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Abstract: The intestinal microbiome continues to shift and develop throughout youth and could
play a pivotal role in health and wellbeing throughout adulthood. Environmental and interpersonal
determinants are strong mediators of the intestinal microbiome during the rapid growth period
of preadolescence. We aim to delineate associations between the gut microbiome composition,
body mass index (BMI), dietary intake and socioeconomic status (SES) in a cohort of ethnically
homogenous preadolescents. This cohort included 139 Arab children aged 10–12 years, from varying
socioeconomic strata. Dietary intake was assessed using the 24-h recall method. The intestinal
microbiome was analyzed using 16S rRNA gene amplicon sequencing. Microbial composition
was associated with SES, showing an overrepresentation of Prevotella and Eubacterium in children
with lower SES. Higher BMI was associated with lower microbial diversity and altered taxonomic
composition, including higher levels of Collinsella, especially among participants from lower SES.
Intake of polyunsaturated fatty acids was the strongest predictor of bacterial alterations, including
an independent association with Lachnobacterium and Lactobacillus. This study demonstrates that the
intestinal microbiome in preadolescents is associated with socioeconomic determinants, BMI and
dietary intake, specifically with higher consumption of polyunsaturated fatty acids. Thus, tailored
interventions during these crucial years have the potential to improve health disparities throughout
the lifespan.

Keywords: microbiome; dietary intake; school age; socioeconomic status; obesity

1. Introduction

The intestinal microbiome is interconnected with health and wellbeing throughout the
life cycle, especially during the early years of life [1], and during the rapid growth periods
in later childhood [2]. Recent studies have established that the microbiome continues to
shift and develop throughout youth and could play a pivotal role in the development or
prevention of various conditions [3], including manifestations in the gut–brain axis [4,5],
the gut–liver axis [6,7], immune function [8] and various metabolic diseases [9,10]. Thus, it
is crucial to better understand the relationship between the developing child’s microbiome
and various environmental exposures, including nutritional status and socioeconomic
determinants.

Diet is a key regulator of microbiome structure and function across the lifespan [11].
Microbial colonization in the first years of life has been addressed; however, studies during
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later childhood and adolescence are sparse [12]. Moreover, socioeconomic status (SES) is
a strong determinant of both dietary-associated health disparities [13,14] and intestinal
microbiome [15–17]. Nonetheless, the relationships of socioeconomic factors, dietary intake
and the intestinal microbiome remain elusive, especially during the first two decades of
life. This crucial developmental period represents a unique opportunity to beneficially
manipulate the microbiome through dietary interventions, which in turn has the potential
to affect both short- and long-term health outcomes.

Herein, we aim to delineate the associations of SES and dietary intake on the intestinal
microbiome composition of healthy pre-adolescents.

2. Materials and Methods
2.1. Study Population and Design

This study was conducted in two Arab villages (referred to as villages A and B) in
northern Israel, located ~10 km apart in the Hadera subdistrict. The Arab population in
Israel is in transition, marked by consistent improvement in educational attainment and in
health indicators.

During 2017, 12,900 residents lived in village A and 14,400 in village B [18,19]. The
villages were specifically selected to represent various socioeconomic strata. The SES ranks
of the villages ranged from 2 to 3 on a scale of 1–10; the highest rank is 10, i.e., a higher
rank represents a better SES [20]. The villages are connected to piped water and sanitation
infrastructure, and are connected to telephone, internet and cable television networks. The
villages have primary care clinics managed by the health maintenance organizations, and
mother and child health clinics which provide preventive services.

The traditional diet in the Arab population is based on the Mediterranean diet, in-
cluding large portions of vegetables, fruit, and olive oil [21]. However, shifts towards
Westernized diets are evident, including manufactured food, sweets, and soft drinks [22].

The original cohort comprised 233 children: 134 (57.5%) from the lower SES village
(B) and 99 (42.5%) from the higher SES village (A). The children were recruited at age
1–9 weeks during 2007. The cohort has been described elsewhere [23]. Inclusion criteria
were: (1) a singleton birth; (2) no prenatal/perinatal complications; (3) no birth defects or
diseases that might affect growth; (4) birth weight > 2 kilogram (kg); (5) gestational age at
birth > 34 weeks.

During 2017–2019, a follow-up examination was conducted of the same children,
aged 10–12 years. Of the 233 children in the original cohort, one child died due to a road
accident, two children with developmental delay and special needs were excluded from the
current analysis, and 24 were not located. Overall, 207 (88.8%) families were successfully
contacted. Of them, 18 (8.7%) refused to participate, 15 (7.2%) initially consented but
subsequently withdrew their consent, and 174 (84.1%) agreed to participate in the study. Of
the 174 children, 149 completed both the dietary intake and anthropometric measurements
and 139 provided a stool sample for microbiome analysis. Compliance to take part in the
study was 75% (Supplementary Figure S1).

2.2. Data Collection and Definition of the Study Variables

Parents who provided informed consent were interviewed (face-to-face) in Arabic to
collect information on the children’s health status and dietary intake at school age.

2.3. Dietary Intake Questionnaire

Information was collected on dietary intake using the 24-h food recall method [22].
Twenty-four-hour dietary recall interviews (multiple pass) were performed in-person
in Arabic with the participants and their mothers, according to a protocol of the Israeli
Ministry of Health (MOH). Using three passes, the interviewer asked the participant to
report his/her food intake during the 24 h preceding the interview.

