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Abstract: Metal-oxide sensors, detect gas through the reaction of surface oxygen molecules with
target gases, are promising for the detection of toxic pollutant gases, combustible gases, and organic
vapors; however, their sensitivity, selectivity, and long-term stability limit practical applications.
Porous structure for increasing surface area, adding catalyst, and altering the operation temperature
are proposed for enhancing the sensitivity and selectivity. Although humidity can significantly affect
the property and stability of the sensors, studies focusing on the long-term stability of gas sensors
are scarce. To reduce the effects of humidity, 1H, 1H, 2H, 2H–perfluorooctyltriethoxysilane (PFOTS)
was coated on a porous SnO2 film. The interconnected SnO2 nanowires improved the high surface
area, and the PFOTS coating provided superhydrophobicity at water contact angle of 159◦and perfect
water vapor repellency inside E-SEM. The superhydrophobic porous morphology was maintained
under relative humidity of 99% and operating temperature of 300 ◦C. The CO gas sensing of 5, 20,
and 50 ppm were obtained with linearity at various humidity. Flame detection was also achieved
with practical high humidity conditions. These results suggest the simple way for reliable sensing of
nanostructured metal-oxide gas sensors with high sensitivity and long-term stability even in highly
humid environments.

Keywords: self-assembled monolayers; porous SnO2 film; CO sensing; humidity; superhydrophobic-
ity; water vapor repellency

1. Introduction

Semiconducting metal-oxide gas sensors have been studied for their significant appli-
cations in security, industrial safety, automobiles, medical diagnosis, and environmental
monitoring [1–3]. Among several metal-oxide gas sensors, tin (IV) oxide (SnO2), which is
an important n-type oxide and wide band gap (3.6 eV) semiconductor, is predominantly
used as an active layer for gas sensors owing to its high sensitivity, rapid response, recovery
property, cheap manufacturing cost, and low operating temperatures, among others [4].
The detection mechanism of SnO2-based gas sensors can be explained by the changes in
the resistance of the semiconducting SnO2 layer caused by the adsorption of oxygen or
reaction with target gas molecules [5,6]. Recently, various nanostructures for SnO2 gas
sensing layers have been developed and tested to improve the gas sensing performance.
Nanostructures can provide high sensitivity and rapid response owing to their high surface
area and rapid gas diffusion [7–10]. To develop appropriate nanostructures for gas sensors,
several dry process methods have been reported, including sputtering, chemical svapor de-
position, pulsed laser deposition, and thermal evaporation [11–17]. Several structures, such
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as nanodots, nanobelts, nanohairs, nanowires, nanotubes, and nanoribbons, are prepared
and applied to gas sensing with enhanced high sensitivity and low detection limit [18–23].
However, it is still difficult to obtain a high surface area and reliable sensor performance
for practical applications.

There are diverse parameters that influence gas sensing performance, i.e., affecting
the surface reactions, such as property of sensing layer; chemical components, surface
electronic state, and nano/microstructures as well as environment condition; temperature
and humidity [24–27]. Especially in nanostructure based gas sensors, environmental
humidity is a crucial factor for accurate and reliable gas sensing. Water molecules in
humid environments easily attach to the sensor surface and hinder the reaction between
the target gas and reaction sites on SnO2, thereby inducing a false signal and reducing
the sensitivity and long-term stability [1,2,28–30]. Furthermore, when the nanostructured
SnO2 layer is formed on the sensor surface, the water molecules in humid air condense
into water droplets on the surface and thereafter infiltrate the nanostructures, causing the
collapse of the morphology. This deformation declines the repetitive operation of the gas
sensor, resulting in signals with reduced reliability and accuracy. The optimal method for
decreasing the humidity effect is to prevent water molecule absorption and water droplet
penetration into the gas sensor surface structures. Therefore, the selective control of reactive
materials, such as target gas and water molecules, is a major problem in nanostructured
metal-oxide gas sensors.

Several studies have introduced self-assembled monolayers (SAMs) coating to increase
the selectivity of gas sensors with specific interactions with target materials. The SnO2 film
sensor utilizes a 3-aminopropyltriethoxysilane as an intermediate medium of the surface
to obtain sensitive and selective gas detection operated at some ambient temperature [30].
SAMs also act as block layers on the surface to prevent additional interaction between the
sensor surface and unwanted materials except targets [31–33]. In particular, hydrophobic
surface coating using SAMs shows significant improvements in reducing the undesirable
interaction of water molecules owing to the intrinsic coating layer property of low surface
energy [33–35].

