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Purpose: To develop and validate a clinical-radiomics nomogram based on

radiomics features and clinical risk factors for identification of human

epidermal growth factor receptor 2 (HER2) status in patients with breast

cancer (BC).

Methods: Two hundred and thirty-five female patients with BC were enrolled

from July 2018 to February 2022 and divided into a training group (from center

I, 115 patients), internal validation group (from center I, 49 patients), and

external validation group (from centers II and III, 71 patients). The

preoperative MRI of all patients was obtained, and radiomics features were

extracted by a free open-source software called 3D Slicer. The Least Absolute

Shrinkage and Selection Operator regression model was used to identify the

most useful features. The radiomics score (Rad-score) was calculated by using

the radiomics signature-based formula. A clinical-radiomics nomogram

combining clinical factors and Rad-score was developed through

multivariate logistic regression analysis. The performance of the nomogram

was evaluated using receiver operating characteristic (ROC) curve and decision

curve analysis (DCA).

Results: A total of 2,553 radiomics features were extracted, and 21 radiomics

features were selected as the most useful radiomics features. Multivariate

logistic regression analysis indicated that Rad-score, progesterone receptor

(PR), and Ki-67 were independent parameters to distinguish HER2 status. The

clinical-radiomics nomogram, which comprised Rad-score, PR, and Ki-67,

showed a favorable classification capability, with AUC of 0.87 [95%

confidence internal (CI), 0.80 to 0.93] in the training group, 0.81 (95% CI,

0.69 to 0.94) in the internal validation group, and 0.84 (95% CI, 0.75 to 0.93) in
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the external validation group. DCA illustrated that the nomogram was useful in

clinical practice.

Conclusions: The nomogram combined with Rad-score, PR, and Ki-67 can

identify the HER2 status of BC.
KEYWORDS

breast cancer, human epidermal growth factor receptor 2, radiomics, nomogram,
magnetic resonance imaging
Introduction
Breast cancer (BC) is the most common malignancy

worldwide and the main cause of cancer-related death in women

(1, 2). The prognosis of BC has improved since the appearance of

targeted therapies, especially for patients with a human epidermal

growth factor receptor 2 (HER2)-positive subtype (3). HER2-

positive BC is characterized by high invasiveness, high degree of

malignancy, recurrence, and metastasis, and poor prognosis (4, 5).

Therefore, accurate assessment of the HER2 status is very

important for the prognosis prediction and treatment decision-

making for BC patients.

At present, the HER2 status is mainly detected by

immunohistochemistry (IHC) or fluorescence in situ

hybridization (FLSH), both of which are invasive methods

involving tissue samples (6). However, the consistency of the

HER2 status between core needle biopsy and subsequent resection

biopsy of the same BC is 81%–96% (7, 8). Therefore, the

development of a non-invasive and reliable method is essential

for the assessment of the HER2 status in BC patients. Magnetic

resonance imaging (MRI), an essential tool in breast imaging, is

considered to be one of the most sensitive imaging methods for

detecting BC and monitoring neoadjuvant chemotherapy (9, 10).

T2WI can be used to detect bleeding, edema, and cyst in breast

lesions (11). Diffusion-weighted imaging (DWI), a common

method to evaluate the micro-architecture of the tumors based

on the measurement of the Brownian motion of water molecules,

improves the accuracy of breast tumor diagnosis (12). Dynamic

contrast-enhancedMRI (DCE-MRI), another commonmethod to

evaluate BC, can provide information on blood perfusion and

microvessel distribution (13). The so-called imaging features, such

as blurred boundary, irregular shape, and lobulated or burr mass,

are useful for the diagnosis of BC, whereas the features have

limited performance in predicting the HER2 status (14).

Radiomics is a new machine learning method that aims to

extract a large number of quantitative features from medical

images using data characterization algorithms (15). These

quantitative features have been applied to identify benign and
02
malignant breast lesions and predict neoadjuvant chemotherapy

response and lymph node metastasis (16–18).

