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The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has
gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or
vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion
entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S
protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by
vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination
in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and pro-
tected mice from MERS-CoV infection in vivo.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The Middle East respiratory syndrome coronavirus (MERS-CoV)
is a highly pathogenic respiratory virus that was first identified in
the Kingdom of Saudi Arabia in 2012 [1]. As of February 10th 2017,
there have been 1905 confirmed MERS-CoV cases, with 677 deaths
across 27 countries (http://www.who.int/). Currently, there are no
approved vaccines or treatments for MERS-CoV [2,3].

MERS-CoV spike (S) protein on the virion surface is the main
attachment factor for virion entry through binding to dipeptidyl
peptidase IV (DPP4) on the host cell [4]. As such, MERS-CoV S
has been a prime target for vaccination strategies [reviewed in 5]
and we have previously reported an S protein vaccine candidate
that was able to induce high levels of anti-MERS-CoV neutralizing
antibodies in mice [6].

A major problem for MERS-CoV treatment or vaccine testing
in vivo is that mice are not susceptible to MERS-CoV infection [7]
because mouse (m)DPP4 is not a functional MERS-CoV receptor
[8]. MERS-CoV S binding to mDPP4 is inhibited by glycosylation
on two mDPP4 residues which are hypothesized to physically inhi-
bit binding of MERS-CoV S to mDPP4 [9]. Therefore, mouse model
development has focused on humanizing mDPP4. Mice can be
made susceptible to MERS-CoV infection by adenovirus transduc-
tion of human (h)DPP4 into the lungs of mice [10]. Though hDPP4
expressing mice display only mild clinical symptoms of MERS-CoV
infection, there is robust MERS-CoV replication in the lungs of the
mice [10], making them useful for testing treatments or vaccines
that block MERS-CoV replication in the lungs [11–16].

In this study we vaccinated mice with MERS-CoV S nanoparti-
cles and showed protection from MERS-CoV infection in vivo.
2. Materials and methods

2.1. Viruses, cells and mice

The Jordan strain of MERS-CoV (MERS-CoV- Hu/Jordan-
N3/2012) was kindly provided by Dr. Kanta Subbarao (NIH,
Bethesda, MD), Dr. Gabriel Defang (NAMRU-3, Cairo, EG),
Dr. Michael Cooper (AFHSC) and Dr. Emad Mohereb (NAMRU-3).

Stocks of MERS-CoV(Jordan) were grown and quantified using
Vero E6 cells (ATCC #CRL-1586) as described previously [17]. All
experiments with live MERS-CoV(Jordan) were performed under
biosafety level 3 conditions at the University of Maryland School
of Medicine. Adenovirus expressing hDPP4 (AdCMVhDPP4) was
obtained from the Gene Transfer Vector Core at the University of
Iowa.

BALB/c mice were obtained from Charles River Laboratories
and all mouse experiments were performed at the University of
Maryland School of Medicine in accordance with protocols
approved by the local institutional animal care and use commit-
tee (IACUC).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2017.02.012&domain=pdf
http://www.who.int/
http://dx.doi.org/10.1016/j.vaccine.2017.02.012
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2.2. Vaccination and serum collection

BALB/c mice, 8–10 weeks of age, were intramuscularly vacci-
nated with either PBS, 1 lg, 3 lg or 10 lg MERS-CoV S nanoparti-
cles with or without 5 lg of Matrix-M1TM adjuvant (Novavax AB,
Uppsala, Sweden), which has been previously described [18]. Mice
were vaccinated at days 0 and 21. At 0, 21 and 29 days post-initial
vaccination, blood was collected by retro-orbital bleeding.
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2.3. MERS-CoV S ELISA

MERS-CoV S-specific antibodies in mouse sera were evaluated
in an ELISA as described previously [19], except that 96-well Max-
iSorp microtiter plates (Thermo Scientific) were coated with 2 mg/
ml of purified MERS-CoV S protein and a horseradish peroxidase
conjugated goat anti-mouse IgG (Southern Biotech) was used as
the secondary antibody.
+Matrix M1

Fig. 1. Vaccination of MERS S nanoparticles plus Matrix M1 produces high titer
anti-MERS-CoV S antibody. Sera from mice at day 29 post-initial vaccination from
PBS vaccinated, MERS S nanoparticle vaccinated or MERS S nanoparticle plus Matrix
M1 vaccinated mice was analyzed by ELISA for MERS-CoV S specific antibodies.
2.4. MERS-CoV neutralization assays