Herein, we propose the simple ways to obtain reliable sensing properties regardless of
humidity with a porous SnO2 film gas sensor using by vapor SAM coating. The porous film
provides numerous reaction sites based on interconnected network nanostructures and the
1H, 1H, 2H, 2H–perfluorooctyltriethoxysilane (PFOTS) SAM coating passivates the surface
defects to protect the additional interaction of water molecules. The preparation method
and characterization of the PFOTS coated porous SnO2 film gas sensor are demonstrated
in view of the thermal stability, wetting property, chemical analysis, morphology change,
and CO detection under various humidity conditions.

2. Materials and Methods
2.1. Preparation of the Porous SnO2

Film The sensor platform was developed for measuring the gas sensor signal. The
platform comprised an alumina (Al2O3) substrate, designed platinum (Pt) electrodes,
and a heater on the back of the substrate (see Figure S4, Supporting Information). The
nanostructure was prepared by the thermal evaporation method. A porous SnO2 film
was deposited on the fabricated alumina surface using a low vacuum thermal evaporator
(ULTECH CO., LTD., Deagu, Korea). The source material, SnO2 powder (99.99%, TAEWON
SCIENTIFIC CO., LTD., Seoul, Korea), was loaded in an alumina-coated tungsten boat
placed at the center of a chamber and at 10 cm from the substrate. The substrate was cooled
to 10 ◦C and rotated at 3 rpm for 30 min in SnO2 deposition. To obtain a porous morphology
with interconnected nanowires, the working pressure was controlled at 0.2 Torr with argon
carrier gas [4]. The deposited samples were treated in a furnace at 700 ◦C for 1 h (see
Figure S1, Supporting Information). For the surface analysis of the prepared porous SnO2
film, the same deposition process was also performed in silicon (Si) wafers.
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2.2. SnO2 Coating Method of SAMs on Porous SnO2 Films

The SAM coating on the porous SnO2 film surface was performed by the vapor
deposition method. The sample was placed in a plastic container and 100 µL of PFOTS
(Sigma-Aldrich CO., LTD, St. Louis, MO, USA) solution was dropped to the bottom
of the container. Then, the container was filled with nitrogen gas to prevent the side
reaction of PFOTS molecules with moisture. The container was placed in a 100 ◦C oven
for 1 h. After the PFOTS vapor deposition process, the porous SnO2 film surface showed
superhydrophobicity.

2.3. Surface Analysis

To characterize the porous SnO2 film surface before and after the PFOTS coating,
surface analysis was performed by several methods. X-ray Diffraction (D8 ADVANCE,
Bruker, Billerica, MA, USA) is used to confirm the crystal structures before and after
annealing with Cu Kα radiation. The surface chemical compositions were investigated
using an energy-dispersive X-ray spectroscope (EDAX, AMETEK, Inc., Berwyn, PA, USA)
and X-ray photoelectron spectroscope (XPS, PHI 5000 VersaProbe, ULVAC PHI). Surface
morphologies were obtained using a field emission scanning electron microscope (FE-SEM,
NOVA NanoSEM 200, FEI Co., Hillsboro, OR, USA). Superhydrophobicity of the surfaces
was determined by measuring the water contact angles with a contact angle meter (DM-50,
Kyowa Interface Science Co., Ltd., Niiza-city, Japan) and by monitoring the condensation
behavior inside an environmental scanning electron microscope (E-SEM, Quanta 250, FEI
Co., Hillsboro, OR, USA).

2.4. Gas Sensing Measurement

For measuring the sensing properties, a custom-built experimental apparatus was
used to control the humidity (see Figure S2, Supporting Information). The gas sensor was
placed at the center of the chamber and electrically connected to measure the change in
resistance with different concentrations (5, 20, and 50 ppm) of carbon monoxide (CO). The
relative humidity (RH) in the chamber was adjusted to 20%, 40%, 70%, and even 99% (at
25 ◦C) to check the effect of humidity on sensing. The operational temperature of the gas
sensor was maintained at 300 ◦C, wherein SnO2 is sensitive to CO by heating electrodes
from the back of the substrate. Gas sensor parameters, including response and recovery
time, were obtained. For reliable measurements, the gas sensor was preconditioned for 1 h
at the measurement temperature under flowing dry air before each set of measurements.
CO gas was injected for 10 min to stabilize the gas sensor and the response and recovery
time were calculated using the time required to achieve 90% of the total resistance change
in the case of absorption and desorption, respectively.