In the present study, to identify the HER2 status of BC

patients, we hypothesized that the combination of radiomics

signatures and clinical factors could evaluate the HER2 status in

BC patients. To verify the feasibility of our hypothesis, radiomics

features were selected using the Least Absolute Shrinkage and

Selection Operator (LASSO) logistic model based on the

radiomics features extracted from fat suppression T2WI (FS-

T2WI), DWI, and DCE-MRI. A clinical-radiomics nomogram

model integrating radiomics signatures and clinical risk factors

was constructed by multivariate logistic regression analysis and

verified by the multicenter dataset.
Materials and methods

Patients

The retrospective study was approved by the local

institutional review board, and the requirement for informed

consent was waived. From July 2018 to February 2022, the MR

images and pathological data of BC patients were collected from

three clinical centers (center I, the First Affiliated Hospital of

Shandong First Medical University; center II, Provincial

Hospital Affiliated to Shandong First Medical University; and

center III, Qilu Hospital of Shandong University). The inclusion

criteria were as follows: (1) postoperative pathology confirmed

that BC was an invasive ductal carcinoma of no special type; (2)

breast MRI was performed within 2 weeks before surgery; (3) no

preoperative radiotherapy or neoadjuvant chemotherapy. The

exclusion criteria were as follows: (1) incomplete clinical data or

insufficient MRI quality; (2) the HER2 status was not tested by

IHC or FLSH after surgery, or the IHC intensity score of patient

specimens was 2 +, and FLSH was not further tested. The

flowchart is shown in Figure 1.

In addition, the following clinical information was

obtained through the patient’s electronic medical record
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system: age, tumor diameter, tumor grade, estrogen receptor

(ER), progesterone receptor (PR), Ki-67 proliferation index,

HER2, and pathological axillary lymph node (ALN)

metastasis status.
Postoperative pathological assessment

The status of HER2 was detected by IHC or FLSH after

operation. According to the guidelines of the American Society

of Clinical Oncology/College of American Pathologists

(ASCO/CAP) (6), if the IHC result was 0 or 1+, HER2 was

defined as negative; if the result was 3+, it is positive; for

tumors with an IHC result of 2+, further FLSH detection was

required. If gene amplification occurred, it was defined as

positive. For the ER/PR test, the nuclear staining of ≥1% of

tumors was defined as ER/PR positive. The critical threshold of

Ki-67 to 14% was set, and tumors ≥14% were defined as

high expression.
MRI acquisition and image segmentation

Breast MRI examinations were performed using a 3.0-TMRI

scanner, equipped with a special breast phased-array surface coil.

Patients were placed in the prone position, and the bilateral

mammary glands naturally hung in the coil to fully extend the

mammary glands. FS-T2WI, DWI, and DCE-MRI were

sequentially obtained, and the detailed parameters of MRI

acquisition are summarized in Supplementary Table 1.

A free open-source software called 3D Slicer (www.slicer.

org) was used to perform image segmentation. On FS-T2WI,

DWI, and DCE-MRI (the peak enhancement phase of

multiphase-enhanced MRI selected according to the time

intensity curve), the region of interest (ROI) of each tumor

was manually outlined layer by layer along the tumor contour by
Frontiers in Oncology 03
excluding the areas of necrosis and calcification. Figure 2 shows

an example of manual ROI drawing.
Radiomics feature extraction
and selection

Due to the difference between MRI scanning parameters and

devices, we preprocessed the images before the extraction of

radiomics features. We resampled the voxels of all images to

1 mm × 1 mm × 1 mm using three-line interpolation and

standardized its intensity range to 0 to 255. The 3D Slicer

software was also used for feature exaction according to

guidelines defined by the image biomarker standardization

initiative (19). Four groups of features were extracted from the

FS-T2WI, DWI, DCE-MRI, and their combination (FS-

T2WI+DWI+DCE-MRI).

To evaluate the intra- and interobserver agreement of feature

exaction, the MR images of 30 patients were randomly selected.

