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Abstract: The importance of the IFN-induced oligoadenylate synthetase (OAS) proteins and the
OAS/RNase L pathway in the innate response against viral pathogens is well-established, however the
observed differences in anti-viral activity between the human OAS1 p46 and p42 isoforms are not fully
understood. The protein expression of these isoforms is determined by the SNP rs10774671, either
being an A or a G allele resulting in expression of either the p42 or the p46 isoform. Using fluorescence
microscopy and immunoblot analysis of fractionated cell samples, we show here that the CaaX motif
is of key importance to the cellular localization. The OAS1 p42 isoform is mainly located in the cytosol,
whereas the p46 isoform with a C-terminal CaaX motif is translocated to membranous organelles,
like the mitochondria. We furthermore observed differences between p42 and p46 in their effect
on mitochondrial physiology using high resolution respirometry and fluorometry. Overexpression
of OAS1 p42 and IFN-β treatment of HeLa cells (AA genotype) resulted in significantly increased
respiration, which was not seen with p46 overexpression. The difference in subcellular localization
and mitochondrial effect of these two OAS1 isoforms might help to explain the anti-viral mechanisms
that differentiate these proteins.

Keywords: OAS1; high resolution respirometry; oxygen consumption rate; mitochondrial
transmembrane potential; oroboros; CaaX motif; cellular localization; type 1 inteferon; ISG

1. Introduction

The oligoadenylate synthetase (OAS) family genes encode four different types of proteins:
OAS1, OAS2, OAS3, and OAS-Like (OAS-L) of which the OAS1, OAS2, and OAS3 are enzymatically
active while the OAS-L is not [1]. The structure and mechanistic function of the OAS1 protein is
well-described [2,3], as well as the canonical downstream anti-viral properties of the OAS-activated
RNase L pathway [4–6]. The OAS proteins are some of the key proteins upregulated during type I and
type III IFN response following viral infection [7].

The human OAS1 gene is 25,414 base pairs long and consists of eight exons. Of these exons,
the first five exons from the 5′ end are translated into the core protein while the latter three exons
enable alternative splicing into the six known protein isoforms of OAS1. Two of these isoforms are
the p42 and p46 variants which are the focus of this study. The two isoforms are so named due to
their theoretical size of ~42 and ~46 kDa and the expression pattern between these two variants is
related to one single nucleotide polymorphism (SNP), the SNP rs10774671 [8,9]. The SNP is an A/G
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variation located in the splice acceptor site of exon 7 which results in either the A allele expressing the
p42 isoform or the G allele expressing the p46 isoform.

The rs10774671 SNP and in extension the discrepancy between the p42 and p46 isoforms have been
directly associated with several viral diseases including West Nile Virus infections [10], susceptibility to
hepatitis B virus (HBV) infections and Sjögren’s syndrome development [11], liver fibrosis progression
and response to interferon therapy during hepatitis C virus (HCV) infections [12,13] as well as in
tuberculosis (TB) [14]. In all of these instances, it is the G allele (i.e., the OAS1 p46 isoform) that confers
resistance, while the p42 variant is associated with a higher risk in these infectious diseases. It has
also been shown that the p46 isoform, but not the p42 isoform, facilitate RNase L-dependent anti-viral
activity against HCV in cultured Huh7 cells [15].

The subcellular localization of the two OAS1 isoforms also seems to be different. We have
previously observed that the OAS1 p46 isoform is localized in the mitochondria, whereas the p42 is
more evenly distributed in the cytosol [9]. We have hypothesized that this difference could be due
to the presence of a CaaX motif (C = Cysteine, a = aliphatic amino acid, X = terminal amino acid)
in the C-terminal of only the p46 isoform, which could be important in directing the protein to the
mitochondria. Generally, a CaaX motif serves as a peptide signal for a posttranslational modification
termed prenylation, which is the covalent binding of an isoprenoid lipid on the cysteine residue. This
terminally located lipid-modified cysteine can facilitate intracellular trafficking and translocation to
a membrane [16,17]. The RNase L enzyme has also been found in the mitochondria where it can
degrade mitochondrial RNA and facilitate IFN-α-induced apoptosis [18], thereby making a complete
mitochondrial OAS1/RNase L-system plausible.

The mitochondria are the powerhouses of the cell, being the organelles where the major part of
ATP synthesis takes place. The enormous demand for ATP is supplied by a complicated albeit dynamic
interplay between protein pumps and electron carriers collectively called the electron transport system
(ETS) resulting in oxidative phosphorylation (OXPHOS) and the synthesis of ATP [19]. The proton
motive force driving the OXPHOS consists of two parameters, the chemical pH gradient (∆pH) and
the transmembrane potential (∆ψ) (i.e., a charge gradient). As the ∆ψ significantly exceeds the ∆pH
in mitochondria [20], the mitochondrial transmembrane potential (∆ψm) will be used later as the
measure of proton motive force and as an indicator of the general constitution of the mitochondria and
the ETS-supported OXPHOS.

Mitochondria are not only paramount in cell life, they are also positioned at the heart of cell
death [21]. Apoptosis, the unique process of programmed cell death, is an important cellular event
in multicellular organisms. The mitochondria have several crucial roles in this mechanism mainly
involving the permeabilization of the outer membrane, resulting in cytochrome c release, which
are stimulated by death signals, e.g., DNA damage and endoplasmic reticulum (ER) stress. [22].
The mitochondria are also important in anti-viral immune responses. For example, the mitochondrial
anti-viral signaling (MAVS) protein can regulate the powerful NF-κB and interferon pathways after
interacting with the viral RNA-sensing protein retinoic acid-inducible gene I (RIG-I), which are
activated by virus-derived dsRNA [23]. Because of the key importance of mitochondria in apoptosis,
cell metabolism and immune response, they are also a highly attractive target for many viral pathogens
to manipulate in various manners to increase overall pathogen survival and thus pathogenesis [24].