3. Results and Discussion

Figure 1 shows the water contact angle and surface morphology of the developed
porous SnO2 film before and after PFOTS coating. A porous SnO2 film prepared by thermal
evaporation at a relatively low vacuum process (0.2 Torr) is hydrophilic with a water
contact angle of 17◦, as shown in Figure 1a. The schematic of the grown SnO2 film is
shown in Figure 1b. The crystal structure was determined by X-ray diffraction (XRD) in
Figure S1, Supporting Information. The average crystallite size was estimated as 6.1 nm
from tetragonal SnO2 (T-SnO2) diffraction patterns using Scherrer’s equation. Figure 1c,d
show the specific porous morphology with interconnected nanowires of the SnO2 film. The
top FE-SEM image of the grown SnO2 film shows the rainforest-like morphology and the
cross-sectional FE-SEM image also shows the lush tree-like porous SnO2 film analogous to
rainforests. The film was approximately 68 µm thick. The inset images show the porous
and interconnected nanostructures. The main factors to determine the sensitivity and
detection limit of the gas sensor are closely related to the surface morphology such as
porosity, particle size and specific surface area. In particular, the gas sensors composed of
small particle sizes shows the improved gas response by increasing the part of the depletion
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region on the surface. Because the porous SnO2 film was composed of nanowires and a
large amount of open pore, CO gas easily diffused into the film surface and reacted with
the oxygen adsorbates. Therefore, this distinctive SnO2 film structure provides excessive
reaction sites based on the large surface area and can increase the sensitivity and decrease
the detection limit [12]. Despite these advantages, the porous SnO2 film can be affected by
the humid environment because the reaction sites of SnO2 also respond to water molecules.
To reduce the influence of humidity on sensing, the prepared porous SnO2 film was treated
with PFOTS as a hydrophobic coating layer. PFOTS is a self-assembled monolayer molecule
that modifies the surface to a low surface energy state [34]. A porous SnO2 film consists
of numerous pores and thin nanowires, that can easily aggregate by capillary forces if the
surface is exposed to moisture or water and then dried in air. Therefore, PFOTS coating was
performed using by vapor deposition method to maintain the porous morphology. After
the PFOTS coating, the water contact angle becomes 159◦ exhibiting superhydrophobicity,
as shown in Figure 1e. Remarkably, the water droplet was not attached to the surface
showing the extreme water repellency due to the specific surface morphology and low
surface tension chemical coating. Based on the wetting behavior, it is proposed that the
significant affinity of PFOTS with SnO2 enables the SAMs on the nanowire branches of the
SnO2 film without any physical deformation, as shown in Figure 1f. Figure 1g,h show the
morphology of the porous SnO2 film without changes in the FE-SEM images after PFOTS
coating. Therefore, PFOTS coated layers does not affect the morphology because the
thickness of PFOTS monolayer is below 2 nm if the monolayer is assembled conformably.
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Figure 1. Water contact angle and FE-SEM images of the developed porous SnO2 film before and
after PFOTS coating. (a) Water contact angle of the porous SnO2 film. (b) Schematic of the grown
SnO2 film. (c) Top view and (d) cross-sectional view of the SEM image of the porous SnO2 film. (e)
Water contact angle of the PFOTS coated porous SnO2 film. (f) Schematic of the grown PFOTS coated
SnO2 film. (g) Top view and (h) cross-sectional view of the SEM image of the PFOTS coated porous
SnO2 film.
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Surface analysis of the PFOTS monolayer formation on the porous SnO2 film cannot
validate a complete coating of the surface owing to the large surface area and randomly in-
terconnected complex morphology. Initially, chemical composition analysis was performed
by XPS, as shown in Figure 2. The XPS survey spectrum of the porous SnO2 film on the
Si wafer shows tin (Sn) and oxygen (O), whereas the XPS spectrum of the PFOTS coated
porous SnO2 film has a F1S peak at 687.5 eV, indicating the presence of PFOTS coating.
Although not shown in the results, the EDAX analysis also showed that F is distributed
evenly on the PFOTS coated porous SnO2 films using a mapping method.
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Figure 2. XPS survey spectrum of porous SnO2 film before and after PFOTS coating.

