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Abstract
Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves
collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal
transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We
found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling
pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that
drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK
has a key role in mammary gland involution post lactation.

Introduction

The mammary gland is dynamically regulated by circu-
lating hormones and paracrine/autocrine cytokines during
post-natal development. Estrogen promotes ductal
development by epithelial cells in the mammary gland
after puberty [1, 2]. In contrast, progesterone and pro-
lactin are critically required for the epithelial develop-
ment of alveoli and subsequent milk production by the
mammary gland in response to pregnancy [3–5]. Weaning
causes milk stasis, decreased circulating concentrations
of prolactin, and increased expression of cytokines that
activate the JAK1/STAT3 signaling pathway, including
leukemia inhibitory factor (LIF) [6], interleukin 6 (IL6)
[7], and oncostatin M (OSM) [8]. LIF may serve to
initiate STAT3 activation that engages an autocrine

pathway sustained by STAT3-induced OSM expression
[8]. The switch from prolactin-stimulated STAT5 acti-
vation to LIF/IL6/OSM-stimulated STAT3 activation
drives remodeling (involution) of the mammary gland,
including collapse of the epithelial cell compartment and
replacement by adipose tissue, to enable return to a
quiescent state [9, 10].

The requirement of the LIF/JAK1/STAT3 pathway for
mammary gland involution is strongly supported by studies
of knockout mice. Deficiency of LIF [6], JAK1 [11], or
STAT3 [12] causes a similar delay in mammary gland
involution. Targets of STAT3 signaling include pathways of
lysosome-mediated cell death involving cathepsins [13] and
mitochondrion-mediated apoptotic pathways mediated by
members of the BCL2 family [11, 14, 15]. Indeed, it is
established that the Bcl2l11 and Bmf genes that encode the
pro-apoptotic BH3-only proteins BIM and BMF are direct
targets of STAT signaling [11, 15]. Increased Bcl2l11 and
Bmf gene expression during involution may result from loss
of transcriptional repression by STAT5 and increased
transcriptional activity mediated by STAT3 [11, 15]. The
importance of Bcl2l11 and Bmf gene induction is confirmed
by analysis of knockout mice that show delayed involution
[11, 15]. The BH3-only proteins BAD and NOXA are also
implicated in involution, but studies of BAD-deficient (Bad
−/−) mice and NOXA-deficient (Pmaip1−/−) mice demon-
strate that these BH3-only proteins are not essential for
involution [15].
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Although the LIF/IL6/OSM–JAK1–STAT3 signaling
pathway has a key role in involution, this pathway appears
to function in collaboration with other signaling pathways
that contribute to involution, including TGFβ [16]. Several
TGFβ isoforms are expressed at low levels during lactation,
but are greatly induced during involution [17]. It is therefore
likely that TGFβ signaling during involution may contribute
to remodeling of the extracellular matrix during involution
and TGFβ may also contribute to mammary epithelial cell
death. Indeed, deficiency of TGFβ3 [16] or Smad3 [18]
causes decreased cell death during involution, whereas the
forced expression of TGFβ3 causes increased cell death
during lactation [16].

Other signaling pathways might also contribute to the
involution response. For example, loss of survival sig-
naling (e.g., AKT and ERK) caused by cell detachment
and loss of signaling by integrins and receptor tyrosine
kinases may promote cell death [19–21]. Similarly,
increased signaling by stress-activated MAP kinases
[22–24] may promote cell death during involution.
Indeed, it is established that the stress-activated protein
kinases p38 MAP kinase [25] and cJUN NH2-terminal
kinase (JNK) [26, 27] can promote anoikis of mammary
epithelial cells. However, it is not known whether these
stress-activated MAP kinases contribute to the involution
response.

The purpose of this study was to test whether JNK
contributes to mammary gland remodeling during the
involution response. JNK is activated during involution
[28] and has been mechanistically implicated in the
involution response [28]. Interestingly, JNK can promote
cell death mediated by BH3-only proteins (BMF and BIM)
[29–33] that are known to contribute to cell death during
involution [11, 14, 15]. Two JNK isoforms (JNK1 and
JNK2) with partially redundant functions are expressed in
the mammary epithelium. Developmental studies demon-
strate that these JNK isoforms are required for anoikis and
the clearance of cells from mammary ducts and terminal
end buds [26, 27]. Indeed, deficiency of JNK1 plus JNK2
in the mammary epithelium (but not deficiency of JNK1 or
JNK2 alone [34]) causes ductal occlusion by suppressing
anoikis [26, 27]. Thus, JNK is required for normal mam-
mary gland development and could contribute to
involution.

Previous studies have established that involution defects
were not observed in mice lacking JNK1 or JNK2 [34]. We
therefore examined mice with compound deficiency of
JNK1 plus JNK2 in the mammary epithelium. These JNK-
deficient mice exhibited delayed involution. Moreover, JNK
deficiency caused major disruption of the gene expression
program that mediates involution. Together, these data
demonstrate that JNK contributes to the normal mammary
gland involution response.