The first pass was a quick list, in which the participants were asked to recall all that
they had eaten and drunk during the 24 h prior to the interview. The second pass was a
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detailed description of all the items mentioned in the first pass (quick list). In the third
pass, the interviewer assessed additional items of foods and beverages that might have
been missed in the earlier passes. The Arabic version of the MOH “Food and Food Quantities
Guide” was used to assist the participants in identifying foods and to quantify food during
the dietary recall. The guide was designed to enhance the accuracy of dietary intake
assessment and comprises pictures of common Israeli foods and comprehensive questions
about food. The interviewers underwent standard training on performing these interviews,
including lectures, exercises, supervised simulations, a real-life exercise, and feedback.
Quality control on the collected data was performed to assess completeness and coherence.
Feedback was provided to the interviewers as needed.

2.4. The Dependent Variable

The intestinal microbiome at school age was characterized by 16SrRNA sequencing
and further statistical analysis, as described below.

2.5. The Main Independent Variable

Dietary intake at school age was classified based on the 24-h food recall questionnaires
as described above. Data from these questionnaires were entered to the MOH’s computer-
ized dietary analysis program “TZAMERET” and nutrients database, which includes the
Israeli national foods. Reports of macronutrient and micronutrient intake were generated.
Dietary intake of nutrients was computed as continuous variables and adjusted for the
percentage of daily energy intake in Kilocalories (Kcals) and expressed as Kcal as % of
daily intake.

2.6. Co-Variates

Sociodemographic variables included: village of residence, age at enrollment, sex,
number of maternal and paternal schooling years. Household density index was calcu-
lated as the number of persons living in the household divided by the number of rooms
in the household. We created a composite score using confirmatory factor analysis that
included the variables: (a) residential SES rank; (b) number of paternal schooling years;
and (c) household crowding index. The analysis was implemented using “Principal Axis”
method, including rotation with “varimax” (R package psych). The selected variables
were tested with Bartlett’s test of homogeneity of variances (Bartlett’s K-squared = 504.2,
df = 2, p < 2.2 × 10−16) and Kaiser–Meyer–Olkin factor adequacy resulting with adequate
scores for all selected variables: village of residence = 0.61; crowding index = 0.7; and
number of parental schooling years = 0.63. The newly generated SES score was composed
from a combination of the standardized loadings of the above-mentioned variables: resi-
dential SES = 0.7; crowding index = 0.5; parental schooling years = 0.6 and was normally
distributed. The SES score was analyzed as a continuous variable and as a categorical
variable (below and above the median score (6.4), representing low and high SES groups,
respectively).

Anthropometric measurements. Measured height and weight were obtained by
trained research assistants. Standing height (without shoes) was recorded to the near-
est 0.1 centimeter (cm). Weight was measured (with light clothing) to the nearest 0.1 kg,
using a calibrated digital scale.

Body mass index Z (BMIZ) score (a continuous variable) was calculated using weight
and height measurements as compared to World Health Organization (WHO) data for
ages 5–19 years [24]. BMI was calculated as: weight (kg)/height2 (meters [m]). The BMIZ
score was further analyzed as a categorical variable. Children with BMIZ scores between
≥−2 and <1 standard deviations (SD) compared to the WHO reference population were
considered as having normal weight. Children with BMIZ scores between ≥1 SD and
≤2 SD (equivalent to BMI between ≥25 and <30 kg/m2 at age 19 years) were classified as
overweight, while >2 SD (equivalent to BMI 30 kg/m2 at age 19 years) were classified as
obese [25,26].
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2.7. Data Management

Data obtained through interviews and measurements were subjected to quality control
checks to assess completeness and consistency and analyzed using IBM SPSS Version 25
(IBM Corp, Armonk, NY, USA). WHO Anthro Plus were used to calculate age-and sex
adjusted BMIZ score, compared to the WHO growth standard for populations. The TZA-
MERET software and database served for entry of data from the 24-h recall questionnaires
to generate data on the intake of various nutrients.

2.8. Sample Collection, DNA Extraction and Bacterial DNA Amplification

Stool samples were collected using collection plastic cups and transferred on ice to
the study laboratory at Tel Aviv University. Samples were divided into two aliquots and
stored at −80 ◦C until testing.

DNA extraction was performed using the Magcore Nucleic Acid Extractor (RBC)
and the MagCore DNA Tissue kit according to the manufacturer’s instructions, with the
following adaptation: the samples were first transferred to a tube containing beads (Bead
Beating Tube Type C (Soil); Geneaid). Buffer GT from the Magcore kit was added to the
tubes, and then the tubes were placed in a Bead Beater (BioSpec Products, Inc., Bartlesville,
OK, USA) for two minutes. Proteinase K was then added to the samples and the extraction
proceeded according to the manufacturer’s protocol for the Magcore DNA Tissue Kit (RBC).
DNA concentrations were measured by nanodrop, and 20 ng of DNA was used for 16S
library preparation.

We prepared 16S libraries for Illumina sequencing using a two-step PCR protocol. In
the first PCR, primers containing tails were used to amplify the v4 region of the 16S rRNA
gene. The Access Array primers for Illumina (Fluidigm) are used in the second PCR to
add the adaptor and index sequences to each sample. After the second PCR, the reactions
are cleaned using Kapa Pure beads (Kapa) to remove unincorporated primers and any
primer–dimer produced. The concentration of each library was measured by Qubit (Life
Technologies, Carlsbad, CA, USA) using the Denovix ds DNA HS assay (Deonvix) and
then the samples were combined in equal amounts into a single pool. The pooled sample
was run on the tape station (Agilent, Santa Clara, CA, USA) using a DNA 1000 screen tape
to determine the size of the pooled libraries. The pooled library was then loaded on the
Illumina Miseq and sequenced using a Miseq v2 Kit (500 cycles) to generate 2 × 250 PE
reads. The data were de-multiplexed using Base space, the Illumina cloud software, to
generate 2 FASTQ files per sample. The FASTQ files were further analyzed using CLC-bio
(Qiagen, Hilden, Germany) to generate abundance and OTU tables.

