
Citation: Matias-Guiu, J.A.;

Delgado-Alonso, C.; Díez-Cirarda,

M.; Martínez-Petit, Á.; Oliver-Mas, S.;

Delgado-Álvarez, A.; Cuevas, C.;

Valles-Salgado, M.; Gil, M.J.; Yus, M.;

et al. Neuropsychological Predictors

of Fatigue in Post-COVID Syndrome.

J. Clin. Med. 2022, 11, 3886. https://

doi.org/10.3390/jcm11133886

Academic Editors: César Fernández

De Las Peñas and Domingo

Palacios-Ceña

Received: 21 June 2022

Accepted: 1 July 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Neuropsychological Predictors of Fatigue in
Post-COVID Syndrome
Jordi A. Matias-Guiu 1,* , Cristina Delgado-Alonso 1, María Díez-Cirarda 1 , Álvaro Martínez-Petit 2,
Silvia Oliver-Mas 1, Alfonso Delgado-Álvarez 1 , Constanza Cuevas 1, María Valles-Salgado 1, María José Gil 1,
Miguel Yus 3, Natividad Gómez-Ruiz 3 , Carmen Polidura 3, Josué Pagán 2,4 , Jorge Matías-Guiu 1

and José Luis Ayala 4,5

1 Department of Neurology, Hospital Clínico San Carlos Health Research Institute “San Carlos” (IdISCC),
Universidad Complutense de Madrid, 28040 Madrid, Spain; cristinadelgado1409@gmail.com (C.D.-A.);
maria.diecirarda@gmail.com (M.D.-C.); oliverdenia@gmail.com (S.O.-M.);
alfonso.delgado.alvarez@hotmail.com (A.D.-Á.); constanzaece@gmail.com (C.C.);
dunadelsahara@hotmail.com (M.V.-S.); mariajosemedcu@hotmail.com (M.J.G.);
matiasguiu@gmail.com (J.M.-G.)

2 Department of Electronic Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
alvaro.mpetit@alumnos.upm.es (Á.M.-P.); j.pagan@upm.es (J.P.)

3 Department of Radiology, Clinico San Carlos Health Research Institute “San Carlos” (IdISCC), Universidad
Complutense de Madrid, 28040 Madrid, Spain; miguel_yus@yahoo.com (M.Y.); vidiado@yahoo.es (N.G.-R.);
carmenpoli@gmail.com (C.P.)

4 Center for Computational Simulation, Universidad Politécnica de Madrid, Campus de Montegancedo,
Boadilla del Monte, 28223 Madrid, Spain; jayala@ucm.es

5 Department of Computer Architecture and Automation, Faculty of Informatics, Universidad Complutense de
Madrid, 28040 Madrid, Spain

* Correspondence: jordi.matias-guiu@salud.madrid.org

Abstract: Fatigue is one of the most disabling symptoms in several neurological disorders and has an
important cognitive component. However, the relationship between self-reported cognitive fatigue
and objective cognitive assessment results remains elusive. Patients with post-COVID syndrome often
report fatigue and cognitive issues several months after the acute infection. We aimed to develop
predictive models of fatigue using neuropsychological assessments to evaluate the relationship
between cognitive fatigue and objective neuropsychological assessment results. We conducted a
cross-sectional study of 113 patients with post-COVID syndrome, assessing them with the Modified
Fatigue Impact Scale (MFIS) and a comprehensive neuropsychological battery including standardized
and computerized cognitive tests. Several machine learning algorithms were developed to predict
MFIS scores (total score and cognitive fatigue score) based on neuropsychological test scores. MFIS
showed moderate correlations only with the Stroop Color–Word Interference Test. Classification
models obtained modest F1-scores for classification between fatigue and non-fatigued or between 3 or
4 degrees of fatigue severity. Regression models to estimate the MFIS score did not achieve adequate
R2 metrics. Our study did not find reliable neuropsychological predictors of cognitive fatigue in
the post-COVID syndrome. This has important implications for the interpretation of fatigue and
cognitive assessment. Specifically, MFIS cognitive domain could not properly capture actual cognitive
fatigue. In addition, our findings suggest different pathophysiological mechanisms of fatigue and
cognitive dysfunction in post-COVID syndrome.