The quality of the PFOTS coating was investigated in a condensation experiment using
an E-SEM. To obtain resistance in humid conditions, the surface is completely covered
with PFOTS molecules. A porous SnO2 film and a PFOTS coated porous SnO2 film on
a Si wafer were placed in an E-SEM sample holder and the temperature of the sample
holder was maintained at 4 ◦C. The pressure in the E-SEM was regulated with water vapor
from 400 to 800 Pa to observe a condensation behavior. Figure 3a shows the condensation
process of bare porous SnO2 film over time. The brightness of the screen reduces with
increasing pressure because of the condensed water on the porous SnO2 film. The film-
wise condensation occurred rapidly, 3 s, and formed a complete water layer at 12 s. As
the pressure decreases, the brightness of the screen is recovered, showing the surface
morphology. Moreover, the morphology of the porous SnO2 film changes by aggregating
each nanostructure. In contrast, for a PFOTS-coated porous SnO2 film, although the
pressure in the E-SEM was altered to 800 Pa, there was no change in the morphology, as
shown in Figure 3b. This behavior shows that water vapor does not interact with the
PFOTS coated porous SnO2 film and the perfect water vapor repellency operates even at
dew point temperature. Therefore, it was confirmed that the PFOTS coated porous SnO2
film exhibited superhydrophobicity at nanoscale and the porous SnO2 film was coated by
PFOTS with almost complete coverage.
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The desorption of oxygen adsorbates, the reactivity between the adsorbates and CO
gas, and the penetration depth of CO gas into the SnO2 film increased as the operation
temperature increased [10]. For this reason, the operating temperature is crucial for deter-
mining the sensitivity and selectivity of the target gas in a semiconducting metal-oxide gas
sensor. From previous studies, nanostructured SnO2 based sensors have prominent signals
and fast reaction time for CO gas at 300 ◦C [4,36]. Therefore, the thermal stability of the
PFOTS coating at 300 ◦C with 99% RH in chamber (25 ◦C) was investigated by the contact
angle measurement for superhydrophobicity, FE-SEM analysis for morphology, and XPS
analysis for chemical composition. The 300 ◦C heat treatment for PFOTS coated samples
grown on the alumina sensor platform in 99% RH environment was performed for 30 min
with the heater at the back of the sensor platform in a custom-built experimental chamber
that controls the temperature and humidity (see Figure S2, Supporting Information). After
heating, the contact angle of the PFOTS coated sample was maintained at 159 ◦C and
water droplet repellency was retained. The nanostructures on the bare porous SnO2 film
were aggregated and collapsed by moisture, and the rainforest-like morphology on the
PFOTS coated porous SnO2 film remained intact, as shown in Figure 4a,b, respectively.
The chemical binding state of fluorine (F) originating from PFOTS coating in XPS was also
observed to be almost the same for samples before and after heat treatment, as shown in
Figure 4c. The F1S peak at 687.5 eV in the XPS analysis shows that there is no decomposition
or deformation in the C-F bonds with the unchanged binding energy and intensity. There-
fore, the surface characterization results indicate that there were no changes in the surface
morphology and chemical composition. The PFOTS coating can be used as a hydrophobic
layer at operation temperature and high humidity.
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For a practical application of PFOTS coated porous SnO2 film gas sensors, the sensing
properties of the porous SnO2 film before and after PFOTS coating were examined by CO
detection in a custom-built chamber with controlled humidity. The improved sensitivity
and lower detection limit of the porous SnO2 film were already verified based on the inter-
connected nanowire morphology of high surface area [10]. The gas response and recovery
time of sensing were obtained from real data (see Figure S3, Supporting Information) by
measuring the resistance changes with 5, 20, and 50 ppm of CO concentrations according
to the humidity at 20%, 40%, and up to 70% with sensor platform temperature at 300 ◦C,
as shown in Figure 5. The gas response of the n-type SnO2 sensor contributes to the de-
creased resistance values with increasing concentrations of CO gas or the presence of water
molecules by reducing the SnO2 surface. The influence of humidity is explained based
on the metal-oxide conduction mechanism, which depends on the adsorption of water
molecules by the reaction between the surface oxygen and water molecules, resulting in a
decrease in the number of reaction sites on the surface area. In Figure 5a,b, the humidity
affects the resistance values for bare and PFOTS coated porous SnO2 film gas sensors.
This means that false signals are detected in all cases owing to the reaction with water
molecules from the humid environment. However, the PFOTS coated sample has lower
resistance values compared to the bare sample. It was suggested that the conductivity of
n-type semiconductor is increased by fluorine molecules after coating [37,38]. The humidity
influence results without CO gas also indicate that PFOTS coated samples is stable and
low response values compared to the bare sample (black square symbols in Figure 5a,b).
Moreover, the PFOTS coated sample has stability and linearity in resistance changes against
humidity and CO gas due to the reduction of dangling bonds and defects. Although if the
CO gas is introduced into the chamber, the resistance values decrease depending on the
CO concentration in both samples, the response of the PFOTS coated samples was linear
depending on the CO concentration. In sensors, linearity is important to determine the
exact concentration of target materials. The sensitivity obtained by removing the effect of
RH shows the well fitted linear trend line of the PFOTS coated gas sensor with R2 as 0.98
or higher (see Figure S4, Supporting Information). Therefore, although the perfect removal
of the humidity effect using the hydrophobic PFOTS coating is impossible, passivation
and blocking by PFOTS coating help the reliability of the sensing signal. PFOTS coating
also provides a stable and reproducible response. Figure 5c,d show the recovery time of
each sensing depending on the CO concentration and RH. Whereas the bare sample had
different recovery times for each condition and required the prolonged times to recover as
the CO concentration and RH increased, the PFOTS coated sample showed almost the same
recovery time regardless of the conditions. These results are caused by: the deformation of
the nanostructured morphology of the porous SnO2 film under humid conditions, as shown
in Figures 3a and 4a; and the severe absorption of water molecules limits the desorption of
water molecules, causing the deterioration of the sensing property.