If the OAS1 p46 isoform is associated with the mitochondria and not the p42 variant, it might give
insight into an unknown anti-viral mechanism and explain the observed differences between p46 and
p42 in protection against viral pathogens.

The aim of this study was to determine the spatial distribution of the OAS1 p42 and the p46 isoforms
within the cell and to establish any correlation between the CaaX motif and the OAS1 localization.
The localization study has been performed using immunofluorescence cytochemistry analyses
supported by digitonin-mediated fractionation combined with immunoblot analysis. The physiological
effects of the OAS1 isoforms as well as of interferon β on the mitochondria was analyzed using a
simultaneous multi step measurement of respiration and mitochondrial transmembrane potential.
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This has been achieved by a specifically designed protocol using permeabilized cells in different
inducible respiration states via the Oroboros Oxygraph-2k high resolution respirometry and
fluorometry capabilities.

Our work highlights the significant differences between the OAS1 p46 and p42 isoforms in the
context of subcellular localization and their effect on mitochondrial physiology. The physiological
impact of IFN-β and p42/p46 overexpression on cellular respiration was determined in HeLa and
HT1080 cells. We have furthermore established that this difference in localization is a direct consequence
of the C-terminal CaaX motif. Overall, these results improve upon the knowledge of the OAS1 system
and could further add to the understanding of the differences in antiviral activity between the OAS1
p42 and p46 isoforms previously observed.

2. Materials and Methods

2.1. Cell Lines

HeLa (ATTC: CCL-2) and HT1080 (ATCC: CCL-121) cells were cultured as adherent cells at
37 ◦C with 5% CO2 in Dulbecco’s modified Eagle’s medium with high glucose and with sodium
pyruvate (Life Technologies Europe BV, Nærum, Denmark) with added 10% sterile-filtered fetal
bovine serum (FBS) (Sigma-Aldrich, Søborg, Denmark ) and 1% Penicillin-Streptomycin (Pen-Strep)
solution (Sigma-Aldrich) at 37 ◦C and 5% CO2. The human HT1080 and HeLa cell lines used have the
AG genotype and the AA genotype, respectively, regarding the SNP rs10774671 [9]. For interferon
treatments, both HeLa and HT1080 cells were grown to ~80% confluence and were treated with
1000 U/mL IFN-β or left untreated for 24–48 h before analysis. Both cell-lines were tested and found
mycoplasma free.

2.2. High Resolution Respirometry (HRR)

The high resolution respirometry (HRR) protocol used was adapted from [25]. First, calibration
of the Oroboros Oxygraph-2k (Oroboros Instruments, Innsbruck, Austria) was performed for
approximately 30 minutes allowing cell culture medium to achieve oxygen saturation and 37 ◦C.
Calibrated oxygen levels were determined by the DatLab7 Oroboros software and a solubility factor
(FM) of 0.89 was used for this medium. The cells were counted and the cell suspension was
diluted with culture medium to obtain a final concentration of 1 × 106 cells/mL. The incubation
media used for calibration was then removed and 2 mL of the cell suspension were added to the
chambers. Measurements were performed at 37 ◦C with sample mixing at 750 rpm by PVDF-coated
magnets. After approximately 10 min the ROUTINE respiration was stabilized. The standard
substrate-uncoupler–inhibitor–titration (SUIT) protocol was then initiated and 1 µL of 5 mM
oligomycin (Sigma-Aldrich) was injected into the chambers to a final concentration of 2.5 µM to
induce the LEAK respiration (non-phosphorylating resting state). After stabilization, the titration
with Carbonyl Cyanide m-ChloroPhenylhydrazone (CCCP, Sigma-Aldrich) or Carbonyl Cyanide
4-(triFluoro-methoxy)Phenylhydrazone (FCCP, Sigma-Aldrich) in 0.5 µM steps (1 µL 1 mM CCCP)
was performed until the highest oxygen consumption rate (OCR) was achieved. Then 1 µL of 5 mM
antimycin A (Sigma-Aldrich) was injected to a concentration of 2.5 µM to induce the ROX state (residual
oxygen consumption). The oxygen consumption rate (OCR) values was marked in DatLab7 to give the
median of the marked area.

2.3. Simultaneous Measurement of HRR and Fluorometry

The Oroboros was calibrated as described above with a respiration buffer containing 80 mM
KCl, 10 mM Tris-HCl, 3 mM MgCl2, 1 mM EGTA, and 5 mM KH2PO4. The solubility factor FM
was set to 0.96. After oxygen sensor calibration, the fluorescence sensors with safranin filters were
attached and safranin was titrated up to a final concentration of 2.5 µM. Linearity of safranin signal
was established, and the raw fluorescence signal was calibrated. Cells were trypsinized and diluted
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in cell culture media without phenol red. The cell suspension was centrifuged for 10 min at 200×
g, the supernatant was discarded, and the cells were resuspended in 1 mL of ice-cold respiration
buffer. The cell suspension was transferred to a 1.5 mL microcentrifuge tube and was centrifuged at
200× g for 10 min at 4 ◦C. The supernatant was removed carefully and 100 µL of ice-cold respiration
buffer was added. The cells were counted, and the required volume of cell suspension was added to
the chambers to obtain a final concentration of 1 × 106 cells/mL. Cells should not be in suspension
for more than one hour prior to measuring. The cells were permeabilized using 40 µM of digitonin
(Sigma-Aldrich). The extended SUIT protocol could then be initiated by injecting the next substrate or
inhibitor when both OCR and fluorescence values were stabilized. The SUIT chemicals were injected in
the following order to obtain final concentrations of: 2 mM malate + 10 mM glutamate (Sigma-Aldrich),
1 µM rotenone (Sigma-Aldrich), 10 mM succinate (Merck Millipore, Darmstadt, Germany), 4 mM
ADP (Sigma-Aldrich), 2.5 µM oligomycin, 25 nM CCCP titration steps, and 2.5 µM antimycin A. Data
collection was performed with DatLab7.

