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Abstract: Homogeneous water dispersions of multi-walled carbon nanotubes (MWCNTs) were prepared
by ultrasonication in the presence of an amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA)
copolymer. The ability of PS-b-PAA to disperse and stabilize MWCTNs was investigated by UV-vis,
SEM and zeta potential. The results show that the addition of a styrene block to PAA enhances the
dispersion efficiency of the graphitic filler compared to pure PAA, possibly due to the nanotube affinity
with the polystyrene moiety. Notably, the dispersions show an evident pH-responsive behavior, being
MWCNTs reaggregation promoted in basic environment. It is worth noting that the responsive character
is maintained in solid composites obtained by drop casting, thus indicating potential applications
in sensing.
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1. Introduction

Carbon nanotubes (CNTs) are tube-shaped allotropes of carbon with a diameter of a few nanometers.
They have received great interest since their discovery in 1991; because of their remarkable properties [1,2],
in particular their mechanical strength; thermal properties and electrical conductivity [3–5]. CNTs may
be used in applications like transistors; batteries; conductive films; sensors [6,7] and for mechanical
reinforcement in composite materials [8–14].

Due to the high aspect ratio of CNTs, they have great van der Waals (vdW) attracting forces keeping
the nanotubes in an aggregated state [15] thus severely limiting possibilities to explore their full potential.
CNTs dispersion in water can be of particular interest for biological applications [16] even if strongly
affected by their hydrophobic nature that limits the dispersion stability over time. Notably, CNTs can form
stable dispersions in some solvents with similar surface tension like NMP and DMF [17,18] even if only
dilute dispersion can be made by this method. Conversely, chemical functionalization of CNTs enables
the preparation of dispersions at higher concentration, and provides the possibility to attach groups with
affinity for a desired dispersing medium. To make room for covalent bonds, defects on the CNT walls
need to be created. This requires harsh conditions, such as high temperatures combined with highly
reactive chemicals [19–21]. Disadvantages of covalent functionalization are the damaging of nanotubes
during the process, with subsequent loss of favorable CNT properties, and the use of environmentally
unfriendly chemicals. Alternatively, non-covalent functionalization of nanotubes is accessible as well.
By this method, the surface of the nanotubes is kept intact, i.e., preserving the electrical conductivity [22].
It is worth noting that various classes of substances can be used for non-covalent stabilization of CNTs in
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water. A possible approach is the use of surfactants like, for example, sodium dodecyl sulfate (SDS) and
related salts that are known to physically adsorb to the nanotube surface [23]. The hydrophobic part of
a surfactant has good affinity for the nanotube wall, while the hydrophilic head promotes the dispersion in
water. Affinity is optimized when the surfactant contains π-conjugated moieties such as aromatic amines,
styrene or pyrene [17,24–26] that can effectively interact with the nanotubes via π-stacking. Moreover,
the use of charged surfactants can more efficiently prevent re-aggregation of nanotubes by electrostatic
repulsion. Another type of substance for nanotube stabilization are water soluble polymers. The use
of polymers enables the activation of steric hindrance as an entropic (thermodynamic) stabilization
mechanism in addition to the electrostatic (kinetic) repulsion [17]. The affinity for the nanotubes by water
soluble polymers can be achieved by its hydrophobic backbone and rendered even more effective due to
the presence of π-conjugated moieties in the polymer structure (Figure 1a). Such a polymer has multiple
points of interaction with the nanotubes resulting in static dispersion, which is different from the dynamic
dispersion mechanism provided by surfactants (Figure 1b–d). Surfactants are more easily removed,
by for example centrifugation or filtration, because of the dynamic nature of the dispersion [27,28].