Keywords: fatigue; cognitive; neuropsychological; machine learning; post-COVID syndrome

1. Introduction

Fatigue is defined as a feeling of tiredness and lack of energy, including physical
and/or mental exertion that has an impact on everyday activities. Fatigue is one of the
most common symptoms in several neurological and medical disorders and, importantly,
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is considered one of the most disabling symptoms [1]. Fatigue may be categorized as
peripheral or central. Peripheral fatigue is due to muscle and neuromuscular junction
disorders and is characterized by muscle fatigability (i.e., objective reduction in strength
during effort, improving with rest). Central fatigue may be present in peripheral, autonomic,
and central nervous system disorders, and involves a subjective feeling of exhaustion that is
also present at rest [2]. Interestingly, central fatigue usually also has a cognitive component
(mental or cognitive fatigue). Cognitive fatigue refers to a decrease in mental effort in
demanding cognitive tasks [3] and may be as disabling as physical fatigue.

Fatigue is usually examined using self-report questionnaires [4]. One of the most
widely used scales is the Modified Fatigue Impact Scale (MFIS), which includes a mul-
tidimensional assessment of physical, cognitive, and psychosocial aspects of fatigue [5].
The relationship between cognitive fatigue and results from objective neuropsychological
assessments is still controversial. For instance, in multiple sclerosis, some studies have
found a relationship between fatigue and attention/executive functioning [6]. Specifically,
sustained attention seems to be more closely related to fatigue. In addition, both fatigue and
sustained attention deficits have similar neuroanatomical underpinnings: both processes
have been associated with dysfunction of the frontoparietal network in structural and
functional brain imaging studies. However, very few studies have directly evaluated the
relationship between fatigue and cognitive performance [7]. In multiple sclerosis, sleep
quality was the best predictor of cognitive fatigue as evaluated with the MFIS, while cogni-
tive function (assessed with the Paced Auditory Serial Addition Test or the Symbol Digit
Modalities Test) had lower or non-significant importance in the prediction [8,9].

Post-COVID syndrome (PCS) is a new condition occurring in individuals with a his-
tory of SARS-CoV-2 infection, in which several symptoms persist over time [10]. Among
symptoms of PCS, fatigue is one of the most frequent and most disabling [11], and is
usually persistent [12]. Cognitive symptoms are also very frequent, and neuropsycho-
logical examinations have revealed predominant impairment of attention and executive
function [13,14]. From the perspective of cognitive neuroscience, PCS represents a new
opportunity to evaluate the relationship between fatigue and cognitive function, and the
neural underpinnings of cognitive fatigue. From a more clinical approach, understanding
the relationship between fatigue and cognitive function has several implications. Specif-
ically, it could help to improve our understanding of the mechanisms linked to mental
fatigue and the concept of cognitive fatigue. Furthermore, it could guide the selection of
cognitive tests for objective evaluation of fatigue, which may be important for the diagnosis
and follow-up of these patients. The pathophysiology of fatigue in PCS is still poorly
understood. According to the first studies showing neuroimaging alterations in several
brain regions [15–18], fatigue may involve a central mechanism. In this regard, impair-
ment of GABAB-ergic neurotransmission has been detected using transcranial magnetic
stimulation of the motor cortex [19,20], and another study found an association between
APOE4 and post-COVID fatigue [21]. Histopathological studies have been conducted in
patients deceased by COVID-19, showing vascular changes and prominent neuroinflamma-
tion [22,23]. Neuroinflammation could promote neurodegenerative changes [24]. Because
most pathological studies have been conducted in severe cases with COVID-19 deceased
in the acute stage, it is unknown whether some of these or other mechanisms could be
involved in the pathophysiology of PCS, which often occurs also after mild acute infec-
tions [25]. Furthermore, the existence of persistent immunological changes, viral reservoirs,
autonomic failure, or even mitochondrial dysfunction may also play a role [26–29]. It is
also unclear whether physical and cognitive fatigue share the same mechanisms.

In this study, we aimed to develop predictive models of fatigue using neuropsycho-
logical assessments in PCS. Specifically, we sought the following contributions:
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(1) To train several machine-learning algorithms using a dataset comprising a wide range
of traditional “paper and pencil” and computerized neuropsychological assessments
administered to a cohort of patients with PCS.

(2) These models were trained to predict the presence of fatigue, several levels of fatigue
severity, and the fatigue score of a perceived fatigue questionnaire.

(3) We used a data-driven approach to evaluate the existence of linear and non-linear
relationships between cognitive assessment results and subjective fatigue.