2.9. Statistical Analyses

Quality control analysis of demultiplexed reads was performed using the Deblur [27]
workflow using default parameters, following the construction of a phylogenetic tree
(mafft-fasttree) and taxonomy assignment with QIIME2 software [28]. The quality process
with Deblur uses sequence error profiles to obtain putative error-free sequences, referred
to as “sub” operational taxonomic units (s-OTU). Taxonomic composition was assigned to
the s-OTUs using a pre-trained Naive Bayes classifier, trained on the Greengenes [29] 13_8
99% OTUs.

Downstream analysis was conducted using R version 4.0. Diversity analysis was cal-
culated at rarefaction depth of 9858. Bacterial α-diversity was estimated using the number
of observed OTUs, Shannon’s diversity and Fisher’s diversity indexes and compared across
independent variables using the Kruskal–Wallis test for categorical and Welsh ANOVA
for continuous variables. β-diversity was calculated using the phylogenetic Weighted
and Unweighted Unifrac distances. Permutational multivariate analysis of variance (PER-
MANOVA) was used to test differences in overall microbiome composition [30] (vegan;
adonis2 [31]), implementing a multivariate model with the following covariates: SES, BMI
and the reported dietary intake, expressed as percentage of the total daily intake (Kcals).
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Pairwise comparisons were performed using Dunn’s test, and controlled for false discovery
rate (FDR) with the Benjamini–Hochberg method (p < 0.05).

Differential abundance analysis was performed using Microbiome Multivariable Asso-
ciations with Linear Models (MaAsLin2) [32], a multivariable statistical framework for ex-
amining potential associations between clinical metadata and potentially high-dimensional
microbial multiomics data. MaAsLin2 finds associations between microbial features and
complex metadata in population-scale epidemiological studies, allowing us to include host
related environmental exposures as diet and SES determinants.

The current analysis was performed after filtering at minimum abundance level of
0.005 and minimum prevalence of 0.2 at the genus taxonomic level. We applied negative
binomial models as the chosen analysis method, after normalization of the count data
using EdgeR’s Trimmed Mean of M-values (TMM) [33], a technique that uses a weighted
trimmed mean of the log expression ratios between samples. The q-value threshold for
significance was 0.1, after multiple hypothesis correction using FDR.

Differences in demographics and dietary intake were examined using Wilcoxon rank
sum test for continuous variables and the chi square test for categorical variables. Post
hoc pairwise comparisons were conducted using the Bonferroni test to correct for multiple
comparisons.

2.10. Ethical Aspects

The Institution Review Board of Hillel Yaffe Medical Center and the ethics committee
of Tel Aviv University approved the study. Written informed consent was obtained from
parents of the participants.

3. Results
3.1. Demographic Characteristics and Dietary Intake

The current analysis included 139 (59% males) children aged 10.8 to 11.7 years (me-
dian = 11.42). The BMIZ score ranged from 0.22 to 2.59 (median = 1.61). One-third (33%)
of the participants lived in Village A and two-third (67%) in Village B. The composite SES
score of the cohort ranged between 4.69 and 7.53 (median = 6.45).

The dietary intake was characterized by a relatively high intake of carbohydrates
(providing 53% of daily energy), followed by fats (contributing 30% of daily calories) and
protein (providing 15% of daily energy intake). Most of the fat intake was monounsaturated
fatty acids (MUFAs; 11.4% of daily energy), followed by saturated fats (9.5% of daily energy)
and polyunsaturated fatty acids (PUFAs; 6.3% of daily energy). Total dietary fat intake was
significantly correlated with consumption of saturated fatty acids (Spearman’s r = 0.69,
p < 0.001), MUFAs (Spearman’s r = 0.68, p < 0.001) and PUFAs (Spearman’s r = 0.34,
p < 0.001). Carbohydrates intake was inversely correlated with protein intake (Spearman’s
r = −0.67, p < 0.001), fat (Spearman’s r = −0.75, p < 0.001), saturated fat (Spearman’s
r = −0.57, p < 0.001) and MUFAs (Spearman’s r = −0.6, p < 0.001), but not with PUFAs
intake (Figure 1A).

The BMIZ score was negatively correlated with SES scores (Spearman’s r = −0.22,
p = 0.009; Figure 1B), while PUFAs intake was depleted with increased SES scores (Spear-
man’s r = 0.34, p < 0.001; Figure 1C).

The median BMIZ score was significantly higher among participants from the lower
SES group (p = 0.024), with 65% of participants being overweight or obese in this group,
compared to 34% in the higher SES group. The intake of macronutrients was not signif-
icantly different between study groups; however, there was a trend of consuming more
protein and fat among the low SES group. There was a significantly higher consumption of
PUFAs amongst children from lower SES group (p = 0.001) (Table 1).
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Table 1. Demographic characteristics and dietary intake of the study participants.