Two experienced radiologists (reader 1 and reader 2) blinded to

clinical information completed the process manually and

independently with the same criteria. Reader 1 repeated the

process after 3 weeks to assess intraobserver reproducibility. The

reliability of measurements was assessed by intra- and interclass

correlation coefficients (ICCs). ICC values above 0.75 were

considered to have good consistency, and the remaining MRI

feature exaction was completed by reader 1.

Two feature selection methods, minimum-redundancy

maximum-relevance (mRMR) and LASSO, were used to

obtain the most significant characteristics for evaluation of the

HER2 status. At first, mRMR was carried out to narrow the

range of redundant and irrelevant features; 30 features were

retained. Then, the retained features were filtered with LASSO to

obtain the best features, and 10-fold cross validations were

utilized to determine the optimal values of l. The radiomics

score (Rad-score) of each patient was calculated by selecting the
FIGURE 1

Patient recruitment routes in center I and external centers II-III. n I, number of patients in center I; n II-III, total number of patients in external
centers II-III.
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linear combination of features and the product of their

respective coefficients
Model construction and validation

The seven clinical parameters (age, tumor diameter, tumor

grade, ER, PR, Ki-67, and ALN metastasis status) were first

analyzed by univariate logistic regression to screen out the

clinical features of P < 0.05. To obtain the clinical risk factors

identifying the HER2 status and building the clinical model, the

significant variables in univariate analysis were input for

stepwise multivariate logistic regression analysis. Moreover, we

used multivariate logistic regression analysis to develop a

clinical-radiomics model based on Rad-score and clinical risk

factors, which is displayed by a nomogram.

Therefore, a total of three models were constructed to

identify the HER2 status of BC: clinical model, radiomics

model, and clinical-radiomics model. The area under the

receiver operating characteristic (ROC) curve (AUC) was used

to evaluate the discrimination performance of the three models

in the training and validation cohorts. Finally, to explore the
Frontiers in Oncology 04
clinical utility of nomogram, decision curve analysis (DCA) was

carried out based on three models to determine the utility of

nomogram in a series of threshold probabilities.
Statistical analysis

R programming language (version 4.1.0, www.programmingr.

com) was applied for statistical analysis and data processing. The

differences of continuous variables (age, tumor diameter) between

the HER2-negative group and HER2-positive group were

compared by the independent sample t-test or Mann–Whitney

U-test and described as mean ± standard deviation (SD). The

differences of categorical variables (ER, PR, Ki-67, ALNmetastasis

status, and tumor grade) between the two groups were compared

using chi-square test or Fisher’s exact test and expressed as

absolute numbers (n) and proportions (%). Univariate and

multivariate logistic regression analyses were used to evaluate

the relationship between HER2 overexpression status and clinical

risk factors. All statistical tests were two-sided, and P-values of

<0.05 were regarded as significant.
A B
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C

FIGURE 2

(A-F): An example of manual segmentation in breast cancer. (A, B): tumor area (green in fat suppression T2WI image); (C, D): tumor area
(orange in DWI image, b = 1,000 s/mm2); (E, F): tumor area (red in DCE-MR image).
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Results

Clinical characteristics

A total of 235 breast cancer patients was consecutively enrolled

(met the inclusion criteria, but not the exclusion criteria). All the

patients were women with the mean age of 50.76 ± 10.82 years

(range: 26-83 years). The patients were divided into three

independent groups: a training group (from center I, 115

patients), internal validation group (from center I, 49 patients),

and external validation group (from centers II and III, 71 patients).

The clinical characteristics of the three groups were

compared as shown in Table 1. The HER2-positive

proportions in the training, internal validation, and external

validation sets were 27.1%, 26.5%, and 32.4%, respectively.
Intraobserver and interobserver
agreement for radiomics
features extraction

The intraobserver ICC was 0.761 to 0.990, and the

interobserver ICC ranged from 0.759 to 0.989 for evaluation of

the radiomics features extraction. The results showed good

consistency of feature extraction within and between observers.
Frontiers in Oncology 05
Feature selection and development of
the radiomics model

A total of 851 quantitative radiomics features were extracted

from each sequence, which could be summarized into the

following four groups: 14 volume and shape features (2D and

3D), 18 first-order features, 75 texture features, and 744 ([18 +

75] * 8) wavelet transform features.