It is further reported that when the substance used for stabilization is responsive to external stimuli,
this enables the possibility of making a smart material with sensor abilities [29]. Polyelectrolytes
for example are water soluble polymers responsive to pH and salinity due to their large number
of ionizable groups. [30] Poly(acrylic acid) (PAA) has been shown to effectively disperse nanotubes
in water [31,32] depending on pH. At high pH (>8) PAA contains many charged groups, which
significantly decrease the affinity for CNT and thus decreases the CNT dispersion abilities [32–34].
The affinity could be improved by attaching a π-conjugated moiety, like polystyrene (PS), to the PAA
chain as this allows for π-π non-covalent bonds. A copolymer of PAA and polystyrene should therefore
result in more stable dispersions (Figure 1), which could also display potential sensitive features
to external stimuli such as pH and salinity [35–38]. Actually, the dispersion stability compared to
PAA could be significantly improved by micelle formation around the CNT, as it has been shown
in water/DMF solution for cross-linked PS-b-PAA by Kang and Taton [18]. In the mentioned study,
the stabilization of CNTs in solution is demonstrated, but no composites were prepared and no
investigation of the responsive properties has been performed. Better control and higher stability in
aqueous CNT dispersions combined with responsive properties are of vital importance to explore the
full potential of CNTs and use them as smart materials.

Herein, we propose to study the preparation of multi-walled CNTs (MWCNTs) dispersions directly
stabilized in water by means of several PS-b-PAA copolymers with variable length of the PAA block.
The PAA length is varied because it governs conformational changes with pH variations [39], and
it is maintained several times longer than the PS chain to provide the copolymers water solubility.
The copolymers were prepared by Atom Transfer Radical Polymerization (ATRP) [40], according to
previously published procedure [36]. ATRP allowed for precise design of the polymer, control over
block length and narrow molecular weight distribution. First, a PS macroinitiator was synthesized
and chain extended with tert-butyl acrylate, which was eventually hydrolyzed to yield the PAA block.
The two-step approach for the attachment of the PAA chain is required because polymerization control
is poor for copper-mediated ATRP in protic environments [41].

MWCNTs/PS-b-PAA copolymer dispersions were then prepared by ultrasonication and their
pH-responsive behavior studied by spectroscopy and microscopy investigations. Furthermore, solid
composites realized by drop casting were studied in terms of their electrical-responsiveness towards
pH variations.
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Figure 1. (a) Affinity of a dispersant for nanotubes can be provided by hydrophobicity, but even better
by π-conjugated compounds that can stack on the nanotubes by π-π interactions. (b) There are two
mechanisms that can prevent nanotube reaggregation. Firstly, electrostatic charges on the dispersant
that repulse dispersants on other nanotubes. Secondly, bulky groups can hinder nanotubes from
getting close to each other. (c) Surfactants and small molecules are stabilized dynamically. Dispersants
can exchange easily from nanotube walls to the solvent. These dispersants are removed more easily
resulting in reaggregation. (d) Larger polymers with high nanotube affinity can wrap around the
nanotubes resulting in static stabilization where no exchange of dispersants takes place. These are
harder to remove and can stabilize nanotubes in conditions like centrifugation, filtration, dialysis
and precipitation.

2. Materials and Methods

2.1. Materials

Multi-walled carbon nanotubes (CNTs) were purchased from Sigma-Aldrich (St. Louis, MO, USA)
(product number: 791431, lot MKBT4011V) and used as received. Methyl 2-bromopropionate (MBP,
Sigma-Aldrich (St. Louis, MO, USA), ≥99%), styrene (Sigma-Aldrich (St. Louis, MO, USA), ≥99%),
N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA, Sigma-Aldrich(St. Louis, MO, USA), 99%),
anisole (Sigma-Aldrich (St. Louis, MO, USA), 99.7%), glacial acetic acid, methanol, dioxane, tetrahydrofuran
(THF), dimethylformamide (DMF), ethanol, ethyl acetate and 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich,
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analytical grade) were used without any purification. Tert-butyl acrylate (Sigma-Aldrich (St. Louis, MO,
USA), 98%) was purified over a column of basic aluminum oxide and stored under nitrogen before use.
Copper(I)bromide (Sigma-Aldrich (St. Louis, MO, USA), 99%) and copper(I)chloride (Sigma-Aldrich
(St. Louis, MO, USA), 99%) were stirred in glacial acetic acid for 5 h, filtered, washed with acetic acid,
ethanol and ethyl acetate and dried under vacuum before use.

