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Spatiotemporal dynamics of 
counterpropagating Airy beams
Noémi Wiersma1,2, Nicolas Marsal2, Marc Sciamanna2 & Delphine Wolfersberger2

We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating 
Airy beams interacting in a photorefractive crystal under focusing conditions. For a large 
enough nonlinearity strength the interaction between the two Airy beams leads to light-induced 
waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity 
strength and the beam’s intensities and is improved when comparing to the situation using Gaussian 
beams. We further identify the threshold above which the waveguide is no longer static but evolves 
dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-
soliton moves erratically between privileged output positions that correspond to the spatial positions 
of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating 
dynamically varying waveguides, optical logic gates and chaos-based computing.

Instabilities, self-oscillations and chaos are fundamental processes in nonlinear optics. Multiple beams’ 
interactions in nonlinear media, even without external feedback, can give rise to beam self-trapping and 
spatial solitons that may further destabilise to spatiotemporal dynamics and then, eventually, chaos1–3. 
Multiple parameters, such as the optical intensity or the misalignment of the interacting beams4,5, enable 
to control the sequence of bifurcations from stationary dynamics to deterministic chaos6.

Interestingly the onset of spatiotemporal instabilities observed for various beams’ configurations in 
different nonlinear media presents the same evolution pattern: initial diffraction, collapse to the soliton 
shape, then time-periodic dynamics to chaotic instabilities, where the interacting solitons rotate and 
twist around each other in an erratic way7–11. Solitons are self-trapped light beams propagating without 
change in a diffractive nonlinear medium. They are generated by the photoinduced refractive index in 
media, as in Kerr or photorefractive crystals or in nematic liquid crystals10,12,13. The interacting soli-
tons enable various optically induced waveguiding structures in the nonlinear media. The control of the 
mutual exchange of energy between interacting solitons enables to create all-optical guiding, dividing 
and switching devices14,15 and even over large distances in different media16. Apart from Gaussian beams, 
other diffractive beam profiles such as optical vortices present solitonic behaviour under self-focusing 
conditions and exhibit similar dynamical routes to instabilities17.

Recent works have shown the possibility to induce spatial solitons from self-focusing of ideally 
non-diffractive beam profiles including optical Airy beams18–20. As a truncated solution of the ideal 
Airy waveform, the optical Airy beam has the advantage of combining the parabolic trajectory and 
self-healing properties of the Airy wave solution over a finite distance with the diffractive beam prop-
erties for larger propagation distances. Airy beams have been extensively studied in the recent years. 
First discovered in quantum mechanics21, the Airy wave packet has been suggested as a non-spreading 
and self-healing solution of the Schrödinger equation with a parabolic propagation. Due to these unique 
properties, the optical analogy has been of a great interest. In 2007, Christodoulides et al. has generated 
the first optical Airy beam using a spatial light modulator (SLM)22. The use of an SLM or other genera-
tion methods, as a photonic crystal23, allows for controlling the exact linear propagation trajectory of the 
beam24,25. Applications of the Airy beams are very large, from optical micromanipulation of particles26, 
to laser processing27 or optical routing28, including plasmonic circuitry and surface tweezers using Airy 
plasmons29.
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As already mentioned, under high-focusing conditions the Airy beam undergoes soliton-like behav-
iour. The main part of the beam power is focused in a so-called off-shooting soliton while the remaining 
part propagates as in the linear case. Non-stationary dynamics of a single Airy-soliton have been shown 
in Kerr media and called moving solitons30. The collision of two Airy beams also suggests a large variety 
of interaction schemes. The solitonic interactions have been demonstrated in the spatial domain using 
co-propagating Airy beams31–34 and in the temporal domain using Airy pulses35,36. Recently we have 
studied the counterpropagating (CP) configuration in photorefractive media37. First results have shown 
more complex stationary waveguide structures than those induced by interacting Gaussian beams. A sin-
gle Airy beam leads to waveguiding structures with multiple outputs. The additional interactions induced 
by a CP beam allows for achieving complex waveguiding structures that would otherwise require the CP 
interactions of more than two Gaussian beams. But these stationary structures only exist for a limited 
range of the nonlinearity strength. As will be shown here, by increasing the nonlinear coupling strength, 
spatiotemporal dynamics appear that result from the interactions of the two counterpropagating (CP) 
Airy beams and that differ from what is known from CP Gaussian beams’ systems.