Results

JNK is required for efficient mammary gland
involution

To study mice with compound disruption of the Mapk8
gene (encodes JNK1) plus the Mapk9 gene (encodes JNK2)
in the mammary epithelium, we established Control
(JNKWT) mice (Wap-Cre−/+) and JNK-deficient (JNKKO)
mice (Wap-Cre−/+ Mapk8LoxP/LoxP Mapk9 LoxP/LoxP). Wap-
Cre expression is induced in the mammary epithelium
during lactation [35] and we found Cre-mediated recom-
bination in mammary epithelial cells (Figure S1a). Analysis
of genomic DNA demonstrated efficient ablation of the
Mapk8 and Mapk9 genes in the mammary glands of lac-
tating JNKKO mice (Figure S1b, c).

To test the role of JNK in involution, we examined
JNKWT and JNKKO dams that nursed litters for 9 days.
Involution was initiated by removal of the pups (involution
day 0). Microscopic analysis of tissue sections at this stage
demonstrated no differences between the mammary glands

Fig. 1 JNK is required for efficient mammary gland involution. Sec-
tions of #4 mammary glands from JNKWT and JNKKO mice on invo-
lution day 0, 3, 7, and 14 were stained with H&E. The images
presented are representative of sections prepared from the mammary
glands of 5 JNKWT mice and 5 JNKKO mice for each condition. Scale
bar= 100 µm
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of JNKWT and JNKKO mice (Fig. 1; Figure S2). After 3 days
of involution, the JNKWT glands exhibited collapse of
alveolar structures and the reappearance of adipocytes. In
contrast, analysis of the JNKKO glands demonstrated the
presence of distended alveoli and no reappearance of adi-
pocytes (Fig. 1; Figure S2). After 7 days of involution, the
JNKWT glands morphologically resembled the pre-lactation
state, while JNKKO glands still had an expanded epithelial
compartment with many collapsed alveoli (Fig. 1; Figure
S2). However, on day 14 after the initiation of involution,
no differences were detected between the tissue architecture
(Fig. 1; Figure S2) or epithelial cell populations (Figure S3)
of mammary glands from JNKWT and JNKKO mice. These
findings demonstrate that JNK deficiency delays involution,
indicating that JNK is required for the proper execution of
this process.

JNK promotes epithelial cell death during involution

To test whether JNK regulates epithelial cell death in
mammary glands during involution, we performed immu-
nohistochemistry using an antibody specific for cleaved
caspase 3. On involution day 0, few cleaved caspase 3
positive (c-C3+) cells were detected in the mammary glands
of JNKWT and JNKKO mice (Fig. 2a). However, on day 3 of
involution a substantial increase in the number of c-C3+

cells was found in the glands of JNKWT mice, but not
JNKKO mice (Fig. 2a). In contrast, large numbers of c-C3+

cells were found in both JNKWT and JNKKO mice on day 7
of involution (Figure S4). These data indicate that JNK
deficiency delays cell death during involution. To confirm
this conclusion, we examined terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) of cells on
day 3 of involution. In agreement with the c-C3 data, there
were reduced numbers of TUNEL+ cells in glands from
JNKKO mice compared with JNKWT mice (Fig. 2b). Thus,
JNK deficiency causes delayed epithelial cell death in the
involuting mammary gland.

Effect of JNK deficiency on STAT and SMAD
transcription factors

The delayed involution observed in JNKKO mice may be
caused by changes in the key transcription factors that reg-
ulate this process. It is established that decreased activation of
SMAD2/3 or STAT3, or increased STAT5 activation, may
cause delayed involution [9, 10]. We therefore examined the
activation state of these transcription factors by immunohis-
tochemistry using antibodies to the activating sites of phos-
phorylation. Studies of phospho-STAT3 (Fig. 3a), phospho-
STAT5 (Figure S5a), and phospho-SMAD2/3 (Figure S5b)
revealed similar staining of sections prepared from mammary
glands of JNKWT and JNKKO mice on day 3 of involution.

Indeed, quantitation of phospho-STAT3 immuno-
fluorescence revealed no significant difference between
JNKWT and JNKKO glands (Fig. 3b). Immunoblot analysis
performed on tissue lysates supported this conclusion
(Fig. 3c). Strikingly, the induction of Socs3, a STAT3 target
gene, was evident after 3 days of involution and was un-
affected by JNK deficiency (Fig. 3d). These data demonstrate
that the delayed involution caused by JNK deficiency did not
reflect disruption of the signaling pathways that regulate the
STAT3/5 or SMAD2/3 transcription factors.

Effect of JNK deficiency on AP1 transcription factors

Major targets of JNK signaling include members of the
Activator Protein 1 (AP1) group of transcription factors that
are phosphorylated and activated by JNK [23] and have
been implicated in involution [28, 36]. The AP1 family
includes members of the JUN and FOS groups, as well as
some members of the ATF group of transcription factors.
We therefore examined the expression of these AP1-related
transcription factors in mammary glands of JNKWT and
JNKKO mice on day 0 and day 3 of involution by mRNA
sequencing (Fig. 4a). Involution in JNKWT mice caused
significantly increased expression of many of these AP1-
related transcription factors, including Atf3, Atf5, Atf7, Fos,
FosB, FosL1, FosL2, Jun, JunB, and JunD (Fig. 4a).
Comparison of JNKWT and JNKKO mice demonstrated no
significant differences in AP1-related transcription factor
expression on day 0 of involution (Fig. 4a). However, on
involution day 3 the increased expression of Atf3, FosL2,
Jun, and JunD detected in JNKWT mice was suppressed in
JNKKO mice (Fig. 4b–e). Thus, JNK deficiency causes a
selective defect in the AP1-related transcription factor
response during involution that is mediated by ATF3,
FOSL2, cJUN, and JUND. This observation may be
mechanistically relevant to involution because AP1 tran-
scription factor function has been implicated in mammary
gland involution [28].