2. Materials and Methods
2.1. Participants

One hundred and thirteen patients with PCS according to the World Health Or-
ganization criteria [30] were included in the study. All patients reported new-onset
cognitive complaints after COVID-19. The mean age was 50.94 ± 11.90 years old and
64.60% were women. The mean time between onset of the acute infection and assessment
was 11.14 ± 4.67 months. SARS-CoV-2 infection was confirmed by reverse transcription-
polymerase chain reaction in all cases, and other causes of the symptoms were excluded.
Complete data are presented in Table 1.

Table 1. Main demographic and clinical characteristics.

Variable

Age (years), mean ± SD 50.94 ± 11.90

Sex (women) 73 (64.60%)

Months from acute onset to assessment, mean ± SD 11.14 ± 4.67

Years of education, mean ± SD 14.12 ± 3.84

Hypertension 32 (28.32%)

Diabetes 15 (13.27%)

Dyslipidemia 35 (30.97%)

Smokers 18 (15.93%)

SARS-CoV-2 reinfection 10 (8.8%)

Hospital admission 33 (29.20%)

Days of hospitalization, mean ± SD 19.25 ± 14.12

ICU admission 10 (8.85%)

Ventilatory support 11 (9.73%)

2.2. Fatigue Assessment

Patients were assessed with the MFIS [31]. The MFIS contains 21 items related to
cognitive (10 items, maximum score 40), physical (9 items, maximum score 36), and psy-
chosocial (2 items, maximum score 8) aspects of fatigue. Each item is scored on a 5-point
Likert-type scale from “never” (0 points) to “most of the time” (4 points). The maximum
score is 84 [32]. A cut-off score of >38 has been proposed to classify patients as having
significant fatigue [5].

2.3. Neuropsychological Assessment

Patients underwent a comprehensive neuropsychological assessment in 3 sessions
lasting approximately 90 min each. Two different approaches were used. First, a trained
neuropsychologist performed a standard neuropsychological assessment including the
following tests:

• Forward and backward digit span
• Corsi block-tapping test
• Symbol Digit Modalities Test
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• Boston Naming Test
• Judgment of Line Orientation
• Rey–Osterrieth Complex Figure (copy, recall at 3 and 30 min, and recognition)
• Free and Cued Selective Reminding Test
• Verbal fluencies (animals and words beginning with “p” and “m”; 1 min for each)
• Stroop Color–Word Interference Test
• Visual Object and Space Perception Battery.

For these tests, we obtained a raw score and derived an age- and education-adjusted
scaled score following normative data from our setting [33,34].

Subsequently, patients were also assessed using the computerized neuropsychological
battery Vienna Test System® (Schuhfried GmbH; Mödling, Austria) including the Cognitive
Basic Assessment (COGBAT) and Perception and Attention Functions (WAF) batteries [35].
The COGBAT battery included the following tests:

• Trail Making Test (Langensteinbach version), parts A and B (S1 form).
• Figural Memory Test (S11 form)
• Response inhibition (S13 form)
• N-Back verbal (S1 form)
• Tower of London (Freiburg version) (TOL, S1 form).

The WAF battery comprises 42 subtests: a total of 16 subtests for the alertness dimen-
sion, 8 for vigilance and sustained attention, 5 for divided attention, 3 for focused attention,
3 for selective attention, 3 for spatial attention, and 2 for smooth pursuit eye movements
and visual scanning.

In addition, the Cognitrone (S11 form), Reaction test (RT, S3 form), and Determination
test (DT, S1 form) were also administered. The computerized battery was self-administered
at the hospital under the supervision of a trained neuropsychologist. Further information
about neuropsychological assessments is included in Supplementary Table S1.

2.4. Statistical and Machine Learning Analysis

Raw scores for each test were converted to age-, education-, and sex-adjusted scaled
scores, according to local norms. These scaled test results were the main focus of the
analysis as they are comparable across all the patients in the study, independently of
their demographic characteristics. However, raw and computerized test scores were also
assessed in some parts of the analysis.

All neuropsychological test results were preprocessed following the same procedure:
outlier removal based on the interquartile range (IQR) of scores on each test, imputation of
missing values through a K-nearest neighbors (KNN) algorithm with 5 neighbors as the
parameter, and normalization in the range [0, 1]. Patients were divided into 2 subsets, with
80% of the sample used to train the machine learning models and 20% to test the results.