2.2. Polymers Preparation

2.2.1. Preparation of PS-Br Macroinitiator

The styrene macroinitiator (PS-Br) was prepared by the following procedure, in agreement with
our previously reported research [36]: 5–10 mmol MBP, 5 mmol Cu(I)Br and 300 mmol styrene was
dissolved in 20 mL anisole in a 250 mL three-necked round bottom flask. The flask was placed in an oil
bath at 100 ◦C. Air was removed by bubbling nitrogen gas through the solution for at least 30 min. Then,
10 mmol of PMDETA were added to start the reaction. After 5 h, the reaction was stopped by cooling
down to room temperature, and 50–100 mL of THF was added under air atmosphere. The copper
catalyst was removed by filtration over a neutral alumina column. The crude product was precipitated
in an excess of methanol, filtered, redissolved in THF, reprecipitated in methanol:water (2:1 v/v),
washed with methanol and dried overnight at 60 ◦C. A white solid was obtained. The molecular
weight of the polymer was determined by NMR and gel permeation chromatography (GPC).

2.2.2. Preparation of PS-b-PAA Polymer

To prepare the second block (ptBA), 1 g of macroinitiator (PS-Br) was dissolved in 15 mL anisole
under nitrogen. Cu(I)Cl and monomer (tBA) were added according to the desired stoichiometry.
The flask was placed in an oil bath at 90 ◦C and nitrogen was bubbled through the solution for at least
half an hour before PMDETA was added. The reaction was stopped after a given time by cooling
down to rt, and 50 mL of THF was added under air atmosphere. The copper catalyst was removed
by filtration over a neutral alumina column. The crude product was precipitated in an excess of
methanol:water (2:1 v/v), filtered, redissolved in THF, reprecipitated in methanol:water (2:1), washed
with methanol and dried overnight at 60 ◦C. A white solid was obtained. The molecular weight of the
polymer was determined by NMR and GPC.

The resulting polymers were hydrolyzed in a 1,4-dioxane solution in a round-bottom flask.
Approximately 20 mL of dioxane per gram of polymer were used. The flask was equipped with a stirring
egg, a reflux condenser and was heated to 100 ◦C in an oil bath. After an hour, HCl was added (2 mL
more than stoichiometrically required). The reaction was stopped after 3 h by cooling down. The solution
was precipitated in acetone, filtered and dried at 60 ◦C. The extent of hydrolysis was determined by
NMR in DMSO-d6.

2.3. Nanocomposite Preparation and Setup Preparation for the Resistive and pH-Responsive Behaviour

About 15 mg of PS-b-PAA were dissolved in 3 mL of water in a 20 mL vial. Then 1 mg of MWCNTs
was poured into the vial and ultrasonicated for 5 min with a probe sonicator model UP 400 S by
Hielscher Ultrasound at 60% of power 0.5 s−1 frequency. An ice bath was used to prevent solvent
evaporation during sonication. The dispersion was then diluted with water to a polymer concentration
of 0.46 mg/mL and (if pH was adjusted) a 1 M NaOH solution was added dropwise until the desired
pH was measured. The dispersion was sonicated for another 3 min, centrifuged at 3000 rpm and
filtered before being characterized. For samples with different nanotube concentrations, the amount of
nanotubes was varied whereas the polymer concentration and liquid volume was kept constant.

For the determination of the resistive behavior in the solid state, 25 µL of each water dispersion
was drop casted onto gold electrodes supported on an integrated device provided by Cad Line Pisa
(Italy). The electrodes were fabricated onto FR-4 that is a composite material composed of woven
fiberglass cloth with an epoxy resin binder substrate (thickness of 2 mm). Copper tracks were obtained
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by photolithography and electroplated with nickel and gold to fabricate the electrodes (thickness of
copper 35 µm, nickel 3.0 µm, and gold 1.2 µm). After complete water evaporation by drying the
devices in an oven at 120 ◦C for 5 min, the electrical resistance was measured using a Keithley 2000
multimeter as a mean from one hundred measures according to the multimeter settings.