JNK deficiency disrupts involution-associated gene
expression

Comparison of gene expression on day 0 and day 3 of
involution demonstrated that 10,358 genes were differen-
tially expressed in JNKWT mammary glands (|log2 Fold
Change| > 1; q < 0.01) (Fig. 5a). A similar number of genes
(10,071) were differentially expressed in JNKKO mammary
glands (Fig. 5a) and 8620 genes were co-regulated in both
JNKWT and JNKKO mammary glands during involution
(Fig. 5a). However, 1688 genes were differentially expres-
sed only in JNKWT mice and 1401 genes were differentially
expressed only in JNKKO mice. These data demonstrate that
involution is associated with major changes in gene
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expression and that JNK deficiency causes dysregulation of
a large fraction (26%) of these genes.

Comparison of RNA expression in mammary glands of
JNKWT and JNKKO mice on involution day 0 demonstrated
differential expression of 134 genes (|log2 Fold Change| > 1;
q < 0.01) (Fig. 5b), indicating that JNK deficiency causes
only small changes in gene expression in the lactating
mammary gland. In contrast, comparison of JNKWT and
JNKKO mice demonstrated 2236 differentially expressed
genes on involution day 3 (Fig. 5b) and only 92 genes were
co-regulated during both normal lactation and involution
(Fig. 5b). These data indicate that while JNK deficiency
causes few changes in gene expression in the lactating
mammary gland, JNK deficiency causes major changes in
gene expression during involution. The majority of this
differential RNA expression (~94%) corresponded to genes
that encode proteins (Figure S6).

To characterize involution-associated gene expression in
JNKWT and JNKKO mammary glands, we performed k-

means clustering on the 12,862 genes that were differen-
tially expressed in any of the pairwise comparisons
(Fig. 5c). Cluster 1 included genes that were upregulated
during involution (day 3) in JNKWT mice and were more
strongly upregulated in JNKKO mice. This cluster was
highly enriched for ribosomal genes (padj= 1.88 × 10−98;
Fig. 5d). Clusters 2/3 included genes that were highly
upregulated during involution in JNKWT mice and modestly
upregulated in JNKKO mice (Cluster 2) or were not upre-
gulated in JNKKO mice (Cluster 3). Both clusters were
enriched for metabolic pathways (padj < 10−71), whereas
Cluster 2 showed additional enrichment for genes involved
in RNA metabolism (Fig. 5d). There was no striking
enrichment of pathways in Cluster 4, which contained genes
downregulated in both JNKWT and JNKKO mice during
involution (Fig. 5d). Thus, while JNK is dispensable for the
regulation of a limited number of genes during involution
(Cluster 4), the loss of JNK greatly affects the expression of
other involution-associated genes (Clusters 1, 2, and 3).

Fig. 2 JNK deficiency suppresses cell death during involution. a
Sections of #4 mammary glands from single parous female mice on
involution day 0 or on involution day 3 were stained with an antibody
to cleaved caspase 3 (c-C3) and counter-stained with hematoxylin.
Representative images are presented. c-C3+ cells were quantitated in 6
fields (×40) per section and presented as the % of total cells. Sig-
nificance was calculated using an unpaired, two-tailed t-test (mean ±
SEM; day 0, n= 5 JNKWT mice and n= 4 JNKKO mice; day 3, n= 4

JNKWT mice and n= 6 JNKKO mice). Scale bar= 100 µm. b Sections
of #4 mammary glands from mice on involution day 3 were stained by
TUNEL assay and counter-stained with DAPI. Representative images
are presented. TUNEL+ cells were quantitated in 6 fields (×40)
per section and presented as the % of total cells. Significance was
calculated using an unpaired, two-tailed t-test (mean ± SEM; n= 4
JNKWT mice and n= 5 JNKKO mice). Scale bar= 50 µm

JNK promotes mammary gland involution 1705

Official journal of the Cell Death Differentiation Association



The requirement of JNK for normal involution-
associated gene expression (Fig. 5) may be a secondary
consequence of delayed involution and suppression of this
developmental program of gene expression. Alternatively,
these involution-associated genes may be directly targeted
by JNK. To explore these two possible mechanisms, we

compared the presence of AP1 binding sites (defined by
ENCODE ChIPseq analysis of cJUN and JUND [37]) near
genes that are developmentally regulated during involution
in a JNK-dependent manner with genes that are not sig-
nificantly regulated by JNK. This analysis demonstrated
significant enrichment of cJUN and JUND binding sites (p