By mRMR and LASSO, 6, 10, and 3 optimal radiomics features

were selected from FS-T2WI, DWI, and DCE-MRI, respectively.

Then, combining these three sequences, two radiomics features

(one from DWI and one from DCE-MRI) were selected and

executed from 2,553 (851×3) features to construct a radiomics

model (Figure 3). The Rad-score of each patient was calculated

using the formula presented in Supplementary Materials 2.
Development of the clinical and clinical-
radiomics models

Based on the univariate and stepwise multivariate logistic

regression analyses, two clinical risk factors (PR and Ki-67) were

obtained for identification of the HER2 status and were used for

construction of the clinical model. In addition, logistic
TABLE 1 Patient characteristics in the training and validation cohorts (mean ± standard deviation).

Clinicopathological features Training group
(N = 115)

P Internal validation group
(N = 49)

P External validation group
(N = 71)

P

HER2-
(n = 84)

HER2+
(n = 31)

HER2-
(n = 36)

HER2+
(n = 13)

HER2-
(n = 48)

HER2+
(n = 23)

Age (years, mean± SD) 49.5 ± 10.5 52.5 ± 8.9 0.163 52.6 ± 11.4 50.3 ± 7.5 0.494 49.8 ± 12.4 52.4 ± 11.3 0.396

Diameter (cm, mean± SD) 2.1 ± 0.9 2.2 ± 0.7 0.658 1.8 ± 0.7 2.8 ± 1.1 0.000 1.9 ± 0.8 2.4 ± 0.8 0.034

ER 0.003 1.000 0.034

Positive 72 (85.7%) 18 (58.1%) 34 (94.4%) 12 (92.3%) 37 (77.1%) 12 (52.2%)

Negative 12 (14.3%) 13 (41.9%) 2 (5.6%) 1 (7.7%) 11 (22.9%) 11 (47.8%)

PR 0.001 0.352 0.000

Positive 68 (81.0%) 15 (48.4%) 31 (86.1%) 9 (69.2%) 38 (79.2%) 8 (34.8%)

Negative 16 (19.0%) 16 (51.6%) 5 (13.9%) 4 (30.8%) 10 (20.8%) 15 (65.2%)

Ki-67 0.001 0.040 0.038

≥14% 48 (57.1%) 28 (90.3%) 20 (55.6%) 12 (92.3%) 40 (83.3%) 23 (100%)

<14% 36 (42.9%) 3 (9.7%) 16 (44.4%) 1 (7.7%) 8 (16.7%) 0

Pathological ALN metastasis 0.751 0.176 0.399

Positive 28 (33.3%) 12 (38.7%) 10 (27.8%) 7 (53.8%) 22 (45.8%) 13 (56.5%)

Negative 56 (66.7%) 19 (61.3%) 26 (72.2%) 6 (46.2%) 26 (54.2%) 10 (43.5%)

Histological grade 0.210 0.289 0.017

I 17 (20.2%) 2 (6.5%) 9 (25.0%) 0 2 (4.2%) 0

II 51 (60.7%) 22 (71.0%) 22 (61.1%) 8 (61.5%) 38 (79.2%) 12 (52.2%)

III 16 (19.0%) 7 (22.6%) 5 (13.9%) 5 (38.5%) 8 (16.7%) 11 (47.8%)

Rad-score(median) -1.3[-0.9, -0.1] -0.7[-0.9, -0.1] <1e-04 -1.1[-1.7, -0.8] -0.6[-0.9, -0.3] 0.002 -1.1[-1.7, -0.8] -0.9[-1.2, -0.8] 0.010
frontiersi
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regression analysis showed that the Rad-score was an

independent variable to identify HER2 status (Table 2).