For the determination of the pH responsive behavior, the electrodes with drop casted films
were submerged in an acetone solution containing 5 g/L of 1,4-diazabicyclo [2.2.2]octane (DABCO,
pKa = 8.82) [42]. The electrodes were then removed from the DABCO solution after 15 min and dried
at room temperature for 24 h. Subsequently, the electrical resistance was again measured with the
same setup.

2.4. Characterization

Gel permeation chromatography (GPC) measurements were carried out with a HP1100 machine
(Agilent Technologies, Waldbronn, Germany) equipped with one guard column (PL-gel 5 µm Guard,
50 mm) followed by two columns of PL-gel (5 µm Mixed-C, 300 mm) in series, and detection system
based on refractive index GBC LC 1240 (GBC Scientific Equipment Pty Ltd., Victoria, Australia).
The samples (5 mg/mL of polymer in THF plus 1 drop of toluene as internal standard) were eluted
with THF at a rate of 1 mL/min, at 140 bar of pressure and 40 ◦C. Molecular weights and polydispersity
index (PDI) were determined using the software PSSWinGPC Unity from the Polymer Standard Service.
Polystyrene standards were used for calibration.

To determine the molecular weight of the ptBA homopolymer, a triple detection system was used,
based on: a Viscotek Rals detector, a viscometer H502 and a shodex RI-71 refractive index detector.
A dn/dc value of 0.0479 mL/g was used for the ptBA chains.

UV-Vis absorbance spectra of the prepared dispersion were recorded at room temperature with
a PerkinElmer Lambda 650 (Waltham, MA, USA) spectrometer from wavelength 300 to 600 nm and
using 1 cm cuvette.

The zeta potential was measured by Brookhaven ZetaPALS (Holtsville, NY, USA). Ten cycles
were performed per each sample. A polymer concentration of 6 mg per mL MilliQ water was used.
For samples containing MWCNTs, a feed of 0.22 mg/mL of nanotubes was used.

The morphology of the solid dispersions was investigated by FEI Quanta 450 FEG Environmental
Scanning Electron Microscope (SEM) pictures (ThermoFisher scientific, Hillsboro, OR, USA).
The MWCNTs/polymer samples for SEM were ultrasonically dispersed in water for analysis.
The suspensions were deposited on a gold-coated silicon wafer and allowed to dry in a vacuum system
overnight. The wafer was then mounted onto a stainless steel sample holder using carbon tape.

Thermal degradation of the polymers and nanocomposites were analyzed via thermogravimetric
analysis (TGA) with a Mettler Toledo TGA/SDTA851 instrument (Columbus, OH, USA) under nitrogen
flux. All samples were tested in the temperature range of 25 ◦C to 450 ◦C with a scan rate of 10 ◦C/min.

3. Results and Discussion

3.1. Polymers Synthesis

Several polymers were designed and synthesized by the procedure shown in Figure 2, based on
our previous research [36]. Conditions are described in Tables S1 and S2 and NMR characterization
is reported in Figures S1 and S2 (supporting information file). The length of the blocks is expressed
in the sample name. For example, PS26PAA81 is a diblock copolymer consisting of a polystyrene
chain of 26 units and a polyacrylic acid chain of 81 units (approximately). Details of synthesis and
characterization can be found in the supporting information file. The relatively short hydrophobic
block (26 units) combined with a long hydrophilic block allowed for the polymers water solubility.
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Figure 2. Process design for the synthesis of amphiphilic block copolymers used for the dispersion of
multi-walled carbon nanotubes (MWCNTs). In the first step a polystyrene macroinitiator was made.
Secondly, a chain of tert-butyl acrylate was formed in various lengths. The tBA groups were eventually
hydrolyzed to form acrylic acid moieties.