2.4. Transfection of Cells

Cells were seeded in 6-well plates (for cell fractionation), on coverslips (for immunocytochemistry)
or in T75 flasks (for HRR). Linear polyethyleneimine (PEI) Mw 25.000 (Polysciences, Inc., Hirschberg
an der Bergstrasse, Germany) were mixed with Opti-MEM (Gibco®, ThermoFisher Scientific, Roskilde,
Denmark) and incubated for 5 min before mixing it with the plasmid of interest also in Opti-MEM.
The optimal ratios of DNA:PEI were found to be 1:6 (w/w) for both HeLa and HT1080 cells. DNA:PEI
complexes were allowed to form for at least 15 minutes at room temperature, before it carefully was
added to the cells with a confluence of ~80% in culture media without Pen-Strep. Cells were incubated
for 5 h and the media was changed. The cells were then harvested and further analyzed after 24 h (for
cell fractionation and immunoblotting), 28 hours (for immunocytochemistry), or 48 h (for HRR).

2.5. Plasmids

The CaaX (CTIL) motif was deleted in the p46 encoding plasmid and added to the p42 encoding
plasmid by Quick Change Site-Directed Mutagenesis (Stratagene, La Jolla, California, USA). Primers
were designed to anneal to either side of the region to be deleted or added.

Forward primer (p46∆CaaX): 5′ - CAG AAG AGG ACT GGA CCT GAA TGC CAG TGC ATC - 3′

Reverse primer (p46∆CaaX): 5′ - GAT GCA CTG GCA TTC AGG TCC AGT CCT CTT CTG - 3′

Forward primer (p42CaaX): 5′-AA GCT TGC ACC ATC CTC TGA GAC ATA TAG CTG GAG
ACC ATT CTT-3′

Reverse primer (p42CaaX): 5′-GAG GAT GGT GCA AGC TTC ATG GAG AGG GGC AGG GAT
GAA TG-3′

PCR amplifications were performed using the above primers. The reactions were in a total volume
of 30 uL in 1 × Pfu reaction buffer with 3 mM MgSO4, 250 µM dNTP mix, 1 µL Pfu DNA polymerase
(Invitrogen, ThermoFisher Scientific, Roskilde, Denmark), 125 ng of each primer and 40 ng of template
DNA. After an initial denaturation at 95 ◦C for 30 s, the thermal cycle was programmed for 30 s at 95
◦C for denaturation, 60 s at 65 ◦C for annealing and 12 min at 72 ◦C for elongation. This cycle was
repeated 18 times. One microliter of Dpn1 restriction endonuclease was added to the PCR products
and incubated at 37 ◦C for 2 h. Positive colonies were selected on 100 µg/mL ampicillin agar plates.

For the EGFPp42 and EGFPp46 fusion plasmids, PCR products were amplified from the p42wt or
the p46 wt encoding plasmids using the following primers:

Forward primer (for both constructs): 5′-TTAAGTCTCGAGGAAACTTGGGTGGTGGA-3′

Reverse primer (pEGFPp42): 5′-AGCTTACTGCAGTCAAGCTTCATGGAGAGG-3′

Reverse primer (pEGFPp46): 5′- GACTAACTGCAGTCAGAGGATGGTGCAG-3′

The PCR products were cloned into the pEGFP-C2 vector (ClonTech, Takara Bio Europe SAS,
Saint-Germain-en-Laye, France) using Xho1 and Pst1 restriction sites, and colonies were selected on 50
µg/mL kanamycin agar plates.
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All constructs were verified by sequencing and are illustrated in Figure 1.

Figure 1. Oligoadenylate synthetase (OAS)1 and EGFP constructs used for transient transfections.
The diagram shows the different types of OAS1 and EGFP constructs used to induce overexpression
of the translated proteins for the high resolution respirometry (HRR) and localization experiments.
All the OAS1 types consist of 5 core exons (black). The wild type p42 (grey) and p46 (white) isoforms
are different in their C-terminal ends and are modified to include or exclude the CaaX motif (yellow).
Full-length EGFP (green) is fused to either the C-terminal of p42 or p46 as indicated.

2.6. Immunofluorescence Microscopy

HeLa cells were seeded on poly-D-Lysine coated coverslips and transfected with plasmids
encoding either p42, p42CaaX, p46, p46∆CaaX, EGFPp42, EGFP46, or control plasmids using the PEI
method (see above). After 28 h, 50 nM of Mitotracker Red CMXRos (Molecular Probes, Invitrogen,
ThermoFisher Scientific, Roskilde, Denmark) was added to the cells for 20 min. Cells were then
fixed with 4% paraformaldehyde, washed twice in PBS, permeabilized with 0.05% Triton X-100 for
10 min, washed twice with PBS and finally blocked with 3% BSA in PBS-T. The coverslips were then
either incubated with a specific human OAS1 (13-4-10) antibody (1:500, a kind gift from Dr. Shawn P.
Iadonato) followed by incubation with a FITC-conjugated anti-mouse antibody (1:250, Sigma-Aldrich)
for the OAS1 expressing plasmids or no antibodies (for the EGFP constructs). Nuclei were stained
with 20 µg/mL Hoechst 33342 (Invitrogen). The coverslips were mounted with Glycergel Mounting
Medium (DAKO) containing 2.5% (w/v) antifade Dabco 33-LV (Sigma-Aldrich). Regular wide field
epifluorescence microscopy was performed using a Nikon Ti Eclipse inverted microscope equipped
with a motorized stage, a 100× objective, and the TI-ND6-PFS-S Perfect Focus System controlled by
NIS-Elements software (Nikon, Ramcon A/S, Birkerød, Denmark). 12 bitimages were captured with a
Zyla 5.5 sCMOS camera (Andor Technology Ltd., Belfast, UK). The epifluorescence light source was a
pE-300white LED unit (CoolLED, Ramcon A/S, Birkerød, Denmark) and appropriate filter sets were
used. The images were analyzed with ImageJ Fiji [26]. Brightness-contrast was adjusted differentially
for for each image except for Supplementary Figure S4, in which the images were adjusted identically
by setting the minimum displayer value to 800.