Therefore, a clinical-radiomics model was constructed by

combining Rad-score and clinical risk factors.
Comparison of models
and establishment of
clinical-radiomics nomogram

To compare the performance of the clinical-radiomics model,

the radiomics model, and the clinical model in identifying the

HER2 status, we plotted the ROC curves of the three models

(Figure 4). In the training cohort, the clinical-radiomics model

showed the highest discrimination between HER2-negative and

positive cases, with an AUC of 0.87 (95% CI, 0.80 to 0.93). The

AUC value of the clinical-radiomics model was significantly

higher than that of the radiomics model (AUC = 0.84, 95% CI,

0.76 to 0.92) and clinical model (AUC = 0.73, 95% CI, 0.64 to

0.82). In the internal validation and external validation cohorts,

the AUC of the clinical-radiomics model was 0.81 (95% CI, 0.69 to

0.94) and 0.84 (95% CI, 0.75 to 0.93), respectively, which was

superior to the single radiomics model and clinical model. The

clinical-radiomics model showed the best ability to identify the
Frontiers in Oncology 06
HER2 status. Therefore, a clinical-radiomics nomogram was

developed based on the clinical-radiomics model (Figure 5).
Clinical application

Figure 6 shows the DCA curves of the clinical-radiomics

model, the radiomics model, and the clinical model. According

to the DCA, the clinical-radiomics nomogram showed good

clinical practicability in all threshold probabilities and obtained

the greatest benefit. It indicated that the nomogram was a

reliable clinical tool and could be used to identify the HER2

status of BC.
Discussion

BC is one of the most common death causes of cancer

among women in the world. However, the way of BC treatment

has changed drastically since HER2 is a target of the monoclonal

antibody trastuzumab as well as of other anti-HER2 compounds.

In this study, to identify the HER2 status in BC patients, we

developed and validated a clinical-radiomics nomogram based

on radiomics features and clinical risk factors. It successfully
A B

FIGURE 3

(A, B): Texture feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) regression. (A): Optimal tuning parameters
(l) in the LASSO model binomial deviation diagram. (B): LASSO coefficient profile of the features.
TABLE 2 Univariate and multivariate analyses of risk factors for HER2.

Variable Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P OR (95% CI) P

ER 0.23 [0.09, 0.59] 0.002 NA NA

PR 0.22 [0.09, 0.53] 0.000 0.37 [0.13, 1.07] 0.067

Ki-67 7.00 [1.97, 24.84] 0.002 4.12 [0.98, 17.37] 0.053

Rad-score 11.85 [4.25, 33.02] <1e-04 9.88 [3.43, 28.43] <1e-04
fro
OR, odds ratio; CI, confidence interval; NA, not available; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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stratified BC patients according to HER2 status and performed

well in the training, internal, and external validation groups.

In the present study, PR and Ki-67 were identified as

clinical risk factors for distinguishing the HER2 status by

multivariate logistic regression analysis. PR promotes cell

growth through nuclear pathways and non-nuclear

pathways. There is a negative correlation between HER2

overexpression and PR expression, which is due to the loss

of the PR protein caused by HER2 overexpression through

the PI3K/Akt signaling pathway (20). A previous study has

shown that the expression level of PR in BC with

overexpression or high amplification level of HER2 is

lower than that of low-level tumor (21). Ki-67 is a nuclear

protein, which is usually used to detect and quantify tumor-

proliferating cells. Its increased expression is related to cell

growth (22). The Ki-67 index is positively correlated with
Frontiers in Oncology 07
HER2 status, which indicates that HER2 overexpression

may upregulate the expression of Ki-67 (23). This was

consistent with our results. Based on these clinical risk

factors, we further obtained the clinical model to identify

the HER2 status through multivariable logistic regression

analysis. The AUC in the training, internal, and external

validation groups were 0.73, 0.72, and 0.75 respectively,

indicating that the discrimination efficiency of the model

is good.