3.2. Polymer/MWCNT Dispersions in Water: Effect of Polymer Structure on Stability

The copolymers were dissolved in water (0.46 mg/mL) and the MWCNTs dispersed by
ultrasonication for 5 min (0.03 mg/mL feed) [43,44]. After possible pH-adjustment, samples were
sonicated for another 3 min. To estimate the amount of MWCNTs effectively stabilized by the prepared
copolymers at different pH, UV-Vis spectra of the dispersion were recorded after centrifugation
(Supporting information file, Figure S3). The amount of light absorbed or scattered by dispersion
is correlated to the MWCNTs concentration [34]. The intensity at a given arbitrary wavelength
(450 nm) would be proportional to the amount of MWCNTs present in the dispersion, according to the
Lambert-Beer law. In Figure 3, the light absorption at 450 nm is shown for different polymer/MWCNTs
dispersions in water at various pHs.
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Since all dispersions contain the same copolymer mass, the shorter chains have a higher molar
concentration. On the other hand, longer chains provides higher surface coverage that can be estimated
from the radius of gyration of the PAA chain, assuming that the polymers adsorb on the CNTs surface
as single chains (Figure 4). A mathematical derivation of the total surface coverage is reported in the
supporting information file (Table S3, Figures S5–S7). The calculated total surface coverage for each
sample is given in Table 1.
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Table 1. Total surface coverage of single polymer PAA chain for different polymers at 0.46 mg/mL
concentration in water at pH 5.

Polymer Concentration (mmol/mL) Total Surface Coverage PAA (m2/mL)

PAA454 1.41·10–5 917

PS26PAA81 5.38·10–5 649

PS26PAA226 2.42·10–5 795

PS26PAA580 1.03·10–5 864

Without any pH adjustment, the pH of the dispersion was 5 for all polymers. In this condition, the
PAA homopolymer had the lowest dispersion efficiency (Figure 3). This shows that the highest surface
coverage (see Table 1) did not correspond to a better CNT dispersion. The polymer giving the best
dispersion (PS26PAA81) had the highest relative polystyrene content, which should contribute to a more
effective π–π interaction with the CNTs. This suggests that the overall CNT/polymer affinity was
more limiting than the stabilizing effects provided by the PAA chains. The assumption of single chain
adsorption in the spherical form used for the model in Table 1 and Figure 4 was therefore too simplistic.

The polymers used in this study were known to form colloidal micellar aggregates in water, as we
have discussed in previous research [35–38]. If the polymers would form micelles around the MWCNTs
like surfactants do [45] (as is visualized in Figure 5), the PAA length would not make a difference as it
merely determines the thickness of the protecting layer between the nanotube and water. As long as
this is thick enough, the molar concentration of the polymer would be determining the amount of
nanotubes that can be dispersed. Based on these considerations, we could suggest that in our system,
the sonication partially disrupted the polymeric micellar aggregates and caused a rearrangement of
polymeric chains around the CNTs, based on their affinity for the polystyrene block. The hypothesis
that sonication could disrupt the micellar aggregates in solution, although not well documented
in literature to the best of our knowledge, it is supported by the experimental observation that the
viscosity of water solutions of PS-b-PAA, initially high, decreased significantly upon sonication.
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Figure 5. Schematic visualization of micelle encapsulation of nanotubes by the amphiphilic polymer.

3.3. Effect of pH on Stability of Polymer/MWCNT Dispersions

Another factor to take into account is that the PAA chain conformation is also dependent on
its degree of protonation, therefore on the solution pH. At low pH, PAA is mostly present in coiled
formation [46–48] and shorter chains only have a slightly smaller radius compared to the longer
ones. Therefore, they can cover a larger amount of the nanotube surface at the same polymer weight
concentration (higher molar concentration).