We first performed a univariate analysis of the correlation between scaled scores
and the MFIS score. Pearson’s coefficients and their p-values were calculated for every
neuropsychological test independently. Correlation coefficients were characterized as low
(<0.30), moderate (0.30–0.49), or high (>0.50). Only correlations of r > 0.30 were specified.

Classification tasks were performed using the adjusted scaled scores for neuropsycho-
logical tests. We trained multiple machine learning algorithms, including (a) random forest,
(b) K-nearest neighbors, (c) support vector machine, (d) Gaussian naive Bayes, (e) comple-
ment naive Bayes, and (f) logistic regression. In all cases, parameters were optimized with
a grid-search trained in a 5-fold cross-validation, scoring the weighted F1, from which we
extracted the best estimator. These machine-learning algorithms were selected for their
better performance among a broader set of classifiers. Additionally, they were selected to
exploit different useful characteristics of machine-learning classification: support vector
machine is able to provide non-linear classification and works well with unstructured and
semi-structured data; naive Bayes focuses on calculating conditional probability assum-
ing a statistical distribution, while K-nearest neighbors does not require any statistical
assumption; random forests is a bunch of decision trees combined that can handle both
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categorical and numerical variables at the same time as features, but overfitting is a very
common problem; finally, logistic regression works with already identified independent
variables, and it is based on statistical approaches, but it can provide different decision
boundaries with different weights that are near the optimal point. As classification targets,
MFIS scores were categorized into different classes. For binary classification, the threshold
used was a score of 38, above which a patient was labeled as fatigued. For 3-classes models,
the fatigued patients were divided into low and high fatigue with a heuristic threshold of
61. For 4-classes models, the fatigued patients were divided into low, medium, and high
fatigue with thresholds of 53 and 68. We compared the results of the models among them
and with zero-rule classifiers.

Regression models were evaluated for the scores of all neuropsychological tests: raw,
scaled, and computerized. The algorithms used were (i) linear, (ii) ridge, (iii) lasso, and
(iv) elastic net regression. The best parameters for each algorithm were found with a
grid-search that was also trained in a 5-fold cross-validation, scoring the R2 metric, from
which we extracted the best estimator. The study was complemented with deep learning
techniques by applying two different architectures of artificial neural networks (ANN) to
the data, as detailed in Supplementary Table S2. ANN 1 was trained with a batch size of
10 samples and 30 epochs, while ANN 2 used a batch size of 64 samples and 100 epochs.
After the first batch of results, a principal component analysis (PCA) was performed on the
features with a view to improving the metrics achieved. For this purpose, the normalization
step was replaced in the preprocessing phase by a standardization of values to mean = 0
and standard deviation = 1. A soft and hard reduction in features was conducted in
each of the datasets available. The soft reduction consisted of selecting the number of
principal components that accounted for 90% of the variance, which resulted in keeping
a high number of components. The hard reduction involved selecting only the principal
components that comparatively captured the majority of variance (around 40–50%), with
few principal components selected for each dataset.

All models (either classification or regression) were also tested specifically on the
MFIS cognitive subscale score. The cut-off scores for the classification models were 18,
above which scores were considered to indicate cognitive fatigue; 29 for the low- and
high-cognitive fatigue split in the 3-classes models; and 26 and 33 for the low-, medium-,
and high-cognitive fatigue split in the 4-classes models.

Classification models were evaluated with the F1-score, a metric commonly used
in machine learning analysis, based on precision (fraction of correctly classified positive
subjects among those classified as the positive class) and recall (the fraction of correctly
classified positive subjects among the actual positive number of subjects). To evaluate the
regression models, we used the R2 statistic, which measures the amount of variance in the
predictions that is explained and takes a maximum value of 1 (optimal prediction). Low or
negative values indicate worse models.

3. Results
3.1. Sample Description

Ninety-two patients (81.41%) were regarded as having clinically significant fatigue
according to the prespecified cut-off point. The mean MFIS-total score was 52.73 ± 16.02.
By fatigue domain, mean MFIS-physical was 23.28 ± 8.35, MFIS-cognitive was 25.05 ± 7.15,
and MFIS-psychosocial was 4.86 ± 3.50.

