (based on a 5-fold cross-
validation of the SVM approach they implement). The
conclusion is that even though iRSpot-PseDNC is based
on the actual DNA content (taking dinucleotide frequency
as its predictor), it appears that almost all the signal can,
in fact, be recovered simply with the GC-content in a
window.

Conclusions
We explored the hypothesis that genomic signals allow us
to predict DNA double-strand breaks and the formation
of the loops (their position and length) in the 3D chro-
mosomal structure during meiosis. Our aim here is not
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to study the dynamics of a protein localization process
but rather to identify the genomic information that can be
used to predict the 3D structure formation and quantify
the importance of these predictive factors. SPoRE allows
us to test whether genomic signals are good predictive
variables or not, and to what extent, in the accumulation
of axis proteins and DSBs along chromosomes.
However, it should be noted that this does not imply that

the factors are the cause of DSBs and axis proteins posi-
tioning. For example, GC-content could be a consequence
rather a cause of DSBs [41]. In both cases however, it is a
useful factor for predicting DSB hotspots.
All genomic factors considered in the model are linear

functions with the exception of a quadratic factor model-
ing the impact of GC content. New parameters can be eas-
ily added to the model for the evaluation of new genomic
markers effects. The interest in this modeling approach
comes from a straightforward biological interpretation of
the parameters that helps to reason on plausible biological
mechanisms forming protein accumulation.

Orientation of genes and chromosomal axis formation
We have shown through a formal model that the distribu-
tion of the chromosomal axis proteins is encoded in gene
organization along DNA. The orientation of the genes
influences the formation of the loops within the 3D axial
structure during meiosis and to reach an understanding
of this 3D structure formation, this fact should be com-
bined with the existence of a random process governing
the binding of the axis proteins to DNA and with a perva-
sive transcriptomic activity inducing a repositioning of the
proteins in specific sites along the genome. In this respect,
SPoRE model could help to design appropriate genomic
signatures for synthetic chromosomes that should form a
functional synaptonemal complex structure.

Modeling organisms other than yeast
SPoRE could be used to infer localization and density of
axis proteins and DSBs sites at large scale for those yeast
species for which whole genome experiments have not
been made yet. Today, more than 40 yeast genomes have
been completely sequenced and for many of these yeast
species, meiosis either exists or can be induced. It might
be interesting to apply SPoRE model to these species
to check, through comparative genomics, whether syn-
tenic region boundaries correspond to DSB hotspots or
not across species, whether the genetic content of DSB
hotspots and of their neighborhoods are conserved in
different species and so on.
Axial chromosome structures formation has been

experimentally observed across many sexually reproduc-
ing eukaryotic species, from fungi to vertebrates. In yeast,
our model highlights that axial chromosome structures
and DSB distribution are governed by a rather simple

combination of genomic signals. For other organisms,
the model might be expected to become more complex.
For the mouse, for instance, other factors such as DNA
binding sites targeted by axial proteins have been demon-
strated to play an active role in DSB localization [42].
In this respect, SPoRE might be taken as a nutshell to
add extra signals and reach appropriate descriptions of
experimental data in other organisms, possibly multicel-
lular ones. SPoRE software is provided to allow users
for further development and testing of new genomic
factors.

Methods
Visualization in a genome browser
To allow biologists to visualize easily SPoRE modeling
curves, SPoRE provides its results in the WIG file for-
mat. They can be loaded in the UCSC genome browser
(http://genome.ucsc.edu/), in the genome browser avail-
able at http://yeastgenome.org/ and in the IGV software
(see Additional file 1: Figure S1) [43]. For the four yeast
genomes that we analyzed, the corresponding wig files are
available at http://www.lcqb.upmc.fr/SPoRE/. For conve-
nience, we also provide the corresponding S. cerevisiae
experimental data in the same format, to allow for easy
comparison.

Software availability
SPoRE program is provided to the users that would like
to apply it to yeast species, others than those we already
considered here, or modify it for other organisms. The
“readme” file explains what are the parameters that should
be set for other organisms. The software is available at
http://www.lcqb.upmc.fr/SPoRE/.