Fig. 3 STAT3 signaling is not disrupted in JNKKO glands. a Immu-
nohistochemistry (left, scale bar= 100 µm) and immunofluorescence
(right, scale bar= 30 µm) were performed on sections prepared from
#4 mammary glands of single parous female mice on involution day 3
(n= 5 JNKWT mice and n= 4 JNKKO mice) using an antibody to
phospho-STAT3 (p-STAT3) and counter-stained with hematoxylin or
DAPI, respectively. An antibody to keratin 8 (K8) was used to label
epithelial cells during immunofluorescence staining. Representative
images are presented. b K8, p-STAT3, and DAPI fluorescence
intensities of involution day 3 glands from JNKWT (n= 5 mice) and
JNKKO (n= 4 mice) were quantitated and p-STAT3 intensity was
normalized to K8 and DAPI fluorescence intensity. No significant

differences (unpaired, two-tailed t-test) between JNKWT and JNKKO

glands were detected. c Protein extracts prepared from involution day
3 mammary glands were examined by immunoblot analysis by probing
with antibodies to p-STAT3, STAT3, and Tubulin. Two representative
mice are presented. The quantitative data presented are the mean ±
SEM (n= 9 JNKWT mice and n= 5 JNKKO mice). No significant
differences (unpaired, two-tailed t-test) between JNKWT and JNKKO

glands were detected. d The mRNA expression of Socs3 measured by
RNA-seq analysis is presented as the mean FPKM ± SEM; n= 3
JNKWT mice and n= 3 JNKKO mice per condition. No significant
differences between JNKWT and JNKKO glands were detected (calcu-
lated by applying the Benjamini–Hochberg method to the p-value)
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= 2 × 10−16) with ~35% of the JNK-regulated genes during
involution (Figure S7). However, the remaining 65% of the
JNK-regulated genes lack cJUN/JUND binding sites (Fig-
ure S7). The JNK-regulated expression of these genes may
reflect targeting of other transcription factors by JNK or
represent a consequence of delayed involution.

JNK promotes the expression of genes that remodel
the mammary gland during involution

It is established that matrix metalloproteinases (MMPs) are
involved in remodeling the extracellular matrix [38].
Interestingly, differentially expressed genes with

Fig. 4 JNK deficiency
suppresses the increase in AP1-
related transcription factor
expression during involution. a
Heatmap representation of
RNA-seq data showing AP1-
related transcription factor gene
expression. Asterisks denote
genes that are differentially
expressed (q < 0.05) between
JNKWT and JNKKO mammary
glands on involution day 3
(mean; n= 3 JNKWT and n= 3
JNKKO mice for each condition).
b–e The mRNA expression of
Atf3 (b), Jun (c), Jund (d), and
Fosl2 (e) measured by RNA-seq
analysis is presented as mean
FPKM ± SEM; n= 3 JNKWT

and n= 3 JNKKO mice for each
condition. The
Benjamini–Hochberg method
was applied to the p-values to
calculate q-values
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enrichment of cJUN/JUND binding include several Mmp
genes that may contribute to mammary gland involution
(Fig. 5c; Figure S7). Indeed, Mmp3 is implicated in both
mammary gland development and involution [38, 39]. We
found that JNK deficiency markedly suppressed the

increased Mmp3 expression detected in JNKWT mice on
involution day 3 (Figure S8), consistent with the observa-
tion that JNKKO mice exhibit delayed involution (Fig. 1;
Figure S2). We also found that the expression of Mmp2,
Mmp3, Mmp9, Mmp11, Mmp12, Mmp13, Mmp14, and

Fig. 5 JNK promotes involution-associated gene expression. a, b
RNA-seq analysis of mammary glands of JNKWT and JNKKO mice on
involution day 0 or day 3 is presented as a Venn diagram of the
number of differentially expressed (DE) genes (|log2 Fold Change| > 1;
q < 0.01; n= 3 JNKWT mice and n= 3 JNKKO mice for each condi-
tion). c The heatmap presents k-means clustering (k= 4) of DE genes

in at least one pairwise comparison between JNKWT and JNKKO

mammary glands on involution day 0 or day 3. d Gene-set enrichment
analysis was performed on the four gene clusters. The 10 KEGG
pathways identified with lowest padj-value (p-value adjusted using the
Benjamini–Hochberg method) are presented

1708 N. Girnius et al.
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Mmp15 were significantly decreased in JNKKO mice com-
pared with JNKWT mice after 3 days of involution
(Figure S8).

Alterations in the tissue inhibitors of metalloproteases
(TIMPs) could also impact mammary gland involution.
Indeed, Timp1 overexpression results in more rapid adipo-
cyte repopulation of the gland, whereas Timp3 loss can
promote epithelial cell apoptotic signaling [40, 41]. Unex-
pectedly, we found that Timp2 and Timp3 expression was
increased during involution in JNKWT mice and that this
was suppressed in JNKKO mice (Figure S8).

Epithelial cell death during involution is caused, in part,
by a lysosomal pathway mediated by Cathepsins [13], and it
is established that increased Ctsb (encodes Cathepsin B)
and Ctsl (encodes Cathepsin L) expression, together with
reduced expression of Serpina3g (encodes the protease
inhibitor Spi2A), contribute to STAT3-induced involution
[9, 13]. Interestingly, the Ctsb gene binds the AP1 tran-
scription factors cJUN/JUND and therefore might exhibit
JNK-dependent expression (Fig. 5; Figure S7). Indeed, we
found that the expression of Ctsb was increased on invo-
lution day 3 in JNKWT mice and that this increased
expression was suppressed in JNKKO mice (Figure S9a). A

similar pattern of expression was observed for Ctsl (Fig-
ure S9b). In contrast, JNK deficiency caused no significant
change in Serpina3g expression during involution (Fig-
ure S9c). Thus, reduced Cathepsin expression may con-
tribute to the delayed involution phenotype caused by JNK
deficiency.