Socioeconomic Status

Characteristic Overall, N = 139 a High SES, N = 70 a Low SES, N = 69 a p-Value b,c

Age 11.42 (10.83, 11.67) 11.04 (10.67, 11.50) 11.58 (11.42, 11.75) <0.001

Sex 0.9

Female 57 (41%) 29 (41%) 28 (41%)

Male 82 (59%) 41 (59%) 41 (59%)

Socioeconomic score 6.45 (4.69, 7.53) 7.53 (6.89, 8.13) 4.66 (3.83, 5.49) <0.001

Village <0.001

Village A 46 (33%) 37 (53%) 9 (13%)

Village B 93 (67%) 33 (47%) 60 (87%)

Household crowding 1.50 (1.15, 2.00) 1.20 (1.00, 1.50) 2.00 (1.50, 2.33) <0.001

Body Mass Index Z (BMIZ) score 1.61 (0.22, 2.59) 0.92 (−0.13, 2.27) 1.98 (0.68, 2.59) 0.024

BMIZ score classification 0.14

Normal weight 60 (43%) 36 (51%) 24 (35%)

Overweight 19 (14%) 8 (11%) 11 (16%)

Obese 60 (43%) 26 (37%) 34 (49%)

Carbohydrates intake (%Kcal) 53 (48, 57) 53 (49, 57) 51 (47, 57) 0.3

Protein intake (%Kcal) 15.0 (12.2, 18.6) 14.4 (11.8, 18.6) 16.0 (13.0, 18.5) 0.14

Fat intake (%Kcal) 31 (27, 35) 30 (26, 34) 31 (27, 35) 0.4

Saturated fat intake (%Kcal) 9.5 (7.5, 12.0) 9.5 (7.4, 12.3) 9.8 (7.7, 11.7) 0.8

Mono-unsaturated fat intake (%Kcal) 11.4 (9.2, 13.3) 11.0 (9.1, 13.2) 11.7 (9.4, 13.3) 0.5

Poly-unsaturated fat intake (%Kcal) 6.3 (3.2, 8.6) 4.1 (1.6, 7.9) 7.1 (5.5, 9.0) 0.001
a Data presented are median and interquartile range unless specified otherwise. b p Value was obtained by Mann Whitney test for
continuous variables and c Pearson’s Chi square test for categorical variables.
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An analysis of the dietary intakes of participants classified as overweight and obese
compared to their normal weight counterparts (Supplementary Figure S2), revealed that
overweight/obese children consumed less carbohydrates (p = 0.025) and a higher percent-
age of calories from fat (p = 0.05), including saturated fatty acids (p = 0.105) and MUFAs
(p = 0.079).

3.2. Microbial Diversity and Composition

Intestinal microbiome richness was not associated with SES scores (Shannon’s diver-
sity p = 0.31, Observed OTUs p = 0.129; Supplementary Figure S3A). The BMIZ score was
associated with a decrease in the number of observed OTUs, driven by the decreased rich-
ness among obese participants as compared to normal weight and overweight participants,
but the association was not statistically significant (p = 0.09 for both pairwise comparisons;
Supplementary Figure S3B).

There was no significant association between alpha diversity with carbohydrates
and fats intake (Shannon’s diversity p = 0.63 and p = 0.47, Observed OTUs p = 0.28 and
p = 0.35), including saturated fatty acids and MUFAs (Shannon’s diversity p = 0.23 and
p = 0.43, Observed OTUs p = 0.35 and p = 0.34). The percentage of calories consumed from
protein was significantly associated with Simpson’s evenness index (F = 5.38, p = 0.02;
Figure 2A). The consumption of PUFAs was associated with Simpson’s evenness index,
yet this association was not statistically significant (F = 3.35, p = 0.069; Figure 2B).
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A permutation-based analysis of variance model, which included the BMIZ score,
SES score and calorie adjusted intake explained 11% of the intestinal microbial variance
(Supplementary Table S1). Both the SES and BMIZ scores were significantly associated
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with microbial composition, with 5% of the variance explained by SES, and 1.2% by
BMIZ (R2 = 5%, p < 0.001 and R2 = 1.2%, p = 0.038, respectively; Figure 2C). None of the
macronutrients was associated with altered bacterial composition, except for PUFAs intake
(R2 = 1.2%, p = 0.014; Figure 2C).

A multivariable association analysis with linear models revealed specific taxonomic
alterations associated with BMIZ score, SES score and dietary intake (Supplementary
Table S2; Figure 2D).

The major taxonomic shifts were attributed to the SES, with significantly increased
abundance of Barnesiellaceae (p < 0.001), Rikenellaceae (p < 0.001) including genus Alistipes
(p < 0.001), the genera Delftia (p = 0.001), Odoribacter (p = 0.018), Parabacteroides (p = 0.01),
Bacteroides (p = 0.004), Clostridium (p = 0.004) and Ruminococcus (p = 0.072). The genera
Bulleidia (p < 0.001), Mogibacterium (p < 0.001), Prevotella (p = 0.017), and Catenibacterium
(p < 0.001) were inversely associated with SES score. However, the increased abundance
of Alistipes, Parabacteroides, Adlercreutzia and the family Erysipelotrichaceae, as well as the
lower abundance of Prevotella, Eubacterium and Dorea were attributed to the SES scores
alone. The BMIZ score was inversely associated with Catenibacterium and Coriobacteriaceae
(p < 0.001), while the relative abundance of Clostridium sensu stricto and Collinsella was
overrepresented with increased BMIZ score (p = 0.001 and p = 0.05, respectively). Significant
inverse associations were observed between the BMIZ score and Bulleidia, Rikenellaceae,
Clostridiales, Christensenellaceae and Odoribacter (p = 0.07, p = 0.01, p = 0.05, p = 0.01,
p = 0.071, respectively).