Annotation
The reference strain we used to validate SPoRE is Sac-
charomyces cerevisiae S288C. The gene annotations were
retrieved from the Saccharomyces Genome Database
(http://www.yeastgenome.org/), release 64. We included
4879 “verified” ORFs and 895 “uncharacterized” ORFs in
our set of coding genes, but not “dubious” ORFs. We
also considered transposons by taking the 89 features
labeled “transposable element gene”, rRNAs (RDN37-1,
RDN37-2, RDN5-1, RDN5-2, RDN5-3, RDN5-4, RDN5-
5, and RDN5-6), and pseudogenes (21). For Lachancea
kluyveri and Kluyveromyces lactis, genomes and annota-
tions were downloaded from Genolevures (http://www.
genolevures.org/). Only features named “CDS” were
taken into account in our models. For Schizosaccha-
romyces pombe, genome and annotation were downloaded
from PomBase (http://www.pombase.org/). We used fea-
tures labeled “CDS”, representing exons, and merged
them together to get intervals defining genes in our
models.

http://genome.ucsc.edu/
http://yeastgenome.org/
http://www.lcqb.upmc.fr/SPoRE/
http://www.lcqb.upmc.fr/SPoRE/
http://www.yeastgenome.org/
http://www.genolevures.org/
http://www.genolevures.org/
http://www.pombase.org/


Champeimont and Carbone BMC Bioinformatics 2014, 15:391 Page 11 of 14
http://www.biomedcentral.com/1471-2105/15/391

Protein density data used for SPoRE validation
We use protein density data along the genome from
Spo11 immunoprecipitation/454 sequencing for DSB [9]
and from ChIP-on-chip for Red1, Hop1 and Rec8 [24].
They were mapped on the S. cerevisiae S288C genome,
even though strain SK1 was used in the experiments. Raw
data were used for computing all correlations reported in
Table 1. They were retrieved from supplementary data in
[9] for Spo11, and from the GEO dataset GSE29860 for
Red1/Hop1/Rec8.

Smoothing
To smooth the curves, we use a kernel-based smooth-
ing with a Gaussian kernel. We use the “density” function
provided in R [44] for all our models, the Spo11 experi-
mental data and the GC-content. We use the “ksmooth”
R function for Red1 experimental data to take into
account correctly the irregular spacing of the tiling array
probes. When referring to σ nt smoothing, we mean
that the Gaussian kernel we use has a standard deviation
of σ .
For DSBs, we used σ = 250 nt for both data and

models. Notice that Spo11 experimental data have a
nucleotide-level precision and that the smoothing we use
takes into account the range in which Spo11 might cut
DNA around hotspots. For axis proteins, we used σ =
1000 nt for the Red1 experimental data, and σ = 1500
nt for our models. The rationale behind the different
values is that ChIP-on-chip experiments produce large
fragments of DNA where proteins bind and, as a conse-
quence, a large range of probes in the microarray detects
them. The accumulation of probes does the equivalent
of a smoothing, and because of this, we need to smooth
the data less than in the model. The two parameters
were adjusted so that the number of peaks detected on
both smoothed curves is approximately the same (1558
for S. cerevisiae data, 1615 in SPoRE model). More pre-
cise experimental data might correspond to a different
smoothing constant σ and the software allows for easy
changes.

Normalized density and experimental noise
Normalized density (y axis in Figure 3 and Additional file
1: Figure S6) is defined by translating and scaling the val-
ues in such a way that the first percentile maps to 1 and
the 99th percentile maps to 99. This is a way to scale the
data approximately between 0 and 100 without taking into
account extreme values. In fact, these latter might be a
consequence of the experimental noise. In Red1 model
4 (Table 1), noise was estimated from data by consider-
ing the 1st percentilem and the 99th percentile M, where
m = 2.169456 and M = 7.622778 for S. cerevisiae. The
ratioM/m = 3.5 has been used to estimate the noise level
in Figure S3E.