In this paper we analyse numerically the spatiotemporal dynamics of two incoherent counterpropa-
gating Airy beams interacting in a photorefractive crystal under focusing conditions. When a positive 
external electrical field is applied on the crystal, multiple waveguiding structures are photoinduced. If we 
increase the nonlinearity of the system, we demonstrate the existence of a threshold curve above which 
non steady-state dynamics appear. The threshold leading to spatiotemporal dynamics can be tuned by 
the crystal length, the nonlinearity strength and the beams’ intensities. For similar operating conditions 
this threshold is larger for interacting Airy beams when compared to interacting Gaussian beams, hence 
demonstrating the larger stability range of the photoinduced Airy waveguides. Above the threshold the 
position of the off-shooting soliton varies periodically in time. The period is of the same order of mag-
nitude than the material nonlinear optics time-scale and the amplitude is determined by the Airy prop-
erties, hence both properties can be controlled by the beam interaction scheme. When further increasing 
the nonlinear strength and/or the crystal length, this time-periodic dynamics bifurcates to a chaotic-like 
dynamics of the off-shooting soliton. The erratic motion of the soliton encompasses privileged positions 
that match the input positions of the multiple lobes of the counterpropagating Airy beams. The engineer-
ing of the Airy beam properties therefore allows to modify the topology of the resulting chaotic motion. 
These findings not only address the important issue of the Airy waveguiding stability but also suggest 
new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing.

Results
Modelisation and simulation scheme of two counterpropagating Airy beams. To study the 
nonlinear interactions of two CP Airy beams in a photorefractive medium, we consider the propagation 
of two identical one-dimensional Airy beams along the longitudinal z-axis. The two Airy beams are 
initially injected at each side of the crystal and have both the lobe size x0 and aperture parameter a, as 
given by the following equations8:
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where F0 and B0 correspond to the electric field amplitudes of respectively the forward beam F and the 
backward beam B, Ai represents the Airy function, x0 an arbitrary transverse scale and a the truncation 
factor. Counterpropagating beams are herein defined by their opposite propagation directions along the 
longitudinal z-axis [Fig.  1]. Each Airy beam is formed of successive lobes, the first order (centered at 
x =  − x0) being the main lobe. The nonlinear propagation of these two incoherent CP beams can be 
expressed as follows:
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where Γ = ( )kn x r Eeff e0 0
2  is the nonlinear photorefractive coupling strength (reff is the effective compo-

nent of the electro-optic tensor and Ee the external electric field), E0 is the homogeneous part of the 
x-component of the photorefractive space-charge field. The temporal evolution of E0 is calculated using 
a relaxation-type dynamics given by: τ∂ + = − /( + )E E I I1t 0 0 0 0 , where τ is the relaxation time of the 
crystal and = +I F B0

2 2. A positive external electrical field is applied along the c-axis of the crystal 
(parallel to the x-axis) [Fig. 1(b)]. Through the Pockels effect the optical Airy beams locally photoinduce 
a refractive index variation in the photorefractive crystal which leads to optically induced complex 
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waveguiding structures in the photorefractive nonlinear material. The induced refractive index distribu-
tion is then related to the combination of the multiplexed focused Airy beams F and B.

Under focusing conditions, the Airy beam undergoes nonlinear interactions inside the photorefrac-
tive medium and most of the beam turns into an “off-shooting soliton”, while a small fraction of the 
power remains a self-accelerating linear packet [Fig. 1(b)]18,30. As shown recently37, the refractive index 
variation structure photoinduced by a single or two CP Airy beams enables to guide optical beams along 
the crystal similar to systems of two CP conventional beams14. As interactions of two CP Gaussian beams 
or two CP vortices lead to similar spatiotemporal dynamics, we question whether self-accelerating Airy 
beams undergo a similar spatiotemporal behaviour and how the Airy properties influence the dynamics. 
To describe these dynamics, we analyse the spatiotemporal evolution of the output position of the for-
ward off-shooting soliton at the crystal’s output plane z =  L [Fig. 1(c)].

Onset of spatiotemporal dynamics. The interaction schemes of two CP beams depend on two 
main control parameters, that are the nonlinear coupling constant Γ  and the crystal length L. Figure 2 
shows a stability diagram in the plane of the following parameters: (Γ , L). It depicts the various spatio-
temporal dynamics of the forward-propagating “off-shooting” soliton’s intensity at the output I(x, z =  L) 
for two different intensities = = .F B 1 50 0  [Fig.  2(a)] and = =F B 60 0  [Fig.  2(b)]. For an Airy 
lobe’s waist x0 =  10μm (a =  0.01), the parameter range corresponds to 1cm ≤  L ≤  10cm and, for Γ , an 
external electrical bias field of a few kV/cm.