Moreover, while the π–π interaction of the PS block did not cause any strain on the chain, the slight
deprotonation of PAA between pH 5 and 7, caused a more stretched conformation, and consequently
a more limited contact with the nanotube. The weakly ionized polymer can non-covalently bind to the
nanotube surface [32].

As the pKa of acrylic acid is 4.25 and approximately 4.5 for polyacrylic acid [39], at pH higher
than 5 the PAA chain in the polymer becomes deprotonated. This causes intramolecular repulsions
between charged units, resulting in a transition from coil to elongated chain and an increase of the
radius of gyration [47]. If a micellar structure were formed around the nanotubes, this would increase
the thickness of the PAA layer and improve stabilization, which would contradict what was observed
in Figure 3. The results show in fact that less nanotubes were dispersed at higher pH, especially for
the shortest PAA chains, thus suggesting that the stabilization had become weaker. Therefore, this
behavior contradicted the hypothesis of a micellar structure around the nanotubes.

Erika et al. suggested that pure PAA in water stabilizes CNT by forming globular structures
parallel to the surface of the nanotubes [32–34]. The mentioned research also found a decrease in
nanotubes dispersed at high pH as the conformation of the polymer changes from globular to stretched
(still parallel to the nanotube surface). In contrast with a micelle model, where stretching of the
polymer led to increased steric hindrance (Figure 5), the conformation change according to this model
led to less steric hindrance and thus less nanotubes dispersed (Figure 6). The increase in electrostatic
repulsion as a stabilization mechanism was not enough to compensate for reduced steric hindrance,
possibly because the lower acid character of the polymer investigated in this study. As the number
of charges on the PAA chain increased, the PAA chain became less hydrophobic and therefore lost
affinity for the nanotubes wall. Detaching during sonication thus became more likely, despite the
strong MWCNT-affinity of the PS block. Although we had no direct evidence for the model in Figure 6,
our data did not contradict this hypothesis.
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According to our data, the affinity of the polymer for the nanotube was the limiting factor at
low pH, whereas at high pH, the stabilizing ability of PAA decreased and became the limiting factor.
Therefore, high styrene content led to the highest nanotube concentration at low pH and high PAA
content led to the highest nanotube concentration at high pH.

3.4. Characterization via Zeta-Potential Measurements and SEM Microscopy

PS26PAA580, which was the polymer sample with the best nanotube stabilization efficiency at
high pH, was analyzed in terms of zeta potential measurements (Table 2). Since a high absolute zeta
potential value (>25 mV or <−25 mV) indicates good colloidal stability [32], the zeta potential at pH
5 was too small for stable colloidal dispersion, thus meaning that micelle encapsulation was indeed
unlikely. Conversely, the zeta potential was high enough at pH 9.5 for the formation of stable colloids.
In both cases, the incorporation of CNTs seemed to reduce the micelle stability of the system.

Table 2. Zeta potential of polymer samples in water (6 mg/mL). MWCNTs were added for some
samples with a feed of 0.22 mg/mL. Ten cycles were performed.

Sample pH Zeta Potential

PS26PAA580 5 −15 mV

PS26PAA580 with MWCNTs 5 −7 mV

PS26PAA580 9.5 −66 mV

PS26PAA580 with MWCNTs 9.5 −58 mV

These findings suggest a shift in dispersion stabilization mechanism from steric hindrance
to electrostatic repulsion. As shown by the zeta potential data (Table 2), PS26PAA580 was almost
uncharged at pH 5, making it unable to stabilize nanotube dispersion by the electrostatic repulsion
mechanism. Steric hindrance was in this environment the only stabilization mechanism. At high
pH, the zeta potential was –58 mV, suggesting very good colloidal stability provided mainly by
electrostatic repulsion as a stabilization mechanism. However, Figure 4 shows also that the amount of
nanotubes dispersed decreased with pH raising. This could be explained by the increase in charge
density in the PAA chain, which had two effects. Firstly, the PAA chain became less hydrophobic
and therefore lost affinity for the nanotube wall. Detachment during sonication thus became more
likely, despite the strong affinity of the PS block. Secondly, the increase in charge density on the PAA
caused a conformational change (see Figure 6), thus severely reducing the steric hindrance. Notably,
dispersions containing polymer with short PAA chain (PS26PAA226 and PS26PAA81) show a sharp
decrease in absorbance (Figure 4), which was already found at pH 7. These short chains had less
random walk steps and thus were already in rod shape conformation at pH 7. Longer chains could
still make a highly stretched coil and therefore provided steric hindrance.