Correlations betweenmodel and experimental curves
To estimate the local correlation between two curves, we
considered a window of 50 kb in which we compute the
correlation coefficient (Pearson or Spearman) between
points of the two curves every 10 nt. Then we move the
window by 10% of its size (ie. 5 kb) and repeat the com-
putation until we reach the end of the chromosome. We
repeat these operations for each chromosome, and finally,
we take the average of all these correlation coefficients
(from all windows from all chromosomes).
Global correlation is computed by considering the com-

plete genome at once (all points every 10 nt), instead of a
sliding window. It provides a single correlation coefficient.

Peak predictions and their evaluation
High-density spots for both axis proteins and DSBs are
computed as the peaks of the corresponding smoothed
curves. They are defined as local maxima that are at least
ε = 1 normalized density unit (see “Normalized density ’’)
above the surrounding local minima.
To evaluate high-density spot predictions versus exper-

imental hotspots, we used two standard measures, sen-
sitivity and Positive Predicted Value (PPV). Namely, for
each peak in the experimental curve at position x, we look
for a peak in the model lying in the interval [ x−�, x+�].
If there is such a peak then we count it as a true posi-
tive. Sensitivity is defined as the fraction of true positives
over the number of real peaks. Positive Predictive Value is
defined symmetrically to sensitivity, by reversing real and
predicted peaks. It is the fraction of real peaks over the
number of predicted peaks.

Randommodels for axis proteins and DSBs sites
In order to test whether sensitivity and PPV values scored
by SPoRE for axis proteins and DSB spots predictions
are not the result of chance, we generated 1000 random
models for the two kinds of loci. For axis proteins, the
models were generated by randomly selecting 1615 posi-
tions along the whole S. cerevisiae genome, that is, the
same number of peaks as in SPoRE model 3 in Table 1.
For DSB spots, the models were generated by randomly
selecting 4242 positions in S. cerevisiae intergenic regions,
that is, the same number of peaks as in SPoRE model
6 in Table 1. We explicitly considered intergenic regions
because it is already known that DSB spots occur there.
We wished to test whether our predictions are closer to
real axis proteins or DSB spots than a random choice.
After generating the random positions, we evaluated the
position against experimental peaks by using the same
method employed for SPoRE (see above).

Intergenic region lengths
SPoREmodel for DSBs uses intergenic regions lengths as a
contributing weight. Precisely, given an input genome, we
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compute the distribution of its intergenic region lengths
and set the threshold IRLmax = μ + σ , where μ and σ

are average and standard deviation of the distribution. For
S. cerevisiae, this value is 1202 nt (the first analysis of these
regions in S. cerevisiae dates back to [45]). For intergenic
regions that are “too large”, that is > μ + σ , we set the
weight to IRLmax, that is, the weight stops growing after
the threshold.

GC content
When taking into account GC content in our model, we
use a kernel-based smoothing of the GC distribution on
all nucleotides along the genome (both genic and inter-
genic), obtained from a Gaussian kernel with standard
deviation 1 kb. Then we define all GC-based values with
the smoothed GC curve: μGC, σGC and gc(pg) (see above).
All along the genome, we assume the presence of a min-
imal amount of GC content expressed by the threshold
GCmin = μGC − 3σGC.

Gene projections
Plots in Additional file 1: Figure S2, Additional file 1:
Figure S3 and Additional file 1: Figure S4, were created
by first smoothing the experimental data, then summing
Red1/Spo11 smoothed curves after centering them on
reference positions (gene 5’-end, gene 3’-end, intergenic
region centers). The smoothing Gaussian kernel standard
deviation used is σ = 20 nt, except for Additional file
1: Figure S4B and Additional file 1: Figure S4D where
we used respectively σ = 15 nt and σ = 5 nt. When
smoothing Red1 data, some values are missing because
sometimes probes are too far from each other, so the
curve cannot be computed by using the Gaussian ker-
nel between them. To avoid this problem, we removed
the intergenic regions with such holes in the gene projec-
tion plots. More precisely, we removed 1 intergenic region
out of 371 from the red curve in Additional file 1: Figure
S4A and 16 intergenic regions out of 381 from the yel-
low curve in Additional file 1: Figure S4A and Additional
file 1: Figure S4B.