2.7. Cell Fractionation

Fractionation was performed as previously described [27]. Briefly, cells were harvested and
centrifuged at 200× g for 10 minutes at 4 ◦C in microcentrifuge tubes, to pellet the cells. The cell
pellet was washed in ice cold PBS and pelleted again. The supernatant was discarded and the cells
were resuspended in 100 µL of ice-cold respiration buffer with 40 µM digitonin and 1 µL/mL protease
inhibitor (P3340, Sigma-Aldrich). Cells were then incubated on ice for 15 minutes before centrifugation
at 2000× g for 10 min at 4 ◦C. The resulting supernatant was the cytosolic fraction (C) diffused from
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the permeabilized plasma membrane. The supernatant was collected without disturbing the pellet.
The cell pellet was then resuspended in 100 µL IgePal lysis buffer containing 50 mM Tris-HCl (pH
8.5), 150 mM NaCl and 1% IgePal (CA-630) with protease inhibitor (P3340, Sigma-Aldrich) and was
incubated for 30 min on ice. The samples were centrifuged at 7000× g for 10 min at 4 ◦C and the
supernatant was collected. This supernatant was the mitochondrial fraction (P) (also containing
proteins from the ER, Golgi and other subcellular organelles). Fractionated samples were analyzed by
immunoblot immediately after or were stored at −80 ◦C.

2.8. Immunoblot Analysis

Protein samples were subjected to 10–14% SDS-PAGE and were transferred to PVDF membranes.
Blocking of membranes was performed with 5% (w/v) skimmed milk powder (EASIS A/S, Åbyhøj,
Denmark) in TBS with 0.05% (v/v) Tween 20 (TBS-T) (Merck Millipore). Proteins were detected
using the following antibodies diluted in 5% (w/v) skimmed milk powder in TBS-T: A human OAS
antibody recognizing all isoforms of human OAS proteins (1:2000) [28], a cytochrome C antibody
(1:2000; BD Biosciences), a Calnexin antibody (1:5000; Sigma-Aldrich), an actin antibody (1:5000;
Sigma-Aldrich) or an anti-EGFP antibody (a kind gift from Dr. Koh-ichi Nagata; 1:5000). Appropriate
HRP-conjugated secondary antibodies were used, either goat-anti-rabbit (1:2000; Dako Denmark A/S,
Glostrup, Denmark) or sheep-anti-mouse (1:5000; GE Healthcare, Brøndby, Denmark). Detection was
performed using the ECL Prime detection reagent (GE Healthcare) and visualized by a CCD camera
(Amersham Imager 600, GE Healthcare). Stripping of PVDF membranes were performed by letting the
membranes dry out followed by a re-activation step with 96% ethanol for 5 min on a shaking table.
Quantification of band intensities were performed using the ImageQuant software (GE Healthcare).

2.9. Statistical Analysis

All quantification data from immunoblotting, HRR and fluorometry were analyzed in GraphPad
Prism 6/8. Statistical analysis between two samples with one grouping variable was performed using
an unpaired t-test, while a multiple t-test using the Holm-Sidak method was performed between data
sets with several grouping variables. The P-values obtained were two-tailed and the threshold of
significance was defined as P < 0.05. All data are represented in column bar graphs with mean values
and error bars calculated by the standard error of the mean (SEM).

3. Results

3.1. Effect of IFN-β on Mitochondrial OCR in HeLa and HT1080 Cells

We first analyzed the effect of IFN-β response on cellular respiration of the human HeLa and
HT1080 cell lines using high resolution respirometry (HRR). Very little literature describes the effect of
type I IFN on respiration in general and the direct effect on these cell lines have to our knowledge
not been established. However, type I IFN is thought to promote glycolysis and decrease oxidative
consumption [29]. Therefore, it was interesting to see that the oxygen consumption rate (OCR) in
HeLa cells was increased by approximately two-fold after 48 hours of IFN-β treatment in three
different respiration states, i.e., ROUTINE, LEAK, and ETS (Figure 2A). The ROUTINE state is the
basal respiration in normal media, while the LEAK state is induced by the ATP-synthase inhibitor
oligomycin signifying the non-phosphorylating resting state and the degree of proton leak across the
inner mitochondrial membrane. ETS state is the maximal OCR obtained when membrane potential is
dissipated by the uncoupler CCCP (Carbonyl Cyanide m-ChloroPhenylhydrazone). This results in a
noncoupled mitochondrial state in which there are no limitations to proton availability thereby enabling
the determination of the maximum capacity of the electron transport system (ETS). The residual oxygen
consumption (ROX) state is induced by the Complex III inhibitor, antimycin A, and is based on oxygen
consuming enzymes and ROS production. A representative of an HRR measurement of HeLa cells can
be seen in Supplementary Figure S1. The OCR of HT1080 cells was also significantly increased after
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48 hours of IFN-β treatment in the ETS respiration state (Figure 2B), albeit much less than in HeLa
cells. The OCR values in the different respiration states of HeLa and HT1080 cells are very similar
in the untreated controls, however when responding to IFN-β the two cell lines show significantly
different behaviors.