The nanotube dispersions were analyzed by SEM in both acidic and alkaline environments aimed
at supporting the observations gathered from UV-Vis spectroscopy. In acidic conditions, the PS26PAA226

composite (Figure 7a) shows well separated CNTs structures thus suggesting their homogeneous
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distribution in the original dispersion before drying. In alkaline conditions, nanotubes were mostly
aggregated (Figure 7b), which is a result of the conformational change of the polymer as hypothesized
in Figure 6. Notably, in UV-Vis measurements, aggregated nanotubes were separated by centrifugation
from the analyzed dispersion, thus explaining the low absorbance value for alkaline PS26PAA226

(Figure 3). Similarly, for PS26PAA580 a lower CNT concentration was found in solution when the
pH was increased from 5 to 9.5. However, differently from PS26PAA226, the decrease was much less
severe, because Figure 7e,f still shows nanotubes homogeneously dispersed suggesting good stability
of the remaining nanotubes. The SEM images confirm the observations made with UV-Vis (Figure 3),
because this also showed a milder response for longer PAA chains. In summary, the micrographs in
Figure 7 were visual evidence of the pH-responsive stabilization of MWCNTs in water that was easily
modulated by tuning the length of the PAA chain.
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3.5. Resistivity of MWCNTs/Polymer Composites

The resistive behavior of the MWCNTs/polymer composites was finally evaluated by depositing
water dispersions containing different MWCNTs content on an electrical circuit. The MWCNT content
of the solid samples was estimated by using TGA (see supporting information, Figure S4) by plotting
the relative residue mass at 450 ◦C as a function of the alimentation content (Figure 8). A logarithmic
empirical fit of the experimental data was used to estimate the actual MWCNTs weight percentage in
the composites (Figure 8).
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Figure 8. Plot of MWCNT wt% in the feed versus MWCNT wt% as obtained by TGA and fit with
a logarithmic curve.

The PS26PAA580 copolymer was selected since it provided the best dispersions at high pH. After
drying the MWCNTs/PS26PAA580 composite in an oven, the electrical resistance of the electrode
was measured at room temperature and plotted (Figure 9) against the MWCNTs weight percentage
calculated according to Figure 8. For alkaline samples, 1 M NaOH was added dropwise to the same
dispersions until the desired pH was measured. This means that alkaline samples had the same CNTs
concentration after drying. The electrical resistance was eventually measured on three replicates.Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 16 
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For conductive fillers in an insulating matrix, the conductance depends on the percolative networks
among the nanotubes. The percolation threshold (critical filler content where resistance sharply
decreases) [49] of a composite can be found by fitting the experimental data with Equation (1) [50].

R ∝
1(

φ−φp
)t , (1)

where R is the resistance of the composite,Φ is the filler content,Φp is the filler content at the percolation
threshold and t is the critical exponent, which is non-universal.

Figure 9 shows that alkaline samples display lower electrical resistance than the acidic ones,
with a percolation threshold of approximately 8.2 wt% for the former and 9.3 wt% for the latter
composites. This feature suggests that the composites obtained from alkaline dispersions possibly
contained MWCNTs in closer proximity to each other, in agreement with microscopy investigations.
Nevertheless, an effective contribution of the charge density on the electrical conductivity of MWCNTs
dispersions cannot be neglected [51,52].