MERS-CoV neutralization assays using days 0, 21 and 29 sera
from vaccinated mice were performed as described previously [6].
ELISA EC50 titer is graphed for each group of 10 mice. Mean ± standard deviation are
graphed for each cohort. Dots represent individual mice. ** = P < 0.01,
*** = P < 0.001.
2.5. MERS-CoV mouse infections and quantification of MERS-CoV

replication in the lung

On day 30 post-initial vaccination, vaccinated mice were trans-
duced with AdCMVhDPP4 as described previously [10]. Mice were
then intranasally inoculated with 2.5 � 103 pfu of MERS-CoV
(Jordan), as described previously [16]. During the experiments,
mice were weighed on the day of MERS-CoV infection and every
subsequent day. At 3 days post-infection, mice were sacrificed
and lungs were harvested as previously described [7].

Lung MERS-CoV titers and levels of MERS-CoV genomic RNA
and Leader containing mRNA were determined as previously
described [16,17]. Relative RNA levels were quantified using the
DDCt method compared to PBS vaccinated controls.
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2.6. Statistics

Data were analyzed using the 1-way ANOVA with Bonnferoni
post-test in Graphpad Prism 5. Statistical significance was achieved
where P < 0.05.
1µg 3µg 10µg 1µg 3µg 10µg
+Matrix M1

PBS
101

102

103

104

G
eo

m
et

ric
 M

ea
n 

Ti
te

r

Fig. 2. Vaccination of MERS S nanoparticles plus Matrix M1 produces high titer
MERS-CoV neutralizing antibody. Sera from mice at day 29 post-initial vaccination
from PBS vaccinated, MERS S nanoparticle vaccinated or MERS S nanoparticle plus
Matrix M1 vaccinated mice was analyzed by neutralization assay against live
MERS-CoV. GMT ± standard deviation is graphed for each group of 10 mice. Dots
represent individual mice. * = P < 0.05, *** = P < 0.001, ns = not significant.
3. Results

3.1. MERS-CoV S nanoparticle vaccinated mice produce anti-MERS-
CoV S antibodies

Sera collected at day 29 post-initial vaccination were analyzed
for anti-MERS-CoV S antibody titers by ELISA (Fig. 1). As expected,
PBS vaccinated mice had no detectable anti-S antibody. While
some mice in the non-adjuvanted 1 lg, 3 lg and 10 lg MERS S
nanoparticles groups had measurable anti-MERS-CoV S antibody,
this response was not statistically significant (P > 0.05 in all cases)
when compared to PBS vaccinated controls. Sera from mice vacci-
nated with the Matrix-M1 adjuvant in combination with 1 lg, 3 lg
or 10 lg of MERS S nanoparticles demonstrate significantly higher
anti-S titers (for example, P < 0.0001 for 10 lg MERS-CoV S
nanoparticles) compared to PBS vaccinated controls with an appar-
ent dose dependent increase. These data demonstrate that the
MERS-CoV S nanoparticles along with Matrix-M1 adjuvant produce
high titer anti-MERS-CoV S antibody in vaccinated mice.
3.2. MERS-CoV S nanoparticle vaccinated mice produce MERS-CoV
neutralizing antibodies

Neutralizing antibody levels in sera from day 29 post-initial
vaccination were assessed using a live MERS-CoV neutralization
assay (Fig. 2). Sera from mice vaccinated with 1 lg, 3 lg or 10 lg
MERS S nanoparticles alone showed no significant neutralization
of MERS-CoV (P > 0.05 in all cases) compared to PBS vaccinated
controls. Sera from PBS vaccinated mice showed some anti-
MERS-CoV neutralizing activity probably as a result of non-
specific antiviral activity. Sera from mice vaccinated with Matrix-
M1 adjuvant in combination with the 1 lg, 3 lg or 10 lg MERS S
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nanoparticles showed significantly higher neutralizing antibody
titers compared to PBS vaccinated controls (P < 0.05) and also to
the corresponding MERS-CoV S nanoparticles alone (for example,
for P < 0.01 for 10 lg MERS-CoV S nanoparticles), with the excep-
tion of the 3 lg dose (P > 0.05) because 2 mice showed low levels
of antibody in the 3 lg MERS-CoV S nanoparticles plus Matrix
M1 group. Within the adjuvant groups, there was no significant
difference (P > 0.05) between MERS-CoV neutralizing antibody
levels in mice vaccinated with 1 lg, 3 lg or 10 lg MERS S nanopar-
ticles. These data suggest that mice vaccinated with MERS S
nanoparticles in combination with Matrix-M1 produce MERS-CoV
neutralizing antibodies.
3.3. MERS-CoV S nanoparticle vaccine protects mice from MERS-CoV
challenge