Promoters and Transcription Factor Binding Sites (TFBS)
SPoRE can model DSBs either by approximating the posi-
tion of promoter regions proportionally to the length of
the associated intergenic region (see DSB model descrip-
tion above), or by exploiting knowledge of TFBS when
available. For the latter, given a gene, it considers the
set of its TFBS and computes the average of their posi-
tions as the reference position to set the weight of the
SPoRE model. In case a gene has no known TFBS, then
SPoRE models its promoter location based on the length
of its intergenic region. For S. cerevisiae, we used TFSB
positions indicated in the Yeast Promoter Atlas [36] repos-
itory, available at http://ypa.csbb.ntu.edu.tw.

Comparison with iRSpot-PseDNC on DSB data
Comparison between SPoRE DSB model and iRSpot-
PseDNC [30] was realized on the dataset of 452 exper-
imentally annotated [9] recombination hotspots for the
S. cerevisiae chromosome IV. This set, originally used to
evaluate iRSpot-PseDNC in [30], has been extended with
452 coldspots that we extracted from the same experiment
[9]. This extension was done in order to test both sys-
tems for false positives. More precisely, for each hotspot
in the dataset, we randomly selected a fragment of DNA
on chromosome IV with the same length as the hotspot,
but without any experimentally detected DSB, and ver-
ified that these fragments do not overlap each other.
(Notice that 17% of the S. cerevisiae genome is made of
regions that are larger than 242 nt, that is the average
size of a hotspot, and that contain no peak. We have ran-
domly selected coldspots within these regions). Hence,
we obtained a set of coldspots with the same number of
sequences and the same length distribution as the set of
hotspots. We then tested iRSpot-PseDNC online by pro-
viding the server with the DNA sequences in the dataset
(the file is available at http://www.lcqb.upmc.fr/SPoRE/).
To test our model, we simply predicted as a hotspot any
fragment on which the average of our curve is higher than
the average over the whole genome.
To generate Additional file 1: Figure S11, we consid-

ered hotspots and coldspots over the whole S. cerevisiae
genome. We used the same process as explained above for
choosing coldspots, with the only differences that, first, we
repeated the process for each of the 16 chromosomes, and,
second, that we allowed for at most 1 read to be present
in a coldspot (requiring 0 reads is too stringent on some
parts of the genome). We then used the average of our
curve over the hotspots and coldspots as a predictor, and
varied the threshold to produce the ROC curve (instead of
setting it to the mean as above).
A second dataset was used for comparison with iRSpot-

PseDNC and IDQD [31]. It is defined in [31] and it
is downloadable as SI of [30]. This set is defined by
ORFs, but since SPoRE uses information about intergenic
regions instead, we benchmarked SPoRE on this dataset
by predicting hotspots on the intergenic regions lying
before the gene start. Namely, we compared the aver-
age of our modelling curve in this region to its mean μ

and standard deviation σ by predicting hotspots when the
average of the curve is ≥ μ + σ . When the GC-content
curve has been tested as a predictor of recombination
hotspots in this dataset, formally, we compared the max-
imum of the smoothed GC-content curve in the gene
and intergenic region preceding it to μGC + σGC, where
μGC, σGC are the mean and the standard deviation of the
GC-content curve on the full genome. Notice that a much
simpler model could replace this GC-curve. In fact, we
could just consider a 4kb window centered at the start

http://ypa.csbb.ntu.edu.tw
http://www.lcqb.upmc.fr/SPoRE/
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of a gene, compute its GC-content, and obtain identical
accuracy.

Additional file

Additional file 1: SupplementaryMaterial.
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