Epithelial cell death during involution is also caused by
the mitochondrion-mediated apoptotic pathway induced by
members of the BCL2 family [11, 14, 15]. Previous studies
have implicated a key role for the BH3-only gene Bcl2l11
(encodes BIM) in the promotion of epithelial cell death
during the involution response [11, 15]. Moreover, it is
established that the Bcl2l11 gene is regulated by AP1
transcription factor binding to the promoter [42, 43]. We
therefore anticipated that Bcl2l11 gene expression may
depend on JNK. Indeed, we found that involution caused
increased expression of Bcl2l11 mRNA in the mammary
glands of JNKWT mice during involution and that this
response was suppressed in JNKKO mice (Fig. 6a, b). The
increased expression of Bik detected in JNKWT mice was
also suppressed in JNKKO mice (Fig. 6a, c). In contrast,
expression of the pro-apoptotic BH3-only genes Bad, Bbc3,
Bid, Bmf, Bnip3, Bnip3l, and Pmaip1 was similar in the

Fig. 6 JNK deficiency suppresses the expression of pro-apoptotic
BH3-only genes. a Heatmap representation of RNA-seq data showing
pro-apoptotic BH3-only gene expression. Asterisks denote genes that
are differentially expressed (Bcl2l11 q= 0.021, Bik q= 0.04, and
Bnip3 q= 0.00015; calculated by applying the Benjamini–Hochberg
method to the p-value) between JNKWT and JNKKO mammary glands
on involution day 3 (mean; n= 3 JNKWT mice and n= 3 JNKKO mice
for each condition). b, c Quantitative RT-PCR was performed on RNA

isolated from mammary glands on involution day 0 and day 3. The
relative expression of Bcl2l11 (b), and Bik (c) mRNA was measured
using Taqman® assays. Significance was calculated using two-way
ANOVA with Bonferroni’s multiple comparisons test (mean ± SEM;
day 0, n= 6 JNKWT mice and n= 6 JNKKO mice; day 3, n= 8 JNKWT

mice and n= 6 JNKKO mice). Bcl2l11 and Bik mRNA were sig-
nificantly differentially expressed in both RNA-seq and quantitative
RT-PCR assays
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involuting mammary glands of JNKKO and JNKWT mice
(Fig. 6a; Figure S10).

Collectively, these data demonstrate that the delayed
involution defect in JNK-deficient mice is associated with
dysregulation of the gene expression program that promotes
involution.

Discussion

Weaning initiates the process of mammary gland involution
that causes collapse of the epithelial cell compartment and
its replacement by adipose tissue. Here we demonstrate that
the JNK signaling pathway has a key role in the involution
response. This program of mammary gland remodeling
involves differential expression of 10,385 genes (Fig. 5).
We show that 26% of this gene expression program requires
JNK (Fig. 5).

Previous studies have demonstrated that involution is
associated with activation of JNK [28] and increased AP1
transcription factor activity [28, 36]. Our analysis shows
that JNK deficiency in the mammary epithelium suppresses
the involution response mediated by increased expression of
Atf3, Fosl2, Jun, and Jund (Fig. 4). Indeed, ~35% of JNK-
regulated gene expression during involution is associated
with the presence of AP1 binding sites (Figure S7). These
data confirm that the JNK/AP1 signaling axis has an
important role during involution [28, 36]. However, the
remaining 65% of JNK-regulated expression during invo-
lution is not associated with genes in close proximity to
AP1 binding sites. Some of this JNK-mediated regulation
may be caused by AP1 binding to sites localized to distant
enhancer elements, but there may also be roles for other
JNK-regulated transcription factors [23]. It is also possible
that some JNK-dependent gene expression may represent a
consequence of a delayed involution response.

Examples of genes that may be directly targeted by JNK
signaling during involution include matrix metalloproteases
(Figure S8) that are regulated by AP1, including JUN [44,
45], and are implicated in both epithelial cell death [46] and
adipocyte repopulation [40] during involution. Indeed, JNK-
regulated Mmp expression may contribute to epithelial cell
detachment during involution. A second example is repre-
sented by Ctsb and Ctsl, which encode Cathepsins that
promote lysosomal cell death during involution and are tar-
geted by AP1 (Fig. 5; Figure S7). A third example is
represented by pro-apoptotic BH3-only members of the
BCL2 family (Fig. 6) that can promote epithelial cell apop-
tosis during involution, including Bcl2l11 that is required for
normal involution [11, 15] and is a JNK/AP1 target gene [26,
42, 43]. Defects in the expression of these genes most likely
contribute to the delayed involution observed in mice with
JNK deficiency in the mammary epithelium (Fig. 1).

It is established that STAT3 is a key driver of the
involution response [12]. Interestingly, STAT3 target genes
that are required for cell death during involution, including
Ctsb and Bcl2l11, are also targets of AP1 transcription
factors. For example, the Bcl2l11 promoter binds both
STAT3 [11] and AP1 [26, 42, 43] at independent sites. The
combinatorial actions of these transcription factors on the
same promoter may lead to a synergistic increase in gene
expression. This mechanism would account for the non-
redundant functions of STAT3 and JNK/AP1 in the
expression of these involution-related genes.