Figure 2. Respiration in Hela and HT1080 cells. Cells were treated with 1000 U/ml IFN-β for 24 or
48 hours, as indicated. Controls were untreated cells. Oxygen consumption rates of (A) Hela and (B)
HT1080 cells were measured according to the SUIT protocol for High Resolution Respirometry after
establishment of ROUTINE respiration in cell culture medium. Data are presented as mean values of
independent experiments and error bars represent SEM. Number of replicates for Hela cells were: n = 6
for controls and IFNβ 24 h, and n = 4 for IFNβ 48 h. Number of replicates for HT1080 cells were: n = 12
for controls, n = 4 for IFNβ 24 h, and n = 6 for IFNβ 48 h. * indicates P < 0.05, ** indicates P < 0.001,
and *** indicates P < 0.0001 compared with control cells.

To further analyze the effect of IFN-β on mitochondrial physiology we designed an extended HRR
protocol with a simultaneous fluorescence measurement capable of determining the mitochondrial
transmembrane potential (∆ψm). This protocol enabled additional respiration steps to be analyzed in
a specifically designed respiration buffer by addition of specific substrates (malate + glutamate and
succinate) due to the digitonin permeabilization. In this set-up we observed a significant increase in
OCR in the basal and ETS respiration states and furthermore at the ADP step after 48 hours of IFN-β
treatment in HeLa cells (Figure 3A). This ADP step signifies the OXPHOS capacity when ATP-synthesis
is stimulated by ADP addition (sustained by succinate as an ETS-linked substrate). Using the safranin
fluorescence, we also observed a significant increase in ∆ψm at the oligomycin step (LEAK) and in the
three first titration steps of CCCP (25, 50, and 75 nM) for the induction of the ETS state (Figure 3B).
In this experiment a lower safranin signal signifies a higher ∆ψm in the cells. The raw data of one of
the experiments can be seen in Supplementary Figure S2.

To visualize the inherent differences in OAS protein expression between the HeLa and HT1080
cells, we analyzed protein extracts using immunoblotting analysis after IFN-β treatment (Figure 4).
The protein samples from the cytosol (C) and pellet (P) (containing membranous organelles except
the nucleus) were retrieved using digitonin permeabilization. The OAS isoforms OAS1 (p42 and
p46), OAS2 (p69/p71) and OAS3 (p100) was detected using an anti-OAS antibody. There is a clear
difference between the two cell lines after IFN-β treatment. HeLa cells only express the p42 isoform,
while the HT1080 cells express both isoforms, albeit a higher amount of the p46 isoform compared
with p42 (Figure 4). This is due to Hela cells being the AA genotype and HT1080 cells being the AG
genotype regarding the rs10774671 SNP, the deciding factor of the pre-mRNA splicing and the OAS1
isoform ultimately being expressed. These differences can also be seen on the OAS1 mRNA levels in
Supplementary Figure S3. Furthermore, it can be noticed that the spatial distribution of OAS1 p46 and
p42 is different, as the p42 is mainly found in the cytosolic fraction, while the p46 band is more intense
in the pellet fraction. This difference in localization will be analyzed in more detail later. Both cell lines
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express the OAS2 and OAS3 isoforms after IFN-β treatment, and these larger OAS isoforms seem to be
distributed between the cytosol and membrane fractions, although the distribution is slightly different
between the two cell lines.

Figure 3. Respiration and mitochondrial membrane potential in IFN-β treated HeLa cells. Cells were
treated with 1000 U/mL IFN-β for 48 h or left untreated. Simultaneous oxygen consumption rates (A)
and levels of fluorescent safranin (B) were measured according to the extended SUIT protocol for High
Resolution Respirometry. Data are presented as mean values of two independent experiments and
error bars represent SEM. Safranin values are normalized against highest initial fluorescence before
cell addition and are in arbitrary units (a.u.). Note that a lower safranin value equals a higher ∆ψm.*
indicates P < 0.05, ** indicates P < 0.001, and *** indicates P < 0.0001 compared with control cells.

Figure 4. Cellular localization of OAS proteins in IFNβ treated HeLa and HT1080 cells. Cells were
treated with 1000 U/mL IFN-β (+) for 28 h or left untreated (−) and harvested by centrifugation.
The cells were lysed and fractionated into the cytosol (C) and the pellet (P). The P fraction contains
proteins from mitochondria, endoplasmic reticulum, Golgi, and other internal organelles excluding the
nucleus, which was separated in a centrifugation step. Protein extracts were subjected to immunoblot
analysis using antibodies against the indicated proteins. The OAS antibody recognizes the different
isoforms of OAS: OAS1 (p42 and p46), OAS2 (p69/p71), and OAS3 (p100).

3.2. Effect of OAS1 p46 and p42 on Mitochondrial OCR

The difference in respiration between the HeLa and HT1080 cells after IFN-β treatment that
we observed in Figure 2 was quite significant. This might be due to their OAS1 rs10774671 SNP
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genotype and the OAS1 p46 and p42 isoforms produced (Figure 4), although other explanations could
be put forward. To test how the expression of p42 or p46 influence the mitochondrial respiration,
we transiently transfected both cell types with plasmids encoding either the OAS1 p46 or the OAS1 p42
isoform, or with an empty vector as control. After transfection we performed HRR measurements and
observed distinct differences (Figure 5A). In HeLa cells we observed that the p42 isoform conferred a
significant increase in OCR in the ETS state when compared to the control and p46 expressing cells.
In the HT1080 cells we observed a very interesting pattern in which the p46 significantly decreased
the OCR, while the p42 significantly increased the OCR when compared to the control in the ETS
state. The p46 isoform also decreased the OCR significantly in the ROUTINE state. This decrease,
only observed in the HT1080 cells, could indicate that the p46 response is cell-type specific. In Figure 5B,
an immunoblot can be seen showing the levels of p42 and p46 in transfected cells, as well as the basal
level of OAS1 expression after transfection with the empty pcDNA3 vector. Only in the HT1080 cells,
a small amount of p46 can be seen after transfection with the empty vector, and also expression of
p46 in the cells transfected with the p42 expressing plasmid. The opposite effect of the OAS1 p46 and
p42 on the mitochondrial physiology is indeed interesting and could have important implications in
mitochondrial health and anti-viral protection.