Protein and carbohydrates intakes were positively associated with Catenibacterium
(p < 0.001), Clostridium sensu stricto (p < 0.001), Lactococcus (p = 0.018, p = 0.03, respectively)
and members of Pasteurellaceae (p = 0.03, p = 0.025, respectively), while Ruminococcus was
depleted with increased daily consumption (p = 0.018, p = 0.036, respectively). Carbohy-
drates intake was also associated with the relative abundance of the genus Lachnospira
(p = 0.072).

Fat intake was associated with Catenibacterium (p < 0.001), Delftia (p = 0.031) and
members of Barnesiellaceae and Pasteurellaceae (q = 0.085, p = 0.047, respectively), while
the relative abundance of Clostridium sensu stricto, Ruminococcus and members of Coriobac-
teriaceae were depleted with increased intake (p = 0.033, p = 0.085, p < 0.001, respectively).
An association was found between MUFAs intake with Catenibacterium and Lachnospira
(p < 0.001, p = 0.069, respectively), while the relative abundance of Clostridium sensu stricto
and members of Coriobacteriaceae, Christensenellaceae and Barnesiellaceae were depleted
(p < 0.001, p = 0.074, p = 0.085, p = 0.017, respectively). The consumption of saturated
fatty acids was associated with Catenibacterium, Clostridium sensu stricto, Mogibacterium and
members of Coriobacteriaceae (p = 0.008, p < 0.001, p = 0.075, p < 0.001, respectively), while
members of Barnesiellaceae and genus Bacteroides were depleted (p = 0.068, p = 0.085,
respectively).

The intake of PUFAs was strongly associated with Clostridium sensu stricto, Lachnobac-
terium, Mogibacterium and members of Coriobacteriaceae (p < 0.001, p = 0.004, p = 0.085,
p < 0.001, respectively), while there was an inverse association with the relative abundance
of Delftia and members of Barnesiellaceae (p < 0.001, p = 0.001, respectively).

Since SES was the strongest explanatory variable of intestinal microbiome alterations,
and given the differences in age between the two SES groups, we performed a stratified
analysis, according to high and low SES groups (as described in the methods section; the
low SES group included 69 participants with median SES score of 4.66 and the high SES
group included 70 participants with a median SES score of 7.53). This allowed us to further
explore the associations of diet, BMI and the intestinal microbiome, independently from
the SES effect.

3.3. Diet–Microbiome Relationships within the Low-SES Subgroup

While there was no significant association between dietary intake and bacterial alpha
diversity, there was a strong association with BMIZ score. Obese children had significantly
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lower intestinal microbial diversity (Shannon’s diversity p = 0.013, p = 0.023; Figure 3A)
and richness (p = 0.02, p = 0.021; Figure 3B) compared to their overweight and normal
weight counterparts. BMIZ score was also associated with compositional microbial al-
terations, as measured by both the weighted and unweighted UniFrac distance matrices
(R2 = 6%, p = 0.023 and R2 = 4.1%, p = 0.046; Figure 3C). Overall bacterial beta diversity
was not significantly associated with macronutrients, except of borderline statistically
significant association with protein intake (unweighted UniFrac R2 = 2.2%, p = 0.049;
Figure 3D, Supplementary Table S3). BMI was associated with significant taxonomic shifts
(Figure 3E), including a direct association with Atopobium parvulum (p = 0.03) and members
from Mogibacteriaceae (p = 0.047), whereas an inverse association was detected between
BMIZ-score and Odoribacter (p = 0.077), Mogibacterium (p < 0.001) and members from
Paraprevotellaceae (p < 0.001).
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Although the overall bacterial composition was not significantly altered, we found
strong taxonomic associations between the intake of several macronutrients and specific
features (Supplementary Table S4). Carbohydrates, protein and fat intake were associated
with an overrepresentation of Mogibacterium (p < 0.001) and members of Paraprevotel-
laceae (p < 0.001), while members of Coriobacteriaceae were inversely associated with
carbohydrates and protein intake (p < 0.001).

Intake of saturated fatty acids was inversely associated with Mogibacterium (p < 0.001)
and Bacteroides (p = 0.05). MUFAs consumption was positively associated with increased
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levels of members of Coriobacteriaceae (p = 0.004), including Atopobium parvulum (p = 0.028),
and inversely associated with members of Paraprevotellaceae (p < 0.001).

Intake of PUFAs was strongly associated with increased relative abundance of Mogibac-
terium (p = 0.001), Lactobacillus (p = 0.039) and Atopobium parvulum (p = 0.076), while an
inverse association was detected with members of Paraprevotellaceae (p < 0.001), Odoribac-
ter (p = 0.02), Bacteroides (p = 0.035) and members of Rikenellaceae (p = 0.036). Interestingly,
the relative abundance of Lactobacillus and members of Rikenellaceae were independently
associated with PUFAs intake among children from the high low group.

3.4. Diet–Microbiome Relationships within the High-SES Subgroup

The microbial alpha diversity of children from higher SES was significantly associated
with intake of protein (Simpson’s evenness p = 0.03; Figure 4A) and PUFAs (Simpson’s
evenness 0.042; Figure 4B). There were no significant associations with other macronutrients
nor with BMIZ score.