The real responses of bare and PFOTS coated gas sensors were observed using a
candle flame under humid conditions from a commercial humidifier in an acrylic box, as
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shown in Figure 6. The bare sample detects CO gas when the candle is turned on and
alters the resistance as the humid air is injected strongly because the bare porous SnO2
film reacts with both CO gas and humidity. The PFOTS coated sample shows a change in
resistance by a candle flame and intact signal from humidity. This indicates that reliable
and improved sensing can be achieved with PFOTS coating, and the hydrophobic PFOTS
coating is applicable to other ceramic gas sensors to decrease the false signal from water
and preserve the nanowire morphology even in humid environments.
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4. Conclusions

To improve the gas sensing and reduce the influence of humidity, the specific porous
morphology of interconnected SnO2 nanowires is investigated for high surface area and a
PFOTS coating on the surface is performed for water vapor repellency. Vapor deposition
of the PFOTS coating on the porous SnO2 film maintained the rainforest-like morphology,
yielding a water contact angle of 159º, and was stable under 99% RH and 300 ◦C operating
temperature without decomposition and deformation. XPS analysis showed an F1S peak,
and the condensation experiment in the E-SEM indicated a superhydrophobic property
at the nanoscale. In CO detection at different humidity conditions, the PFOTS coated gas
sensor provides a reliable linear response according to the CO concentrations to reduce
the influence of humidity significantly. A practical application of detection with candle
flame under strong humid conditions showed that the PFOTS coated porous SnO2 film gas
sensor can be used as a promising sensor without false signals from humid environments.
This approach suggests the simple and practical way of nanostructured metal-oxide gas
sensors for the reducing humidity influence.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/2/610/s1, Figure S1: X-ray diffraction (XRD) patterns of porous SnO2 films before and
after annealing process. Figure S2: Schematic diagram of a custom-built experimental apparatus for
controlling humidity. Figure S3: Real time data of bare (a) and PFOTS coated porous SnO2 film gas
sensors (b) are obtained at relative humidity 0, 20, 40, and 70 %. Figure S4: Gas sensor sensitivity
with removing effect of humidity. (a) Bare and (b) PFOTS shows sensitivity according to amount of
CO; the reaction gas (Rg) with the humid air signal (R(a+RH)). The trend line is drawn with R2 at RH
0%. Figure S5: Photos of the gas sensor platform. (a) Front image of patterned Pt electrodes and (b)
back image of heater. (c) Schematic image of the porous SnO2 gas sensor structure.
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