MFIS-total presented a correlation of r = 0.903 with MFIS-physical, r = 0.862 with
MFIS-cognitive, and r = 0.495 with MFIS-psychosocial. MFIS-physical was correlated with
MFIS-cognitive (r = 0.670) and MFIS-psychosocial (r = 0.434). The correlation between MFIS-
cognitive and MFIS-psychosocial was r = 0.322. All these correlations were statistically
significant at p < 0.001.
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The correlation with the Beck Depression Inventory was r = 0.234 (p = 0.013) for
MFIS-total and r = 0.250 (p = 0.009) for MFIS-cognitive. The correlation with Pittsburg
Sleep Quality Index was r = 0.250 (p = 0.009) for MFIS-total and r = 0.214 (p = 0.026) for
MFIS-cognitive.

3.2. Correlations between MFIS and Neuropsychological Tests

MFIS-total showed moderate, statistically significant correlations (p < 0.05) with Stroop
trial 1 (r = −0.32) and Stroop trial 2 (r = −0.38). Correlations with the MFIS-cognitive score
were similar, and only Stroop trial 1 (r = −0.33), Stroop trial 2 (r = −0.37), and Stroop trial
3 (r = −0.35) reached moderate correlations. The other neuropsychological tests showed
non-significant or low correlations with MFIS-total and MFIS-cognitive.

3.3. Classification Models

None of the models evaluated for the classification of MFIS scores, except for comple-
ment naive Bayes, was able to classify more than 25% of non-fatigued instances as such.
The results of the models were compared on the weighted average F1-score (Figure 1).
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Figure 1. F1-scores for each Modified Fatigue Impact Scale classification type (binary, 3-classes,
and 4-classes) for each model evaluated: random forest (RF), K-nearest neighbors (KNN), support
vector machine (SVM), Gaussian naive Bayes (GNB), complement naive Bayes (CNB), and logistic
regression (LR).

All binary classification models presented an F1-score of 0.75, although this was due
to a high instance class imbalance, with all patients of the test subset classified as fatigued.
This means that the metrics were similar to those obtained with a zero-rule classifier, in
which all the instances are assigned to the most frequent class with no need for patient
information. Only the complement naive Bayes correctly classified 75% of non-fatigued
patients, reaching an F1-score of 0.88. However, this algorithm failed to classify more than
25% of non-fatigued instances in the 3- and 4-classes models, making the results of the
binary class model less solid. The highest F1-score was achieved by the random forest
algorithm for the 3-classes model (F1 = 0.53) and by the complement naive Bayes algorithm
(F1 = 0.34) for the 4-classes model. These results were considered too low to establish a
quality classification of fatigue levels in patients. However, they improved the F1-scores
achieved by the zero-rule algorithms (F1 = 0.36 for the three-classes models and F1 = 0.14
in the four-classes models). Detailed F1-scores are gathered in Table 2. Precision and recall
are shown in Supplementary Tables S2 and S3.
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Table 2. Weighted average F1-scores of the classification models for predicting Modified Fatigue
Impact Scale (MFIS)-total score and MFIS-cognitive score categorizations. The algorithms evaluated
were random forest (RF), K-nearest neighbors (KNN), support vector machine (SVM), Gaussian naive
Bayes (GNB), complement naive Bayes (CNB), and logistic regression (LR).

Classification Type RF KNN SVM GNB CNB LR

MFIS-total score

Binary 0.75 0.75 0.75 0.75 0.88 0.75

Three-classes 0.53 0.47 0.37 0.48 0.55 0.51

Four-classes 0.23 0.20 0.26 0.24 0.34 0.22

MFIS-cognitive
score

Binary 0.79 0.74 0.81 0.74 0.63 0.81

Three-classes 0.53 0.58 0.36 0.51 0.38 0.50

Four-classes 0.18 0.25 0.31 0.25 0.27 0.34

Results were similar for the classification of MFIS-cognitive (Figure 2). None of the
models was able to classify a single instance as non-fatigued, with the high F1-scores
achieved in the binary classification once more explained by the severe class imbalance.
The highest F1-score was achieved by both support vector machine and logistic regression
algorithms (F1 = 0.81 for both) in the binary classification, by the K-nearest neighbors
algorithm (F1 = 0.58) in the 3-classes models, and by the logistic regression (F1 = 0.34) in the
4-classes models. In this case, these models were similar or outperformed those obtained
by the zero-rule classifiers (F1 = 0.81 for the binary classification, F1 = 0.36 for three-classes
and F1 = 0.22 for the four-classes models). Detailed F1-scores are summarized in Table 2.
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Figure 2. F1-scores for each Modified Fatigue Impact Scale-cognitive classification type (binary,
3-classes, and 4-classes) on each model evaluated: random forest (RF), K-nearest neighbors (KNN),
support vector machine (SVM), Gaussian naive Bayes (GNB), complement naive Bayes (CNB), and
logistic regression (LR).