Nutrients 2021, 13, x FOR PEER REVIEW 10 of 18 
 

Figure 3. Low socioeconomic status and the intestinal microbiome. Box plots of alpha diversity according to BMIZ score 
categories. (A) Alpha diversity was measured by the Shannon’s diversity index, and (B) richness. (C) Principal component 
analysis (PcoA) of the weighted UniFrac showing a significant separation of the BMIZ score categories and (D) intake of 
protein measured by the unweighted UniFrac distance. (E) A heatmap of the multivariable model describing the top as-
sociations between the independent variables and bacterial features. Positive associations are colored in blue, while in-
verse associations are colored in yellow. The color gradient represents the strength of the association, with darker colors 
representing stronger associations. The effect size was calculated by the following formula: (-log(qval)*SIGN (coeff)). 

Although the overall bacterial composition was not significantly altered, we found 
strong taxonomic associations between the intake of several macronutrients and specific 
features (Supplementary Table S4). Carbohydrates, protein and fat intake were associated 
with an overrepresentation of Mogibacterium (p < 0.001) and members of Paraprevotel-
laceae (p < 0.001), while members of Coriobacteriaceae were inversely associated with car-
bohydrates and protein intake (p < 0.001). 

Intake of saturated fatty acids was inversely associated with Mogibacterium (p < 0.001) 
and Bacteroides (p = 0.05). MUFAs consumption was positively associated with increased 
levels of members of Coriobacteriaceae (p = 0.004), including Atopobium parvulum (p = 
0.028), and inversely associated with members of Paraprevotellaceae (p < 0.001). 

Intake of PUFAs was strongly associated with increased relative abundance of Mogi-
bacterium (p = 0.001), Lactobacillus (p = 0.039) and Atopobium parvulum (p = 0.076), while an 
inverse association was detected with members of Paraprevotellaceae (p < 0.001), Odori-
bacter (p = 0.02), Bacteroides (p = 0.035) and members of Rikenellaceae (p = 0.036). Interest-
ingly, the relative abundance of Lactobacillus and members of Rikenellaceae were inde-
pendently associated with PUFAs intake among children from the high low group. 

3.4. Diet–Microbiome Relationships within the High-SES Subgroup 
The microbial alpha diversity of children from higher SES was significantly associ-

ated with intake of protein (Simpson’s evenness p = 0.03; Figure 4A) and PUFAs (Simp-
son’s evenness 0.042; Figure 4B). There were no significant associations with other macro-
nutrients nor with BMIZ score. 

 
Figure 4. High socioeconomic status and the intestinal microbiome. Box plots of alpha diversity, measured by Simpson’s
evenness, according to tertiles intake of (A) dietary protein and (B) PUFAs (T1 = lowest tertile, T2 = middle tertile, T3 = upper
tertile). (C) Principal component analysis (PcoA) of Unweighted UniFrac showing the intake of PUFAs among participants
from high SES. (D) A heatmap of the multivariable model describing the top associations between the independent variables
and bacterial features. Positive associations are colored in purple, while inverse associations are colored in green. The color
gradient represents the strength of the association observed, with darker colors representing stronger associations. The
effect size was calculated by the following formula: (−log(qval)*SIGN (coeff)).

Intake of dietary PUFAs was associated with significant changes of bacterial com-
position, detected by the unweighted UniFrac (R2 = 3.7%, p = 0.001; Figure 4C), but not
with weighted UniFrac (Supplementary Table S5). Although there were no other signifi-
cant associations between the variables of interest and global beta diversity, multivariate
analysis revealed several features strongly associated with BMIZ score and dietary intake
(Figure 4D, Supplementary Table S6).

In line with the significantly altered beta diversity, the strongest taxonomic shifts were
associated with PUFAs consumption, including an overrepresentation of Lachnobacterium
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(p = 0.014), Barnesiella (p = 0.035) and members of Carnobacteriaceae (p = 0.035). Lachnobac-
terium and Carnobacteriaceae were independently associated with PUFAs in this group.
Carbohydrates and protein intakes were positively associated with Lactococcus (p = 0.039,
p = 0.035, respectively) and inversely associated with Barnesiella (p = 0.035). The latter
was also inversely associated with fat intake (p = 0.015). The consumption of MUFAs was
independently associated with increased relative abundance of Paraprevotella (p = 0.073).

The BMIZ score was positively associated with members of Lachnospiraceae (p = 0.014)
while inversely associated with Turicibacter (p = 0.073). These taxonomic alterations were
attributed to BMIZ score but not dietary intake.

3.5. The Intestinal Microbiome of Overweight/Obese Children

Since overweight and obesity were prevalent in this cohort, with 57% of children
classified as overweight or obese, we conducted an independent analysis of microbial
alterations, in association with macronutrients intake, among this group.

In line with the relatively higher intake of fats among overweight and obese partici-
pants, the macronutrients that were detected by our multivariable analysis as significantly
associated with bacterial features were total fat, PUFAs, MUFAs and saturated fatty acids
(Supplementary Table S7). Members of Paraprevotellaceae were positively associated
with fat intake (p = 0.064), but inversely correlated with MUFAs consumption (p < 0.001).
Members of Barnesiellaceae were inversely correlated with intake of PUFAs and saturated
fatty acids (p = 0.029 and p = 0.005, respectively). The genus Mogibacterium was associ-
ated with elevated intake of PUFAs and MUFAs (p = 0.064), and lastly, Ruminococcus was
independently negatively associated with MUFAs consumption (p = 0.06).