The discovery that JNK has a major role in mammary
gland involution suggests that other members of the MAP
kinase group of signaling proteins may also contribute to
involution. Indeed, the ERK pathway is activated during
early involution and may contribute to mammary gland
remodeling [7]. For example, STAT3, a master regulator of
involution, is phosphorylated and inhibited by ERK [47].
Moreover, the BH3-only protein BIM is required for
involution [15] and is downregulated by ERK-mediated
phosphorylation and ubiquitin-mediated degradation [32,
48]. Studies to test whether the ERK pathway contributes to
involution are therefore warranted.

The p38 MAP kinases represent another group of MAP
kinases that is implicated in involution [24]. It is established
that p38α MAP kinase has a key role in luminal mammary
epithelial cell fate by regulating RUNX1 expression in
progenitor cells [49]. The p38 MAP kinase pathway
therefore has an important role in mammary gland devel-
opment. Moreover, p38 MAP kinase promotes epithelial
cell anoikis and clearance of occluded mammary gland
ducts by increasing the expression of the BH3-only protein
BIM [25]. As BIM is required for normal mammary gland
remodeling during involution [15], it is therefore possible
that p38 MAP kinase contributes to the involution response.
This prediction remains to be tested.

It is interesting that there are functional similarities
between the JNK and p38 MAP kinases in mammary epi-
thelial cells. For example, both p38 MAP kinase [25] and
JNK [26] can promote mammary epithelial cell anoikis by
increasing the expression of BIM by an AP1 transcription
factor-dependent mechanism. It is likely that the non-
redundant functions of p38 MAP kinase and JNK are
mediated by different repertoires of AP1-related transcrip-
tion factors. For example, ATF2 is preferentially phos-
phorylated and activated by p38 MAP kinase while JUN is
phosphorylated by JNK in mammary epithelial cells [24].
Moreover, JNK is required for the expression of the AP1-
related transcription factors ATF3, FOSL2, JUN, and JUND
during involution (Fig. 4). It is likely that p38 MAP kinase
leads to the activation of a different group of AP1-related
transcription factors. JNK and p38 MAP kinase may
therefore act in a non-redundant manner to regulate AP1-
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dependent gene expression. These separate signaling func-
tions of p38 MAP kinase and JNK can lead to different
pathological consequences; for example, p38 MAP kinase
increases [49] and JNK decreases [27] mammary tumor
development.

In summary, we show that JNK promotes mammary
gland involution by a mechanism that is independent of
changes in STAT3/5 or SMAD2/3 phosphorylation. Loss of
JNK signaling causes delayed involution, reduced expres-
sion of AP1 transcription factors, and dysregulation of gene
expression. Collectively, our analysis identifies JNK as a
key signaling pathway that promotes mammary gland
involution.

Materials and methods

Mice

We have previously described Mapk8LoxP/LoxP mice and
Mapk9LoxP/LoxP mice [50, 51]. B6.129(Cg)-Gt(ROSA)
26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mice [52] (RRID:
IMSR_JAX:007676) and B6.Cg-Tg(Wap-cre)11738Mam/
JKnwJ mice [35] (RRID:IMSR_JAX:008735) were pur-
chased from Jackson Laboratories. Female mice were bred
at age 10–12 weeks. Mammary glands from single parous
females were harvested at 0, 3, 7, and 14 days after forced
weaning following 9 days of lactation. The mice were
housed in a specific pathogen-free facility accredited by the
American Association of Laboratory Animal Care
(AALAC). The animal studies were approved by the
Institutional Animal Care and Use Committee at the Uni-
versity of Massachusetts Medical School.

Genomic DNA analysis

The polymerase chain reaction (PCR) amplimers 5′-
CTCTGCTGCCTCCTGGCTTCT-3′, 5′-CGAGGCGGAT-
CACAAGCAATA-3′ and 5′-TCAATGGGCGGGGGT-
CGTT-3′ were used to detect presence of the mTmG (250
bp) and WT alleles (330 bp). The amplimers 5′-TTACT-
GACCGTACACCAAATTTGCCTGC-3′ and 5′-CCTGG-
CAGCGATCGCTATTTTCCATGAGTG-3′ were used to
detect the Cre+ allele (450 bp). The amplimers 5′-
AGGATTTATGCCCTCTGCTTGTC-3′ and 5′-GAC-
CACTGTTCCAATTTCCATCC-3′ were used to detect the
Mapk8+ (540 bp) and Mapk8LoxP (330 bp) alleles. The
amplimers 5′-GTTTTGTAAAGGGAGCCGAC-3′ and 5′-
CCTGACTACTGAGCCTGGTTTCTC-3′ were used to
detect the Mapk9+ (224 bp) and Mapk9LoxP alleles (264 bp).
The amplimers 5′-CCTCAGGAAGAAAGGGCTTA-
TTTC-3′ and 5′-GAACCACTGTTCCAATTTCCATCC-3′
were used to detect the Mapk8+ (1550 bp), Mapk8LoxP

(1095 bp), and the Mapk8Δ alleles (395 bp). The amplimers
5′-GGAATGTTTGGTCCTTTAG-3′, 5′-GCTATTCA-
GAGTTAAGTG-3′, and 5′-TTCATTCTAAGCTCA-
GACTC-3′ were used to detect the Mapk9LoxP (560 bp) and
Mapk9Δ alleles (400 bp).