Figure 5. Respiration in HeLa and HT1080 cells upon overexpression of the OAS1 isoforms p42 and
p46. Cells were transfected with plasmids encoding p42 and p46, or a control plasmid (pcDNA3) for 48
hours, as indicated. (A) Oxygen consumption rates were measured according to the SUIT protocol
for High Resolution Respirometry after establishment of ROUTINE respiration in respiration buffer.
Transfection efficiencies were around 30% for HeLa cells and 20% for HT1080 cells. Cell concentrations
were 0.5 × 106 cells/mL for HeLa cells and 0.3 × 106 cells/mL for HT1080 cells. Data are presented
as mean values of independent experiments (n = 8 for HeLa cells and n ≥ 3 for HT1080 cells) and
error bars represent SEM. * indicates P < 0.05, ** indicates P < 0.001, and *** indicates P < 0.0001.
(B) Protein extracts were analyzed by immunoblotting using antibodies against the indicated proteins.
The anti-OAS antibody recognizes all the OAS isoforms. The positions of the p42 and p46 isoforms are
indicated. * Indicates the position of a cleaved form of p46.
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3.3. Subcellular Localization of OAS1 p46 and p42 and the Importance of the CaaX Motif

Based on the difference in mitochondrial respiration upon overexpression of OAS1 p46 and p42
observed above, and the fact that we have previously observed the p46 isoform being associated with
the mitochondria [9], we hypothesized that the localization of the OAS1 isoforms is of importance.
We also hypothesized that a determining factor of subcellular localization was the CaaX motif only
present on the C-terminus of the p46 isoform. To further elucidate the spatial distribution of OAS1
p46 and p42 and investigate the importance of CaaX, we constructed plasmids encoding p42 and p46
mutants, one in which the CaaX motif was deleted from p46 (p46∆CaaX), and one in which the CaaX
motif was added to the C-terminus of p42 (p42CaaX). A diagram of the different OAS1 constructs can
be seen in Figure 1. Then we performed immunofluorescence microscopy using OAS1 antibodies on
HeLa cells transfected with plasmids encoding p46 wt, p46∆CaaX, p42 wt and p42CaaX (Figure 6).
The overlaid images showed a clear correlation between having the CaaX motif and being situated
in organelles in the perinuclear region. In this region, the OAS1 p46 wt with CaaX (green) is mainly
co-localized with the red Mitotracker, while showing very little signal in the cytosolic space. However,
when the CaaX motif is deleted in the p46∆CaaX variant the spatial distribution completely changes
into a more cytosolic associated protein. The exact opposite pattern was observed with the OAS1 p42
wt, being highly dispersed in the cytosol, but changing to a more organelle-associated protein when
the CaaX motif was added. The same correlation between the CaaX motif and spatial distribution
could be observed with endogenous OAS1 protein in IFN-β treated HeLa cells (only p42) and HT1080
cells (mainly p46) (Supplementary Figure S4).
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Figure 6. Cellular localization of OAS1 isoforms and mutants. HeLa cells were transfected
with plasmids encoding the indicated OAS1 isoforms and mutants, p42 wt, p46 wt, p42CaaX, or
p46∆CaaX. Twenty-eight hours post transfection, cells were stained with Mitotracker (red) followed
by immunocytochemistry analysis using the OAS1 antibody (green). The nuclei were stained with
Hoechst 33342 (blue) and are shown in the overlay pictures. The scale bar is 30 µm.

To further substantiate these results, we performed an immunoblot analysis on subcellular fraction
samples from transfected HeLa cells (Figure 7). In the fractionation protocol used, we separated the
cytosolic (C) fraction from the pellet (P) fraction (containing membrane-enclosed organelles like the
mitochondria, ER, and Golgi) by selectively permeabilizing the plasma membrane with digitonin.
Figure 7 effectively illustrates that the OAS1 p46 isoform is almost entirely localized in the P fraction,
whereas the majority of p42 resides in the cytosol. Again, either adding CaaX to p42 or deleting CaaX
from p46 completely changes the localization of these isoforms, as the p42CaaX almost completely
shifts to the P fraction while the p46 ∆CaaX shifts to the cytosolic fraction. Interestingly, the data
from the simultaneously transfected p42+p46 sample showed that the distribution of p42 changed
to being more localized in the P fraction compared to when p42 was expressed alone. This could
mean that the p46 isoform might be able to facilitate the transport of some p42 isoform, perhaps in the
tetrameric form.
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Figure 7. Cellular localization of OAS1 isoforms and mutants. HeLa cells were transfected with
plasmids encoding one of the OAS1 isoforms and mutants, p42 wt, p46 wt, p42CaaX, p46∆CAAX, p42,
and p46 together (p42 wt + p46 wt), or a control plasmid. Twenty-four hours post transfection, cells
were harvested by centrifugation. The cells were lysed and fractionated into the cytosol (C) and the
pellet (P). The P fraction contains proteins from mitochondria, endoplasmic reticulum, Golgi and other
internal organelles excluding the nucleus, which was separated in a centrifugation step. Protein extracts
were subjected to immunoblot analysis using antibodies against the indicated proteins. The anti-OAS
antibody recognizes all the OAS isoforms. The positions of the p42 and p46 isoforms are indicated. *
Indicates the position of a cleaved form of p46.