3.4. Regression Models

No regression model achieved acceptable values, whether the MFIS-total score or
MFIS-cognitive score was evaluated.

The highest score in the MFIS regression task was achieved by a Ridge regression
model for scaled test results, with R2 = 0.16, which was considered insufficient. However,
metrics for scaled scores were significantly higher than those obtained with raw and
computerized scores, as can be seen in Table 3. This is the reason why the ANNs were only
evaluated for this set of features. After applying the two PCA-based feature reductions, we
compared the R2 scores of the models (Figure 3), and the previous Ridge regression trained
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on the full dataset remained as the highest metric. However, PCA reductions improved the
result of some of the machine learning and ANN models, especially with soft reduction.
The R2 scores achieved for each reduction in features can be found in Table 4.

Table 3. R2 scores of the regression models for predicting Modified Fatigue Impact Scale (MFIS) score
for each subset of neuropsychological test results.

Test Scores Linear
Regression

Ridge
Regression

Lasso
Regression

Elastic Net
Regression

MFIS-total
score

Raw −0.857 0.005 −0.149 −0.052

Scaled −0.018 0.161 0.087 0.085

Computerized −0.940 −0.490 −0.208 −0.237

MFIS-
cognitive

Raw −0.383 0.104 −0.100 −0.020

Scaled −0.132 0.121 −0.100 0.073

Computerized −0.683 −0.185 −0.062 −0.014
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Table 4. R2 scores of the regression models for predicting Modified Fatigue Impact Scale (MFIS) score
for each feature reduction type.

Feature
Reduction Linear Ridge Lasso Elastic

Net ANN 1 ANN 2

MFIS-total
score

None −0.018 0.161 0.087 0.085 −6.577 −2.345

Hard PCA 0.038 0.038 0.011 0.013 −4.036 −1.728

Soft PCA 0.058 0.072 0.124 0.126 −1.120 −0.669

MFIS-
cognitive

score

None −0.132 0.121 −0.100 0.073 −6.716 −6.385

Hard PCA 0.119 0.119 0.079 0.078 −4.183 −3.481

Soft PCA 0.075 0.091 0.197 0.173 −1.156 −0.552

The highest scoring algorithm in the MFIS-cognitive regression task was once more
the Ridge Regression for scaled test results (R2 = 0.12). In this MFIS subscale, scaled



J. Clin. Med. 2022, 11, 3886 9 of 13

scores overperformed or matched the raw and computerized scores in all models (Table 3),
and were used again for assessment of the ANNs. When comparing the metrics of PCA
reductions against previous results (Figure 4), it was found that the best scoring model was
lasso regression in the soft reduction (R2 = 0.19). Generally, PCA reductions also helped in
the performance of the regression task for MFIS-cognitive. Detailed data on R2 scores for
each reduction can be consulted in Table 4.
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Figure 4. R2 scores for each Modified Fatigue Impact Scale–cognitive regression model (linear, ridge,
lasso, elastic net, ANN 1, and ANN 2) for each feature reduction type (no principal component
analysis [PCA], hard PCA, soft PCA). The negative section of the vertical axis is not represented to
scale with the positive section to improve the visualization of values. This section may be divided by
subheadings. It should provide a concise and precise description of the experimental results, their
interpretation, as well as the experimental conclusions that can be drawn.

4. Discussion

In this study, we evaluated a group of patients with PCS with a comprehensive
neuropsychological assessment and a standardized scale for fatigue. The MFIS is one of the
most commonly used tools for the assessment of fatigue in several conditions and has also
been widely applied for the assessment of post-COVID-19 fatigue [36]. Interestingly, we
only found moderate correlations between MFIS and Stroop test scores. The correlation
was negative, meaning that higher fatigue severity is associated with poorer performance
in the Stroop test. The correlation was slightly higher with MFIS-cognitive than MFIS-total
score. The Stroop test is a measure of cognitive flexibility, selective attention, inhibition, and
information processing speed [37], several of the processes linked to cognitive fatigue [38].
The other tests showed non-significant or low correlations, which suggests that these
correlations are not clinically relevant.