Mammary gland analysis

Female mice were euthanized and mammary glands #2–5
were harvested, fixed in 10% formalin, dehydrated, and
embedded in paraffin. Five micron-thick sections were cut
and stained with hematoxylin and eosin (H&E) for analysis.
Sections of #4 glands were also stained with antibodies
against cleaved caspase-3 (1:100; Cell Signaling Technol-
ogy Cat# 9662 RRID:AB_331439), phospho-STAT3
(1:400; Cell Signaling Technology Cat# 9145 RRID:
AB_2491009), phospho-STAT5 (1:50; Abcam Cat#
ab32364 RRID:AB_778105), phospho-SMAD2/3 (1:200;
Santa Curz Biotechnology Cat# sc-11769-R), α-smooth
muscle actin (Millipore Sigma Cat# A2547, RRID:
AB_476701; 1:100 dilution), keratin 5 (BioLegend Cat#
905501 RRID:AB_2565050; 1:50 dilution), keratin 8
(DSHB Cat# TROMA-I RRID:AB_531826; 1:100 dilu-
tion), and GFP (Thermo Fisher Cat# A21311 RRID:
AB_221477). Immunohistochemistry was performed using
a biotinylated goat anti-IgG antibody (Biogenex Cat#
HK340-5K) plus streptavidin-conjugated horseradish per-
oxidase (Vector Laboratories Cat# PK-6100) and 3,3’-dia-
minobenzidene (Vector Laboratories Cat# SK-4100).
Sections were counter-stained with hematoxylin (Thermo
Fisher). Images were acquired using a Zeiss Axiovert
microscope. Immunofluorescence was performed using
AlexaFluor 546 conjugated-goat anti-rabbit IgG (H+ L)
antibody (Thermo Fisher Cat# A11035 RRID:AB_143051),
AlexaFluor 488 conjugated-goat anti-rabbit IgG (H+ L)
antibody (Thermo Fisher Cat# A-11008 RRID:
AB_143165), AlexaFluor 633 conjugated-goat anti-mouse
IgG (H+ L) antibody (Thermo Fisher Cat# A-21052,
RRID:AB_141459), AlexaFluor 633 conjugated-goat anti-
rat igG (H+ L) antibody (Thermo Fisher Cat# A-21094,
RRID:AB_141553), or AlexaFluor 488 conjugated-goat
anti-rat IgG (H+ L) antibody (Thermo Fisher Cat# A11006
RRID:AB_141373), and counter-stained with 2-(4-amidi-
nophenyl)-1H-indole-6-carboxamidine (DAPI). TUNEL
staining was performed following the manufacturer’s
recommendations (Sigma Cat# 11684795910). Fluores-
cence images were acquired using a Leica SP2 confocal
microscope. Immunofluorescence staining of phospho-
STAT3 was quantitated using ImageJ [53] on 10–15 ima-
ges per mouse; the amount of phospho-STAT3 was nor-
malized to keratin 8 or DAPI fluorescence and the mean
value per mouse was calculated. Sections were examined in
a blinded fashion for days 0, 3, 7, and 14 of involution.
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However, the marked histological differences on involution
day 3 prevented blinded analyses.

Immunoblot analysis

Tissue lysates from #2–3 glands were prepared using Triton
lysis buffer (20 mM Tris (pH 7.4), 1% Triton X-100, 10%
glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM β-glycer-
ophosphate, 1 mM sodium orthovanadate, 1 mM phe-
nylmethylsulfonyl fluoride, and 10 μg/ml of aprotinin plus
leupeptin). Extracts (30 µg) were subjected to immunoblot
analysis with antibodies to STAT3 (Cell Signaling Tech-
nology Cat# 9139 RRID:AB_331757; dilution 1:1000),
phospho-STAT3 (Cell Signaling Technology, Cat# 9145
RRID:AB_2491009; dilution 1:2000), and αTubulin
(Sigma-Aldrich Cat# T5168; RRID:AB_477579). IRDye
680LT conjugated-donkey anti-mouse IgG antibody (LI-
COR Biosciences Cat# 926-68022 RRID:AB_10715072)
and IRDye 800CW conjugated-goat anti-rabbit IgG (LI-
COR Biosciences Cat# 926-32211 RRID:AB_621843)
were used to detect immune complexes, and these were
quantitated using the Odyssey infrared imaging system (LI-
COR Biosciences).

Mammary epithelial cell isolation

Mammary epithelial cells were isolated as previously
described [54, 55] with minor modifications [27]. Briefly,
lymph nodes were removed and whole mammary glands
were placed in DMEM/F12 supplemented with penicillin/
streptomycin and nystatin. The glands were washed once in
PBS before being minced and placed in DMEM/F12 con-
taining 0.2% trypsin, 0.2% collagenase A, 5% fetal calf
serum, and 5 µg/ml gentamicin (2 h) on a rotator at 37 °C.
Cells and organoids were pelleted by centrifugation at 1500
rpm (10 min). The fatty layer was transferred to a second
tube and dispersed with pipetting while the pellet was
resuspended in DMEM/F12. The pellet and fatty layer were
centrifuged again at 1500 rpm (10 min) and combined in
one tube prior to incubation (2–5 mins at 25 °C with shak-
ing) in DMEM/F12 supplemented with 10 µg/ml DNAse I.
The cells were centrifuged at 1500 rpm (10 min) and
resuspended in 10 ml of DMEM/F12. The epithelial cells
and organoids were briefly (0.2 min) centrifuged at 1500
rpm 6–7 times and resuspended in fresh DMEM/F12 to
wash out fibroblasts.