3.4. Intracellular Localization of EGFP Fused to the C-Terminus of OAS1 p46 and p42

To further test the translocating capabilities of the CaaX motif, we fused either the p46 or the p42
C-terminus to an EGFP protein (Figure 1). This would determine if the CaaX motif in p46 by itself could
change the cellular localization of EGFP. After transfection of HeLa cells with plasmids coding for either
the EGFP-p42, EGFP-p46 or a control EGFP, we analyzed the fractionated samples by immunoblotting
analysis (Figure 8A). In this experiment we observed that the EGFP was mainly localized in the
cytosolic fraction, and we did not observe any apparent shift in distribution when the p42 or p46
C-terminus was fused to EGFP. We also analyzed this in HeLa cells using fluorescence microscopy
(Figure 8B). Again, no difference in localization could be seen when comparing the EGFP-p42 and
EGFP-p46. These results suggest that the C-terminus of OAS1 p46 and its CaaX motif is in itself not
enough for membrane translocation, at least in this EGFP setup.
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Figure 8. The C-terminal p46 CaaX motif cannot change the cellular localization of EGFP. HeLa
cells were transfected with plamids encoding EGFP fused to either the p42 C-terminal end or the
p46 C-terminal end, or a control EGFP expressing plasmid, as indicated. Twenty-eight hours after
transfection, cells were (A) harvested by centrifugation for cell fractionation, or (B) stained with
Mitotracker and subjected to immunocytochemistry analysis. (A) The cells were lysed and fractionated
into the cytosol (C) and the pellet (P). The P fraction contains proteins from mitochondria, endoplasmic
reticulum, Golgi and other internal organelles excluding the nucleus, which was separated in a
centrifugation step. Protein extracts were subjected to immunoblot analysis using antibodies against
the indicated proteins. (B) EGFP is green, the Mitotracker is red, and the nuclei were stained with
Hoechst 33343 (blue) and are shown in the overlay pictures. The scale bar is 30 µm.

4. Discussion

The interferon-induced OAS system is well described, at least regarding the molecular mechanisms
involved, and the importance of the OAS1 proteins in the innate immune system and the protection
against viral infections is evident. However, very little is known of the physiological impact of the
OAS1 proteins on the mitochondria and the relationship between this and their subcellular localization.
The localization and the pathophysiological mitochondrial effects of the major OAS1 isoforms p42 and
p46 protein isoforms were therefore investigated in this study.

The respiration in HeLa and HT1080 cells was investigated using the high resolution respirometry
(HRR) capabilities of the Oroboros Oxygraph-2k in different induced respiration states. Our results
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indicate that IFN-β treatment and OAS1 p42 overexpression in HeLa cells facilitate a significant
increase in OCR at several respiration states. In HeLa cells, IFN-β (48 hours) increased the OCR in
the ROUTINE, LEAK, and ETS states, as well as the ADP-stimulated state in the extended protocol,
while OAS1 p42 overexpression only significantly increased the ETS state (compared to control and
p46). IFN-β treatment also concomitantly increased the ∆ψm in HeLa cells in the CCCP titration
steps. In HT1080 cells the 48 hours of IFN-β treatment only increased the ETS levels slightly, while
OAS1 p42 overexpression increased this respiration state even more (when compared to control).
Interestingly though, the overexpression of OAS1 p46 in these cells lowered the OCR significantly in
the ROUTINE and ETS respiration states (compared to control and p42). Generally, IFN-β is known to
promote glycolysis while impeding the OXPHOS resulting in the well-studied Warburg effect [29].
This phenomenon was observed after STAT1 expression in a human squamous carcinoma cell line and
type I interferon treatment of murine L-929 cells, human Daudi lymphoblastoid cells and isolated CD4+

lymphocytes from MS patients [30–32]. However, an increase in OXPHOS has also been observed after
type I interferon treatment in mouse plasmacytoid dendritic cells and non-hematopoietic cells [33],
suggesting that the response is cell-type specific. This cell-type specificity might be influenced by
the OAS1 A/G genotype, as the above-mentioned interferon treated Daudi cells (GG genotype) and
our OAS1 p46 overexpressing HT1080 cells (AG genotype) both have decreased OCR, whereas the
IFN-β treated and OAS1 p42 overexpressing HeLa cells (AA genotype) showed substantially increased
OCR, while the IFN-β treated HT1080 cells only showed a slightly increased OCR. How this cell-type
specificity results in a higher OCR in both HeLa and HT1080 cells when overexpressing p42, but only
decreases by p46 overexpression in the HT1080 cells is interesting, as both cell lines seem to have the
same p46 spatial distribution. In this context it is noticeable that in contrast to HeLa cells, the HT1080
cells showed a small OAS1 expression response after transfection with an empty vector as well as p46
expression in the cells transfected with the p42 expressing plasmid. The differences observed between
the HeLa and HT1080 cells could also be influenced by the OAS2 and OAS3 distribution, which seems
to be slightly different in the two cell lines, or by other Interferon Stimulated Genes (ISGs). It is
noteworthy that these differences observed were without introducing foreign dsRNA, e.g., synthetic
dsRNA like poly I:C or through a viral infection, which should elicit a more powerful response.

We have previously shown that the OAS1 p46 isoform is mainly found in the mitochondria whereas
the p42 isoform is more widely distributed throughout the cytoplasm using electron microscopy [9].
We hypothesized that this translocation is based on the C-terminal CaaX motif only located on the
OAS1 p46 isoform. In order to test this hypothesis mutant forms of p42 and p46 were created with
and without the CaaX motif, and immunocytochemistry was performed with fluorescence microscopy
to visualize the subcellular localizations of the different OAS1 variants. These results have also been
substantiated by the cell fractionations and subsequent immunoblot analysis of both HT1080 and HeLa
cells that have been treated with IFN-β or transiently transfected with the OAS1 expressing plasmids.
In these experiments we clearly demonstrate that the OAS1 p42 isoform is mainly distributed evenly
throughout the cytosol whereas the OAS1 p46 isoform is strongly associated with the membranous
organelles (e.g., mitochondria and ER). Furthermore, we show for the first time that the CaaX motif
located on the C-terminal on the p46 isoform, and its presumed prenylation, can fully facilitate this
membrane translocation to the organelles.