4. Discussion

We determined the relative contributions of family SES, dietary intake of macronu-
trients and BMIZ score in determining intestinal microbiome alterations among pre-
adolescents from the same ethnicity. Lower SES was associated with higher BMIZ scores,
while participants with greater BMI showed a trend of consuming diets with a higher per-
centage of fat, including saturated fatty acids and MUFAs. Importantly, we demonstrated
that the intestinal microbiome in later childhood is strongly affected by the interplay be-
tween various environmental and interpersonal determinants, including SES, BMI and diet.

A growing body of evidence showed that the intestinal microbiome plays a pivotal
role in various health phenotypes and diseases [34,35], including the modulation of immu-
nity [36], cardiometabolic manifestations, such as obesity and metabolic syndrome [37,38],
liver diseases [7], hyperlipidemia and atherosclerosis [39], chronic kidney disease [40], and
even has a relation to neurodevelopmental conditions, via the gut–brain axis [41]. Great
interest has emerged in delineating the possible effect of personalized alterations of the
microbiome as a means of prevention or improvement of health and wellbeing. Indeed,
several studies showed that environmental interventions, including diet, antibiotics and
probiotics rapidly influence the host gut microbiome [11,39]. While the available evidence
in humans remains descriptive, two recently published studies in well-established mouse
models showed a possible causal relationship between environmental dietary (high fiber)
and probiotic interventions with the amelioration of the progression of chronic kidney
disease [40] and hyperlipidemia [42]. Nevertheless, a gap remains in the understanding
of long-term dietary habits and specific nutrients on the host microbiome and long-term
health outcomes.

In this cohort, the strongest environmental determinant was SES, which was signifi-
cantly correlated with both BMIZ scores and gut microbial shifts. SES score explained the
largest proportion of variance in this cohort, pointing towards qualitative and quantitative
alterations of microbial community composition. Moreover, SES was strongly associated
with the highest number of differentially abundant features, including a strong inverse
independent association with genera Prevotella and Eubacterium.
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Prevotella is considered an important yet enigmatic key genus of the gut microbiome,
being a common human gut microbe that has been both positively and negatively as-
sociated with human health. Several studies associate Prevotella with inflammatory dis-
eases [43–45], insulin resistance and glucose intolerance [46], while other studies have
linked Prevotella with improved glucose and insulin tolerance in association with dietary
fiber, especially in rural communities [47,48], suggesting that the beneficial effects could be
diet-dependent. Moreover, a higher prevalence of Prevotella has been consistently reported
in non-Westernized rural populations [49,50]. Thus, in this cohort, while lower SES could
be associated with a more traditional, rural lifestyle, the higher abundance of Prevotella
cannot be explained by an increased intake of fiber, since lower SES was associated with
increased intake of dietary fat, but not a substantial increase in fiber intake. Moreover, SES
was directly correlated with the genera Adlercreutzia and Alistipes that were previously
described in association with obesity [51–53] and Dorea, which has been associated with
diabetes mellitus [54]. These findings suggest clustering of intestinal microbial phenotypes
related to obesity and diabetes in preadolescents from relatively low SES and imply that
targeted microbial alternations might affect the risk of obesity and diabetes.

The BMIZ score was independently associated with further microbial alterations,
consistently in the whole cohort and across different SES strata. Community level bacterial
alterations were detected by an adjusted PERMANOIVA on the phylogenetic weighted
and unweighted UniFrac distances. In line with that, significant taxonomic alterations
were found including an overrepresentation of the genus Collinsella that was independently
associated with higher BMIZ score. Interestingly, the relative abundance of Collinsella was
shown to be associated with type 2 diabetes mellitus [55] including a positive correlation
with circulating insulin levels, rheumatoid arthritis [56], and cholesterol metabolism [57].
Furthermore, gnotobiotic approaches showed that the administration of Collinsella reduces
the expression of tight junction proteins in enterocytes and stimulates gut leakage [56],
which are features associated with metabolic endotoxemia [58]. Although the causal
mechanisms by which Collinsella affects the host metabolism remain elusive, a recent study
identified that lower dietary fiber intake is possibly associated with elevated abundance
of this genus [59]. Similarly, in this cohort, consumption of carbohydrates and fiber were
lower among overweight and obese children than those with normal weight, while intake
of fat was elevated.

The intestinal microbiome plays a pivotal role in the maintenance of human metabolic
homeostasis and might increase the risk of metabolic and obesity-related complications [60].
Although there is a lack of consensus on the obese-type microbiome configuration, tax-
onomic and functional alterations, including reduced biodiversity, have been suggested
to contribute to the pathogenesis of obesity in both humans and animal models [10]. The
altered microbial profile occurring in obese people is considered as an extreme deviation
from the microbiota–host mutualism, resulting from the response to a high-fat, high-sugar
diet [10]. Excess food intake, especially high-calorie diets, such as high fat and high-sugar
diets, is the main determinant of obesity. High-fat diet induced obesity in particular results
in perturbations of the gut-microbial composition and the depletion of microbial diver-
sity [38,61,62]. In line with accumulating evidence [10,12,60,63], we show that higher BMIZ
score is consistently associated with taxonomic shifts. In the low SES group, where the
prevalence of obesity was significantly higher, we detected a strong reduction in bacterial di-
versity and altered bacterial composition among obese children, in line with accumulating
data worldwide.