We utilized a MERS-CoVmodel in which an adenovirus express-
ing hDPP4 is used to transduce mice [10] to assess MERS-CoV repli-
cation in vaccinated mice (Fig. 3). As expected, there was no weight
loss observed from the infection (Fig. 3A), but we achieved efficient
replication of MERS-CoV in PBS vaccinated mice, as demonstrated
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Fig. 3. Vaccination of MERS S nanoparticle plus Matrix M1 protects mice from MERS-Co
with MERS-CoV and then sacrificed at day 3 post-MERS-CoV infection. (A) Mice were we
Lung MERS-CoV replication was determined by plaque assay (B), MERS-CoV speci
Mean ± standard deviation are graphed for each group of 10 mice. Dots represent indivi
by MERS-CoV titer (Fig. 3B), MERS-CoV Leader mRNA expression
(Fig. 3C) and genomic RNA expression (Fig. 3D). Mice vaccinated
with 1 lg, 3 lg or 10 lg MERS-CoV S nanoparticles showed statis-
tically significant (P < 0.001) reductions in MERS-CoV titer
(Fig. 3B), MERS-CoV genomic RNA (Fig. 3C) and MERS-CoV M
mRNA (Fig. 3D), however, in all cases, there was detectable
MERS-CoV in the lungs of the vaccinated mice. When mice were
vaccinated with Matrix-M1 in combination with 1 lg, 3 lg or
10 lg MERS-CoV S nanoparticles, with the exception of two mice
in the 3 lg group, MERS-CoV titer (Fig. 3B) and MERS-CoV genomic
RNA (Fig. 3C) and MERS-CoV M mRNA (Fig. 3D) were reduced to
baseline levels ( P< 0.001), suggesting that MERS-CoV replication
was completely blocked in the lungs of the vaccinated mice. These
data suggest that the MERS-CoV S nanoparticle vaccination, in
combination with the Matrix M1 adjuvant, is able to block
MERS-CoV replication in the lungs of vaccinated mice.
4. Discussion

Highly pathogenic coronaviruses have caused significant prob-
lems to public health with the emergence of SARS-CoV and
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V challenge. Vaccinated mice were intranasally infected with Ad/hDPP4, challenged
ighed daily to determine if there were effects of weight loss on MERS-CoV infection.
fic Leader mRNA expression (C) and MERS-CoV genomic RNA expression (D).
dual mice. LOD means limit of detection. *** = P < 0.001.
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MERS-CoV. There are currently no approved vaccines or treatments
for MERS-CoV, however both vaccine and drug candidates have
been shown to be effective in vitro and/or in in vivo animal models
[2,3].

The S protein of MERS-CoV is a prime target for vaccination
strategies because it is the main attachment factor and is
expressed on the virion surface. Therefore, various vaccination
strategies have been tested for eliciting an anti-S response [5].
We have previously described that MERS-CoV S nanoparticles are
able to induce a strong neutralizing antibody response to MERS-
CoV [6], however these were not tested in an in vivo model of
MERS-CoV infection.

Mice are not susceptible to MERS-CoV infection because mDPP4
is not a functional receptor for MERS-CoV [8]. DPP4 susceptibility
to MERS-CoV S binding is correlated with the glycosylation of crit-
ical DPP4 residues [9], therefore there are few options to make
mice susceptible to MERS-CoV. hDPP4 can be expressed in the
lungs of mice using an adenovirus vector [10]. In this model, there
is robust replication of MERS-CoV in the lungs of the transduced
mice that can be detected by both plaque assay and MERS-CoV
RNA expression [16]. Therefore, we used this model to test the
MERS-CoV S nanoparticle vaccine in vivo.

In agreement with our previous study [6], we found that mice
vaccinated with MERS-CoV S nanoparticles developed a MERS-
CoV neutralizing antibody response targeted to the MERS-CoV S.
In our neutralization assays we see low level non-specific neutral-
ization activity of PBS vaccinated mice however all adjuvanted
MERS-CoV S nanoparticle vaccinated mice had significantly higher
neutralization activity. Furthermore, Matrix-M1 adjuvant
enhances the anti-MERS-CoV S neutralizing antibody response in
vaccinated mice. Finally, we demonstrated that mice vaccinated
with MERS-CoV S nanoparticles with Matrix-M1 are able to effi-
ciently and completely block MERS-CoV replication in the lungs.
The MERS-CoV S + Matrix-M1 nanoparticle formulation is a prime
candidate for further development for use in camels or humans.
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