The amino acid sequence of the OAS1 p46 CaaX motif is CTIL and according to the literature,
this would result in a geranylgeranyl type modification [34,35]. New evidence has recently emerged
linking the geranylgeranyl modification with the transport of proteins into mitochondria-associated
endoplasmic reticulum (ER) membranes (MAMs) at the mitochondria-ER junction upon viral
infection [36]. Given the strong association of ER and mitochondria and the difficulty to discern
between these structures in microscopy, and also the fact that our pellet fractions in the immunoblotting
results also contains ER elements, we speculate that the MAMs at the mitochondria-ER junction may
be a possible localization for the OAS1 p46 isoform. Several studies have previously observed a
CaaX-mediated ER translocation of proteins [37–39].
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The fact that the p46 CaaX motif was not enough in itself to facilitate the translocation of EGFP
into the organelles could be explained by the observed tetramerization of the OAS1 protein [40],
which is required for enzymatic activity. Perhaps this tetramerization in conjunction with the increase
in geranylgeranyl lipids is important for the membrane association and could also explain the results
showing that the OAS1 p46 isoform seemed to facilitate the translocation of the p42 isoform. In this
case, it would then be a tetramer containing both isoforms.

The HRR results presented here could support a model in which the cytosolic OAS1 p42 converts
ATP into the 2′-5′ oligoadenylates and activates the RNase L. This can in turn activate RIG-I and
MDA5 by the RNA cleavage products, and induce an interferon response through MAVS [41,42].
This pathway should indeed lead to an overall anti-viral resistance, but as stated previously the
OAS1 p46 interestingly confers better protection against some forms of viral infection, which will be
discussed shortly. IFN can, however, regulate many other pathways leading to the observed increase
in respiration, e.g., increasing metabolic rates and substrates important for the electron donation to
the ETS [29] or perhaps by increasing the amounts or capacity of the ETS complexes or components.
The usage of ATP itself by OAS1 could also signal that OXPHOS should be increased, as ATP inhibits
phosphofructokinase in the glycolysis. However, when OAS1 changes its localization, as happens with
the p46 isoform, this also changes the effect on respiration. The exact molecular mechanisms driving
this effect remain to be elucidated, however we hypothesize that there are two main components at
play if OAS1 p46 can be transported into the mitochondrial matrix, which could be the case based
on the HRR results in this study and the EM pictures in our previous study [9]. Firstly, the complete
OAS1/RNase L system located in the mitochondria, would be able to degrade mitochondrial RNA
encoding crucial proteins in the electron transport system, thereby indirectly inhibiting OXPHOS and
mitochondrial function. Secondly, there might be a direct effect of synthesizing the 2′-5′ oligoadenylates,
as this could consume and decrease the concentration of ATP in the inner matrix, thereby inhibiting
the translocation of ADP through the ADP/ATP antiporter protein, adenine nucleotide translocase
(ANT). This might create an imbalance in the ADP/ATP ratio, reduce the amount of ADP which is
needed for ATP synthesis and thereby further decrease the levels of ATP concomitantly leading to the
observed decrease in respiration and then perhaps subsequently resulting in apoptosis or necrosis [43].

This model would also serve to explain the observed differences in anti-viral protection between
the OAS1 p46 and p42, as the p46 isoform would promote mitochondrial dysfunction and apoptosis,
thereby inhibiting the viability and spread of viral pathogens. Furthermore, this could also explain the
association of the SNP rs10774671 G allele, i.e., the OAS1 p46 variant, with multiple sclerosis (MS) and
type 1 diabetes [44–46], as the mitochondrial dysfunction would drive both of these pathologies [47,48].
The OAS1 p46 isoform is then able to confer better anti-viral protection, while increasing the risk of
mitochondrial dysfunction. However, there might be several mechanisms at play when elucidating the
anti-viral difference between the OAS1 p46 and p42.

If we entertain the idea that OAS1 p46 can be localized either in the ER membrane or in
mitochondria closely connected with ER membranes, there could be several possible mechanisms
conferring anti-viral protection. Viruses, and especially flaviviruses, usually associate with the ER for
genome replication and the processing and assembly of viral proteins [49]. Therefore, this localization
of OAS1 p46 could increase its interaction with these viruses. In fact, other than the binding of small
dsRNAs, OAS1 can interact with the genome of WNV and hence be activated [50]. This interaction
could be the key to the RNase L-independent anti-viral resistance previously observed using OAS1
mutants (in which the conservation of the RNA binding site was more important than the catalytic site
in anti-viral activity) and the enzymatically inactive murine Oas1b, which was targeted to the ER and
conferred WNV protection [51,52]. In addition, there is evidence that OAS1 can directly bind to the
ER-associated NS5A protein from HCV [53] and that a CaaX motif can facilitate the interaction with
NS5A [35], however in these cases the binding decreased the anti-viral effect, suggesting a defensive
mechanism against the OAS1 protein. These observations could corroborate a mechanism in which the
OAS1 p46 is located at the mitochondria-ER intersection and therefore in a higher proximity to viral
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RNA, which enables activation but also immobilization and inactivation of genomic and replicated
viral RNA. This would confer better anti-viral protection and further explain the differences observed
between the OAS1 p46 and p42 isoforms.

The proposed mechanisms are of course speculative at this point. The inherent differences
between the OAS1 p46 and p42 isoforms in anti-viral activity and mitochondrial physiology are still
largely unchartered territory and future studies must be pursued in order to get a more complete
understanding. Nevertheless, we have in this study given novel insights into the spatial distribution
and physiological effects of two of the major human OAS1 proteins, the p42 and p46 isoforms.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/12/1122/s1,
Figure S1: High resolution respirometry (HRR) measurements of HeLa cells. Figure S2: Simultaneous OCR and
fluorescence measurements in HeLa cells with or without IFN-β. Figure S3: Expression levels of p42 and p46 in
HT1080 cells. Figure S4: Cellular localization of OAS1 in interferon treated HeLa cells and HT1080 cells.
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