3.6. Investigation of pH Responsive Behavior of the Composite

These experiments well evidence the pH-responsive behavior of the MWCNTs/polymer composites.
This behavior inspired us to carry out further studies aimed at determining the possible influence of
the resistive character of the composite even in the solid state by means of an organic base dissolved in
acetone, i.e., a non-solvent for the polymer. DABCO (pKa is 8.82) was selected as the organic base since
it is able to neutralize the acidic groups of the PAA block (pKa of acrylic acid monomer is 4.25) of the
PS26PAA580 copolymer. The electrodes with drop casted CNTs/PS26PAA580 sample were submerged
in an acetone solution containing 5 g/L (0.45 mol/L) DABCO for half an hour. Indeed, a significant
decrease in electrical resistance was found after immersion for 15 min (Figure 10), thus suggesting that
the polymer microstructure could be altered even when deposited on a solid support. After removal
from the acetone solution, the electrical resistance value suddenly spiked to very high values, possibly
due to a quick drop in temperature, due to solvent evaporation. The effect of temperature on the
resistivity was not surprising since CNTs are known to be sensitive to temperature variations [53,54].
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Figure 10. Composites dried on electrodes were submerged in acetone or in a DABCO solution in
acetone (0.45 mol/L). After taking them out and waiting 24 h, the electrical resistance was compared
with the original resistance from which a ratio was calculated. The average of four measurements
was reported.

The electrical resistance reached then a stable value only after 24 h out of the acetone solution.
A possible explanation for this behavior was that water might have been removed from the composite
by acetone. Since PAA is hygroscopic, the composite can slowly reabsorb water from atmospheric
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humidity. This suggests that absorbed water plays a role in the microstructure (and thus electrical
resistance) of the composite. Notably, the humidity sensor made by using PAA has been effectively
proposed in the literature by Wu et al. [55].

4. Conclusions

In this study, a series of pH responsive amphiphilic PS-b-PAA copolymers with a variable length
of the PAA block were successfully synthesized. The polymers were found to be able to disperse
MWCNTs directly by sonication in water and with a loading depending on their composition. UV-Vis
and SEM investigations reported that PS-b-PAA copolymers with larger relative content of styrene
units were able to better disperse carbon nanotubes in water, due to the chemical affinity between
the aromatic moieties of the polymer and the graphitic nature of MWCNTs. Notably, the dispersion
stability was also affected by pH, as evidenced by a change in absorption in UV-vis experiments
and a decreased number of nanotubes visible from SEM micrographs. The stabilization ability of all
polymers was higher at lower pH values possibly due to conformational changes of the PAA block,
resulting in a different stabilization mechanism. At low pH, the stabilization mechanism is likely based
on steric hindrance, since the zeta potential is too low for the alternative mechanism, electrostatic
repulsion. Deprotonation of PAA at high pH caused improved electrostatic repulsion as evidenced by
the higher zeta potential, but at the same time the charges on the polymer reduced the affinity for the
nanotubes. Furthermore, the hypothesized globule to stretched conformational change parallel to the
nanotube surface reduced steric hindrance, thus resulting in an overall decrease in CNTs stabilization.

Solid dispersions of the prepared mixtures resulted in being electrically conductive, with composites
obtained from alkaline dispersion displaying lower percolation thresholds. This pH-dependent behavior
was tentatively explained in terms of conformational changes of PAA from globule to stretched,
which decreased the steric hindrance between the nanotubes and favored the formation of effective
percolative networks. Moreover, by exposing the solid composite to an organic base dissolved in acetone,
the resistance significantly dropped, thus suggesting the potential application in the field of sensing.

Overall, this paper evidenced the versatility of the prepared polymers in providing liquid or solid
CNTs dispersions directly in water, with the pH response tuned by the block lengths of the amphiphilic
polymer. This feature is merely illustrative, but it was designed to stimulate the exploration of novel
possibilities to tailor and manage the electrical conductance of polymeric materials, having in mind
possible applications where a pH-dependent electrical response is relevant, such as, for example,
the design of sensors, wearable electronics or bio-inspired smart materials.
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