We developed several machine learning algorithms in order to predict the presence of
fatigue, several levels of fatigue severity, or the fatigue score, based on neuropsychological
test scores. Despite using several algorithms with different approaches, the classification
metrics obtained were considered low according to the F1-score and R2. In addition, three
and four-classes models (which reflect different degrees of severity of fatigue) performed
worse than binary classification (which means the presence or absence of clinically sig-
nificant fatigue). This suggests that there are no substantial cognitive modifications over
the different degrees of fatigue. To our knowledge, the relationship between cognitive
performance and fatigue in PCS has only been explored in one other study [39]. In this case,
the authors conducted a linear regression analysis and, even after including several scales
of depression, anxiety, or apathy, the best model obtained an R2 of 0.418 for MFIS-cognitive,
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and the cognitive test included in the model (digit span backwards) explained a very
low percentage of variance (partial correlation; r < −0.2). Overall, these results suggest
that fatigue and cognitive dysfunction in PCS may present different pathophysiological
mechanisms. Central fatigue has previously been associated with the activity of several
brain regions and networks. Specifically, a recent study suggested the involvement of
the striatum of the basal ganglia, the dorsolateral prefrontal cortex, the dorsal anterior
cingulate, the ventromedial prefrontal cortex, and the anterior insula [40]. Of these regions,
the anterior cingulate, ventromedial prefrontal cortex, and anterior insula could have a
more prominent role [38,41]. Most attentional/executive tests are more closely linked
to the dorsolateral prefrontal cortex than to other regions, which may explain the low
correlations with MFIS. One of the most noteworthy exceptions is the Stroop test, which
has also been associated with the anterior cingulate and ventromedial prefrontal cortex in
some studies of other disorders [42]. In addition, fatigue (and especially physical fatigue)
in PCS may also have other mechanisms, such as immunological dysfunction [43], which
could also explain the apparent discordance between subjective fatigue assessment and
cognitive performance.

Although further research is probably needed to design and validate novel neu-
ropsychological tasks that fully capture cognitive fatigue more ecologically, the extensive
neuropsychological battery and wide variety of tests used in this study raise the fundamen-
tal debate about the capability of the cognitive subdomain of MFIS to detect actual cognitive
fatigue. In this regard, other questionnaires or electrophysiological biomarkers have been
suggested [44]. Reliable tools for the assessment of cognitive fatigue are needed for accurate
diagnosis and follow-up and for evaluating the effect of new therapies in clinical trials.
Previous studies have also used machine learning to analyze alternative fatigue detection
methods based on new technologies. For instance, biological features extracted with EEG,
electro-oculogram, or heart rate, and physical features such as yawning, drowsiness, or
slow eye movements [45]. These approaches may be especially useful in the driving and
occupational fields to reduce risks and improve workers’ health and well-being [46].

Our study has some limitations. Although our protocol included a wide range of
cognitive tests, we cannot exclude the possibility that other cognitive tasks may improve
prediction. For instance, some authors have used the Paced Auditory Serial Addition
Test as a measure of cognitive fatigue, especially in the field of multiple sclerosis [47,48],
although they also observed no correlation with subjective fatigue [9,49,50]. In addition,
we used the MFIS as a reference for the assessment of fatigue and cognitive fatigue. Other
studies replicating these findings with other fatigue scales may be of interest [4].

In conclusion, our study did not identify reliable neuropsychological predictors of
cognitive fatigue as determined by a subjective questionnaire. This may suggest that
different pathophysiological mechanisms are associated with each disorder in PCS. Future
studies using advanced neuroimaging protocols could be of interest to further disentangle
the relationships between fatigue and cognitive function in the context of PCS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11133886/s1, Supplementary Table S1: Description of neu-
ropsychological tests and scores; Supplementary Table S2: Architecture of the two ANNs used in the
regression task, detailing their layer types (type), number of neurons/fraction of the input units to
drop for dense and dropout layers respectively (size) and activation functions, if used (activation);
Supplementary Table S3. Weighted average precision of the classification models on predicting MFIS
(total score) and MFIS (cognitive score) categorizations. The algorithms evaluated were random
forest (RF), K-nearest neighbors (KNN), support vector machine (SVM), Gaussian naive Bayes (GNB),
complement naive Bayes (CNB), and logistic regression (LR); Supplementary Table S4. Weighted
average recall of the classification models on predicting MFIS (total score) and MFIS (cognitive score)
categorizations. The algorithms evaluated were random forest (RF), K-nearest neighbors (KNN),
support vector machine (SVM), Gaussian naive Bayes (GNB), complement naive Bayes (CNB), and
logistic regression (LR).
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