The effect of the intake of macronutrients on the microbiome was more delicate, with
the strongest association detected with consumption of a high fat diet, specifically between
intake of PUFAs and intestinal microbiome composition. This association was consistently
detected by beta diversity analysis, implying shifts of bacterial community composition.
Apart from bacterial features that were simultaneously associated with SES, BMIZ score
and other macronutrients intake, PUFAs consumption was independently related with an
overrepresentation of Lachnobacterium. Children from lower SES consumed significantly
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higher percentages of daily energy from dietary fat, and in this group, PUFAs intake was
associated with the largest number of differentially abundant bacterial features, includ-
ing an independent positive association with Lactobacillus, and inverse association with
Bacteroides and members of Rikenellaceae. Intake of MUFAs was associated with several
bacterial features, none of which was independently associated with MUFA alone, thus,
the effect was more delicate and was not associated with overall microbiome composition
alterations. This can be explained by the frequent use of olive oil [21], i.e., Oleic acid, in the
traditional Arab diet; however, since the intake of MUFAs was equally distributed across
the study groups, the associations with the intestinal microbiome were weaker.

The consumption of PUFAs has been widely investigated in relation to cardiovascular
diseases, and excessive intake of dietary PUFAs, especially omega-6 fatty acids, such as
linoleic acids, and imbalances of the omega-6/omega-3 ratio contribute to metabolic disease
along with chronic inflammation [64]. In this cohort, most PUFAs are derived from the
intake of foods rich in linoleic acid, including safflower oil, meat, poultry and eggs and lim-
ited intake of food sources of linolenic acid, which can be partly explained by the relatively
low intake of fish among Arab adolescents [22]. These results are important considering
the high burden of heart disease, stroke and diabetes among Arabs in Israel, in addition to
high prevalence of obesity and low physical activity [22,65]. Tailored nutritional education
programs in this group can be beneficial in treatment and prevention of childhood obesity,
thereby aiding in the prevention of cardiometabolic diseases in adulthood.

Simultaneously, high fat diets and nutritional PUFAs have recently been the focus of
attention in association with the intestinal microbiome, independently from obesity [62,64].
Intestinal bacteria mediate saturation of PUFAs derived from dietary fat as a detoxifying
mechanism in the gastrointestinal tract. To date, various gut microbes have been identified
as producing PUFAs-derived intermediate metabolites, specifically and in line with our
findings, Lactobacillus [66,67]; however, an integrated understanding of the effects of various
PUFAs metabolites on host physiology remains elusive, especially during childhood, an
important window of opportunity to establish long-lasting health and well-being.

The strengths of the current study include a homogenous cohort of participants from
the same ethnic group and geographic location, thereby minimizing the microbial variations
attributed to ethnic origin and cultural lifestyle habits. Moreover, our multivariable analysis
encompassed environmental determinants, i.e., SES and anthropometric measurements and
an in-depth dietary analysis, in an understudied age group. Thus, our results provide new
evidence in the field of child growth and development, diet and the intestinal microbiome.
Moreover, all the data collected in this study were obtained by trained professionals, thus
minimizing the potential for collection errors. Our study has limitations. First, the dietary
data were collected using the 24-h recall, which is subject to recall bias and depends on
memory, cooperation, and communication ability. We attempted to overcome this by the
recruitment of trained, Arabic speaking interviewers, provided standardized training and
quality control, and interviewed child–mother pairs to collect accurate information on
dietary intake. Moreover, although this cohort focused on preadolescents in the relatively
narrow age range of 10–12 years, there were significant differences in the median age
between the two SES groups. Our stratified analysis by SES group address this limitation
since age is an important potential modifier of the intestinal microbiome. Given the
cross-sectional design of our study, we cannot determine the direction of the associations
between SES, obesity, and microbiome. More studies are needed to prospectively assess
the alterations of the intestinal microbiome with the child’s growth, with close monitoring
of changes in diet and BMI. Our findings emphasize the need to expand research in the
field of child health from a narrow focus on the first two to three years of life to a wider
holistic approach that embraces the varying needs across the lifespan [2,12,68].

5. Conclusions

The intestinal microbiome during the crucial developmental window of early preado-
lescence is profoundly affected by the child’s environment, i.e., SES. Moreover, BMI and
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dietary habits have an additional, more delicate, yet significant effect on microbial diver-
sity and composition. The effect of macronutrients, and especially PUFAs, was detected
even though the cohort consisted of a relatively homogenous group, in terms of culturally
determined dietary habits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13082645/s1. Supplementary Figure S1: Flow chart of enrollment and data collection.
Supplementary Figure S2: Dietary intake in normal weight compared to overweight and obese
(combined in the figure as overweight) participants. Children that were overweight/obese consumed
(A) significantly less carbohydrates compared to their normal weight counterparts (p = 0.025); (B) a
relatively similar percentage of calories from protein (p = 0.275); (C) a higher percentage of calories
from fat (p = 0.050); (D) saturated fat (p = 0.105); and (E) MUFAs (p = 0.079). Intake of PUFAs was
relatively similar (p = 0.536). Supplementary Figure S3: (A) No significant association between
alpha diversity and socioeconomic scores (Observed OTUs p = 0.13). (B) A trend of decreased
bacterial richness among obese participants compared to their normal weight and overweight
counterparts (observed OTUs p = 0.09 for both pairwise comparisons). Supplementary Table S1:
Bacterial composition in the whole cohort. Supplementary Table S2: Maaslin2 results for the whole
cohort. Supplementary Table S3: Bacterial composition in the low SES group. Supplementary Table
S4: Maaslin2 results for the low SES group. Supplementary Table S5: Bacterial composition in the
high SES group. Supplementary Table S6: Maaslin2 results for the high SES group. Supplementary
Table S7: Maaslin2 results for the participants with obesity.
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