For low Γ -values (Γ  =  3), the nonlinearity Γ  applied on the system is not high enough to create locally 
a large refractive index variation inside the crystal by the photorefractive effect and therefore to induce 
an off-shooting soliton. Still, the propagation of each Airy beam optically induces a curved waveguide 
along the deflecting Airy trajectory28. We call this region ‘static waveguide without off-shooting soliton’. 
For a larger nonlinearity strength, each CP Airy beam undergoes self-trapping and a part of the beam’s 
energy turns into an “off-shooting” soliton [Fig. 1(b)]. We define the existence of an off-shooting soliton, 
when at least %10  of the input intensity exits at z =  L and can be clearly distinguished from the linear 

Figure 1. Two counterpropagating Airy beams’ configuration in a photorefractive crystal. (a) Linear 
propagation in an unbiased photorefractive crystal (Γ  =  0). (b–c) Nonlinear interaction scheme of two 
counterpropagating Airy beams in an externally biased photorefractive crystal: (b) intensity field inside the 
crystal induced by weak nonlinear interactions, (c) spatiotemporal evolution of the forward “off-shooting 
soliton” for stronger nonlinear interactions at z =  L.

Figure 2. Typical dynamical behaviour of counterpropagating Airy beams in the parameter plane (Γ, L): 
(a) with low input intensities ( = = . )F B 1 50 0 , (b) with high input intensities ( = = )F B 60 0 .
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output beam. Since almost half of the energy is stored in the first Airy lobe30, the nonlinearity of the 
system mostly influences the main lobes and the off-shooting solitons. The interaction of the two CP 
Airy beams then leads to various new static waveguide structures and we call this region ‘static wave-
guide with off-shooting soliton’. As presented in reference37, the photoinduced waveguide structure ena-
bles a Gaussian beam to exit the crystal at a single or at two output positions simultaneously. The 
parabolic trajectory of the CP Airy beams enables waveguiding structures even for transverse shifts of 
the interacting beams that by far exceed the beam waist. When we still increase the nonlinearity Γ , the 
waveguide is no longer steady in time but rather shows stable time-periodic dynamics: the off-shooting 
soliton evolves from a constant transverse output position to an output position that oscillates harmon-
ically in time along the x-axis [Figs 1(c) and 3(c)]. We call this region ‘harmonic oscillations’. Similar to 
the case of CP Gaussian beams8, the critical nonlinearity strength that delimits the onset of time-periodic 
oscillations of the waveguide decreases with the increase of the crystal length L, see the line labelled 
‘threshold static-dynamic’ in Fig. 2.

For an even larger Γ  and/or crystal length L, the time-periodic waveguide dynamics is replaced by 
chaotic-like spatiotemporal dynamics. The position of the off-shooting soliton does not vary periodically 
in time but rather in an erratic way. As will be shown later, while the trajectory is erratic in time, the 
motion of the off-shooting soliton is attracted towards the input positions of the lobes of the coun-
terpropagating Airy beam. We call this parameter region ‘chaotic waveguide’. The critical nonlinearity 
leading to unstable waveguiding decreases with the increase of the crystal length L, as is also true for CP 
Gaussian8 and vortex beams (see the line labelled ‘threshold dynamic-unstable’ in Fig. 2).

Interestingly, we identify two additional regions. In both cases (a) and (b) the time-periodic dynam-
ically varying waveguide may re-stabilise to a static waveguide when increasing the nonlinearity. The 
off-shooting soliton stabilises again at a constant output position. The possibility to stabilise again the 
photoinduced waveguiding by increasing the nonlinearity strength has not been observed earlier with 
CP Gaussian beams and is related to the multilobe shape of the Airy beams. Therefore this suggests an 
advantage in using CP Airy beams. We also identify another parameter region where the position of the 
off-shooting soliton varies periodically in time but not in an harmonic way. We have simply called this 
region ‘time-periodic waveguide’. This specific dynamics bifurcates from the harmonic waveguide case 
but is also observed as a bifurcation of the chaotic waveguide case. We shall detail these dynamics and 
their bifurcations in the next section.