Radiomics, a research hotspot in the field of medical

imaging analysis recently, is gaining importance in the

evaluation of cancer by improving tumor diagnostic,

prognostic, and predictive accuracy. The advantage of

radiomics is the application of a large number of automatic

data feature extraction algorithms to transform image data

into quantitative features. In the present study, a radiomics
frontiersin.org
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FIGURE 4

(A-C): The receiver operating characteristic curves of nomogram, radiomic signatures, and clinical risk factors for identifying the HER2 status of
breast cancer were presented in the training group (A), the internal validation group (B) and the external validation group (C), respectively. The
nomogram obtained the highest area under the curve (AUC).
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model for identification of the HER2 status of BC patients was

constructed on the basis of the extracted features (one from

DWI and one from DCE-MRI). The AUC of the constructed

radiomics model was 0.79 (internal validation group), which

was similar to the previous studies (24, 25). Zhou et al. (24)

reported a development of radiomic features based on

mammography, including mediolateral oblique and cranial

caudal views, to evaluate the BC HER2 status. The best

combination of the two views was achieved, and the AUC

of the test set was 0.787. In another study, the features

extracted from T2WI in combination with DCE-MRI

showed that the ability of predicting the HER2 status of BC

patients was better than that of single-parameter MRI, and

the AUC of the validation set was 0.81 (25).

Accurate identification of the HER2 status plays an

essential role in the evaluation of treatment options for BC

patients. The use of HER2 expression as a predictive

biomarker of target drug response to trastuzumab is
Frontiers in Oncology 08
becoming a standard recommendation for the treatment of

invasive breast cancer (26). To accurately identify the HER2

status of BC patients, we further established the clinical-

radiomics nomogram based on radiomics features and

clinical risk factors. The performance of the nomogram in

identifying HER2 status was further improved, with AUC of

0.87 in the training group and 0.81 in the internal validation

group. In the present study, we used the external validation

set to verify the clinical-radiomics nomogram. The results

showed that it had good prediction efficiency (AUC = 0.84),

and its identification ability was significantly superior than

that of single radiomics features and clinical features. Our

multicenter data provided additional radiomics evidence for

predicting the HER2 status of BC. It can be used as a non-

invasive identification tool for the HER2 status. Doctors can

add the scores of each prediction index to get the total score

according to the individual differences of patients, so as to

make a more accurate prediction, help clinical decision-
FIGURE 6

Decision curve analysis of clinical application evaluation of the nomogram. The vertical axis displays standardized net benefit. The two
horizontal axes show the corresponding relationship between risk threshold and cost-benefit ratio. Compared with the radiomics signature
(gray line) and clinical characteristics (yellow line), the nomogram (blue line) achieved the highest net benefit.
FIGURE 5

A clinical-radiomics nomogram. The nomogram was composed of Rad-score, PR, and Ki-67. PR: 0 = negative, 1 = positive; Ki-67: 0 = low
expression, 1 = high expression.
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making more intuitively, and make personalized treatment

plans. In addition, this study uses DCA to evaluate the clinical

application of the nomogram. The DCA results show that the

net benefit of the nomogram is higher than that of the

radiomics model and clinical model, which increases the

reliability of the model.

However, this study still has some limitations. Firstly, we only

included the invasive ductal carcinoma of no special type in this

study, because this pathological type accounts for 80% of all BC.

This choice can avoid confounding factors associated with

pathological types. Secondly, in DCE-MR images, we only

selected the most obvious enhancing phase according to the time

intensity curve and did not analyze the pre-contrasts and other

enhanced images. Finally, this study is retrospective, and the sample

size is relatively small, so some bias is inevitable. In future studies,

large sample size prospective randomized studies are needed to

verify the results of this study.
Conclusions

In conclusion, combined with radiomics features and clinical

risk factors, a clinical-radiomics nomogram was constructed to

evaluate the HER2 status of BC patients. It can be used for

identifying the HER2 status in BC patients, helping clinical

decision-making, and providing supplementary information

for precise medical treatment.
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