RT-PCR analysis

The expression of Bad (Mm00432042_m1), Bbc3
(Mm00519268_m1), Bcl2l11 (Mm00437797_m1), Bmf
(Mm00506773_m1), Bid (Mm00432073_m1), Bik
(Mm00476123_m1), Bnip3 (Mm01275601_g1), Bnip3l

(Mm00786306_s1), and Pmaip1 (Mm00451763_m1)
mRNA and 18S RNA (4308329) was measured using
TaqMan® assays using QuantStudio 12K Flex machine
(Thermo Fisher). The amount of mRNA was normalized to
the amount of 18S detected in the same sample.

RNA-seq analysis

Mammary glands #2–5 were flash frozen in liquid nitrogen
and RNA was isolated using the RNeasy kit with DNase
treatment (Qiagen). RNA quality (RIN > 8) was confirmed
using a Bioanalyzer 2100 (Agilent Technologies). Libraries
were constructed according to the manufacturer’s instructions
using the NeoPrep kit (Illumina). Paired-end RNA sequen-
cing with reads (40 bp) were performed using a NextSeq500
(Illumina). Three independent libraries were analyzed for
each condition. FastQC (version 0.10.1) [56] was used to
generate sequence quality reports. Poor quality reads, adapter
sequence and reads <20 bp were removed using Trimmo-
matic (version 0.36) [57]. The pre-processed Illumina paired-
end Fastq datasets were aligned to the mouse reference
genome (Ensembl GRCm38). Alignment was performed
using Bowtie2 (v 2–2.1.0) [58] and Tophat2 (v 2.0.14) [59].
Samtools (version 0.0.19) [60] and IGV (version 2.3.60) [61]
were used for indexing the alignment files and viewing the
aligned reads respectively. Gene expression was quantitated
as fragments per kilobase of exon model per million mapped
fragments (FPKM) using Cufflinks (v 2.2.1) [62, 63] and
differential expression was identified using the Cuffmerge
and Cuffdiff tools. The false discovery rate (q value) was
obtained by applying the Benjamini–Hochberg method to a
p-value calculated using a one-tailed t-test [62, 63]. The
library normalization method used for Cuffdiff was set to
“classic-fpkm” and the dispersion method was set to “per-
condition”. Cummerbund (version 2.4.1) [62] was used to
assess replicate concordance between sample groups. Gene-
set enrichment analysis was performed using differentially
expressed gene lists with the WEB-based GEne SeT Ana-
Lysis Toolkit (Webgestalt) [64] by selecting the KEGG
database and viewing the 10 pathways with lowest padj-value
(p-value adjusted using the Benjamini–Hochberg method).

Clustering analysis

The complex heatmap package (version 1.12.0) [65] was
used to cluster RNA-seq data (Fig. 5c). The “clustering
distance rows” parameter was set to “maximum”; the
“clustering method rows parameter” was set to “ward.D”.
Genes were included in the clustering analysis if they were
differentially expressed (|log2 Fold Change| > 1; q < 0.01)
between one or more pairwise group comparisons. Over
12,000 genes together with the gene expression levels were
examined by k-means (k= 4) clustering.
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Enrichment analysis

We used RNA-seq data (Fig. 5) and Mouse ENCODE
ChIPSeq datasets [37] (accession numbers GSM912901 and
GSM912902) to evaluate the overlap between genes that
were non-differentially expressed or differentially expressed
between JNKWT and JNKKO on involution day 3 (Fig. 5c),
and genes that bind the transcription factors cJUN and
JUND. Peaks that passed the irreproducible discovery rate
at a threshold of 2% were selected from the ENCODE
project. The Mouse ENCODE ChIPSeq bed files with
mm10 coordinates were entered as input into PAVIS [66]
and the nearest genes to the peaks from the ChIPSeq data
were annotated. The “genome assembly” and the “gene set”
were set to “Ensembl GRCm38” and “mm10 all genes”,
respectively. The upstream distance from the transcription
start site and the downstream distance from the transcript
termination site were each set to 20,000 bp. The intersec-
tions between the differentially expressed genes (identified
by RNA-seq analysis (Fig. 5c)) and the genes that bind the
transcription factors JUN and JUND (identified using
ENCODE ChIPseq data) were identified using Interactivenn
(http://www.interactivenn.net/) [67]. Statistical significance
between two groups was determined by Pearson’s χ2 test.

Statistical analysis

Data are presented as the mean and standard error. Statis-
tical analysis was performed using GraphPad Prism version
7 (GraphPad Software, La Jolla). ANOVA with Bonferro-
ni’s test was used to determine significance with an
assumed confidence interval of 95%. The significance of
pairwise comparisons was determined using Students t-test
(p < 0.05). The false discovery rate (q value) was obtained
by applying the Benjamini–Hochberg method to the
p-value.

Accession number

The RNA-seq data was deposited in the Gene Expression
Omnibus (GEO) database with accession number
GSE89495.
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