Similarly to other CP beams’ systems, the intensity of the input beams is an important parameter. 
When increasing the total optical intensity injected in the crystal through the CP beams the refractive 
index variations increases, hence resulting in more nonlinear interactions; see [Fig.  2(b)]. When we 
compare the Fig. 2(a,b), the critical nonlinearity that leads to either a time-periodic waveguide or even 
chaotic waveguide for a normalized intensity = .F 1 50

2  [Fig. 2(a)] is larger than for =F 60
2  [Fig. 2(b)]. 

The stability of the waveguide is therefore reduced by the increase of the optical intensity.
Finally it is worth comparing the critical nonlinearity that leads to dynamically varying waveguide 

(our dashed line) in the case of CP Airy beams with the one computed for CP Gaussian beams (dotted 
line). Besides the fact that Airy-induced waveguides have more complex features than Gaussian-induced 
waveguides, it appears also that, the Airy-induced waveguides are stable in a large range of parameters 
and in particular for a large range of nonlinearity strength and/or crystal length. This unique property 

Figure 3. Spatiotemporal dynamics of two counterpropagating Airy beams in a long crystal L = 5.5Ld, 
with the normalized intensities = = .F B 1 50 0 . (a) Bifurcation diagram of the transverse output position 
of the forward off-shooting soliton at z =  L, with the transverse normalized intensity profile of backward 
Airy beam at z =  L. (b–g) Temporal evolution of the transverse output position of the forward off-shooting 
soliton at z =  L: (b) steady-state (Γ  =  9.3), (c) sinusoidal oscillations (Γ  =  10.4), (d) second steady-state 
(Γ  =  12.7), (e) first instabilities (Γ  =  14), (f) periodical non-sinusoidal oscillations (Γ  =  14.9) and (g) 
instabilities (Γ  =  18). E.g. experimentally for CP Airy beams in a SBN:75 crystal (L*5mm*5mm) with 
x0 =  10μm: L =  28mm, Uext ∈  [500V, 900V].
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of Airy-induced waveguides is related to the diffraction-free propagation and multilobe shape of Airy 
beams.

Detailed route to chaos. In this section we analyse the nature and the evolution of the spatiotem-
poral dynamics of two CP Airy beams for a fixed crystal length L when the nonlinear coupling strength 
Γ  is increased. Physically the nonlinearity is increased through the positive electrical bias field applied 
on the crystal. Although as mentioned earlier the stability of the photoinduced waveguide depends on 
both the crystal length L and the beam intensities, we shall restrict ourselves to one case where 
= = .F B 1 50 0  and L =  5.5Ld. For Airy beams with the parameters x0 =  10μm, a =  0.1, it corresponds 

to a crystal length of L =  28mm (see arrow [Fig. 2(a)]). This case illustrates the complexity underlying 
the sequence of bifurcations to spatiotemporal instabilities of the waveguide [Fig.  3(a)]. A similar 
sequence of bifurcations occurs when varying the system parameters. For each Γ-value, we simulate the 
propagation of two CP Airy beams over tf =  100τ0, where at each crystal’s side the main lobe of the CP 
Airy beams is centered around x =  − x0 for its input position. We then display the spatiotemporal dynam-
ics of the forward off-shooting soliton at the crystal’s output side z =  L along the transverse x-axis by 
plotting the off-shooting transverse position versus time [Fig. 3(b–g)]. To avoid the transient dynamics, 
we detect the extreme x-positions taken by the off-shooting soliton within the times t1 =  20τ0 and 
tf =  100τ0. The bifurcation diagram on Fig.  3(a) resumes the position of the spatial output of the 
off-shooting soliton during time: for each Γ-value, the various dots display the x-extrema taken by the 
off-shooting soliton along time.

The diagram on Fig.  3(a) displays the route to instabilities from a system with a weak nonlinearity 
(Γ  =  9) to a highly nonlinear system (Γ  >  16). For Γ ∈ , .[9 10 2], the bifurcation diagram displays a 
steady-state transverse output position of the off-shooting soliton during time [Fig. 3(b)]. The steady-state 
case depicted in Fig. 3(b) corresponds to the waveguide structures demonstrated in37, where the CP Airy 
beams and their off-shooting solitons co-exist in the crystal. When Γ ∈ . , .[10 3 11 8], two extrema of the 
x position of the off-shooting soliton appear for a given Γ  value. The time-trace of the x position of the 
off-shooting soliton displays a sinusoidal evolution [Fig. 3(c)]. We observe a stable oscillating dynamics, 
where the off-shooting soliton rotates periodically around its characteristic position x =  2.5x0. The period 
of the sinusoidal oscillation is about 3.5τ0, i.e. is of the same order of magnitude than the material non-
linear optics time-scale. The amplitude of the oscillation is determined by the Airy properties and in 
particular their deflection characteristics. Indeed the amplitude of the oscillation is larger for a longer 
crystal since by increasing the crystal length, the CP Airy beams deflect more before colliding. The 
Fig. 3(d) shows that this oscillating soliton dynamics re-stabilises when increasing the nonlinearity lead-
ing to a new static waveguide structure. This singular case will be explained in details and illustrated in 
Fig. 4(b) of the next section.

Figure 4. Static waveguides: intensity fields of two CP Airy beams inside a PR crystal under focusing 
conditions (L = 5.5Ld). With initial intensity = = .F B 1 50 0  [Fig. 2(a)]: (a) below the threshold curve 
(Γ  =  10), (b) re-stabilisation above the threshold curve (Γ  =  12.5). (c) With initial intensity = =F B 60 0 , 
on the threshold curve (Γ  =  7) [Fig. 2(b)].
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When increasing the nonlinearity strength above Γ  =  13, the position of the off-shooting soliton pre-
sents an erratic motion along the output plane [Fig.  3(a)]. Figure  3(e) indicates that the soliton tends 
to follow alternatively a complex time-periodic, then a chaotic-like behaviour. As depicted on Fig. 3(f), 
when we increase the nonlinearity (Γ  =  14.8), the chaotic-like evolution of the position of the off-shooting 
solution stabilises to a time-periodic dynamics where oscillations at a slower time-scale modulate the 
dynamics with a higher amplitude than for the harmonic oscillation depicted in Fig. 3(c).

Finally when Γ  >  15.3, the time-periodic dynamically varying waveguide becomes unstable and the 
position of the off-shooting soliton rotates in an erratic way around the single Airy case position x =  0 
and the CP main lobe’s position x =  − x0 [Fig.  3(g)]. It is worth noting that for a very high coupling 
strength (Γ  >  16.3) the erratic motion of the off-shooting soliton encompasses additional attractive 
x-values at ∈ − . , − . , − .x x x x{ 3 2 4 8 6 2 }0 0 0 . Interestingly these x-values correspond to the respective 
input positions of the second, third and fourth lobe orders of the CP Airy beam [Fig. 3(a)]. The charac-
teristics of this chaotic soliton motion will be further discussed in the next sections.

Re-stabilisation of the waveguide for large nonlinearity strength. As previously emphasized in 
Fig.  2, dynamically varying waveguides photoinduced by two counterpropagating Airy beams can 
re-stabilise when the nonlinearity Γ  increases. So far, the dynamical behaviour of two CP Gaussian 
beams has only shown an evolution from a steady-state, then time-periodic to chaotic like regimes. The 
Fig. 4 compares the typical static waveguides with off-shooting soliton that can be observed in the two 
stability diagrams [Fig. 2(a–b)]. Figure 4(a) corresponds to the waveguide structures presented in37 where 
a Gaussian probe beam can be guided along the crystal to one or two outputs. Figure 4(b) illustrates the 
new waveguide structure in the re-stabilization zone (‘static waveguide with off shooting soliton’ above 
the line labelled ‘threshold static-dynamic’ [Fig.  2]). This waveguide structure offers the same type of 
photoinduced waveguides as in Fig. 4(a) but with a better coupling efficiency (up to %55  instead of %40 ) 
in the off-shooting solitons due to the stronger focusing nonlinearity. Figure 4(c) also presents a particu-
lar steady-state structure in the strong intensity case = =F B 60 0  at two parameter points: (L =  5, 
Γ  =  7.5) and (L =  5.5, Γ  =  7). Contrary to the usual steady-state case, where the CP Airy beam induces 
a transverse shift of the offshooting soliton37, the off-shooting soliton changes its output position and 
merges exactly into the main lobe of the CP Airy beam. In the configurations (b) and (c) where the 
nonlinearity of the system is increased through Γ or the initial intensity, the space-charge field photoin-
duced by the multiple lobe orders of the two CP Airy beams has a significant role in the interaction 
schemes in the photorefractive crystal. Although the main power is transferred into the off-shooting 
soliton during the nonlinear propagation of the Airy beams30, the secondary lobes of the Airy beams are 
essential for the re-stabilization of our system above the conventional steady-state threshold curve.

Chaotic motion of Airy-induced soliton. As previously emphasized, the dynamical behaviour of 
the photoinduced waveguide significantly depends on the crystal length. In the ‘chaotic waveguide’ 
region [Fig. 2], we propose therefore to compare the situation of a short crystal (e.g. L =  2.5Ld =  13mm) 
and the one of a long crystal (e.g. L =  5.5Ld =  28mm). It is worth mentioning that due to their parabolic 
trajectory, the two CP Airy beams intersect at = .= .x x0 7L L2 5 0d

 for the short crystal and at == .x x7L L5 5 0d
 

for the long crystal. As a result, the photoinduced waveguides originate mostly from the interaction of 
the first and second lobe orders of the CP Airy beams in the case of a short crystal, and from the inter-
action of the four first lobe orders of the CP Airy beam in the case of a longer crystal. The resulting 
waveguiding structure in the case of a longer crystal will be larger along the transverse x-axis 
(∆ ≈= .x x7L L5 5 0d

 instead of ∆ ≈= .x xL L2 5 0d
 in the case of a short crystal). Similarly, in the case of a long 

crystal, the transverse trajectory of the off-shooting solitons will shift from its typical transverse position 
xsoliton =  0 towards the +  x-direction.

In particular, as illustrated in Fig. 3(a,g) for a long crystal, under high nonlinear conditions, the sys-
tem of two CP Airy beams shows a peculiar instability pattern: the output positions of the off-shooting 
soliton in the unstable regime appear to be attracted toward very specific output positions, which corre-
spond to the respective input positions of the different lobe orders of the CP Airy beam. Figure 5 depicts 
the statistical distribution of the output position of the off-shooting soliton in (a) a short crystal (L =  2.5Ld) 
and (b) in a long crystal (L =  5.5Ld) with = = .F B 1 50 0 . The output positions of the off-shooting 
soliton are not distributed in a continuous way but rather in a discrete way. The privileged output posi-
tions match with the input positions of the Airy lobes of the CP backward beam (blue zone). Also the 
attraction strength, measured by the highest probability in the plotted histograms, decreases for the 
higher lobe orders, as the space-charge field related to the energy distribution of the Airy beam decreases 
along the − x-axis. In the short crystal case (a), the off-shooting soliton is also attracted towards 
the +  x-axis, at the output positions of the Airy lobes of the forward beam (green zone).

Such spatially localized instabilities have never been observed in an optical system using CP beams8,11. 
Our system made of CP Airy beams therefore creates a chaotic motion of the off-shooting soliton whose 
topology can be engineered by both the Airy beam properties and the photorefractive crystal nonline-
arity strength and length. Recent years have seen a tremendous interest in applications of optical chaos 
for all-optical signal processing including optical generation of random numbers. The most conclusive 
proposals so far have used the temporal chaotic output of semiconductor lasers38. The digital sampling 
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of optical chaos allows to extract random bits at high bit rate39. The extension to massive parallel com-
puting is however limited in that it requires either a large number of such chaotic lasers or the use of 
uncorrelated emission from individual laser longitudinal or transverse modes. In the present scheme, one 
has access to a chaotic output (the erratic motion of the off-shooting soliton) that is by essence spatially 
multiplexed at discrete positions that match the locations of Airy beam lobes. Our findings therefore 
suggest innovative ways of performing multiplexed chaos-based optical computing.

Discussion
To conclude, the interaction of two CP Airy beams in a photorefractive crystal leads to peculiar spa-
tiotemporal dynamics. The system evolves from static to time-periodic then chaotic waveguides when 
increasing the nonlinearity strength and the crystal length. We demonstrated the existence of a thresh-
old curve above which non steady-state dynamics appear. By comparison to similar studies using CP 
Gaussian beams, photoinduced Airy waveguides are stable for a larger range of parameters. Also on the 
route to instabilities, we identify a singular additional region where dynamical waveguides re-stabilise 
to static waveguides with a better coupling efficiency. When the system bifurcates to the chaotic-like 
dynamics, the off-shooting soliton moves in an erratic way with privileged positions that match the input 
positions of the multiple lobes of the CP Airy beams. Such spatially localized instabilities suggest inno-
vative ways of performing optical computing based on spatiotemporal chaos. The unique properties of 
static and dynamic Airy waveguide structures motivate experimental demonstration and implementation 
in different nonlinear optical media.
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