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intRoDuction
Radiation Oncology in last 50 years has seen a rapid trans-
formation from clinic and hypothesis-based medical art 
to technology and evidence-driven science. Every effort 
has been made to determine the optimum ways of treat-
ment, the required doses, the time frame of delivery, the 
expected outcome and the scope of improvement. With the 
introduction of three-dimensional computer planning, we 
now have, in our hands, various clinical and patient related 
data that can be interpreted meaningfully, for guidance for 
future patient care and optimizing further treatment. There 
has been a rightful dependence, on medical data, that is 
now being interpreted with increased accuracy and shaped 
into working knowledge. Artificial intelligence (AI) or 
machine learning seems to be bridging the gap between the 
acquisition of data and their meaningful interpretation into 
oncology. These approaches, have shown outstanding capa-
bilities, outperforming most classification and regression 

methods to date and the ability to automatically learn the 
most suitable data representation for the task at hand and 
present it for better correlation and understanding. This 
article tries to avoid complex methmatical formulas and 
derivations and tries to make it simple for the clinicians 
and researchers to understand how the concept of AI and 
its various methods like machine or deep learning, convo-
lutional neural network (CNN) are currently being utilized 
in the field of oncology, what has been achieved till now, 
and what further can be done in this regard. The authors 
have kept in mind that all the recent papers that talk about 
machine learning or AI use in oncology are limited in their 
ability to make the oncologists understand, as to where the 
process is currently placed and headed in future.

methods And mAteRiAls
Contemporary literature was searched and the available 
literature was sorted and an attempt at writing a compre-
hensive non-systematic review was made. Uploads and 
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objective: Artificial intelligence (Ai) seems to be 
bridging the gap between the acquisition of data and 
its meaningful interpretation. these approaches, have 
shown outstanding capabilities, outperforming most 
classification and regression methods to date and the 
ability to automatically learn the most suitable data 
representation for the task at hand and present it for 
better correlation. this article tries to sensitize the prac-
tising radiation oncologists to understand where the 
potential role of Ai lies and what further can be achieved 
with it.
Methods and materials: Contemporary literature was 
searched and the available literature was sorted and 
an attempt at writing a comprehensive non-systematic 
review was made.
Results: the article addresses various areas in oncology, 
especially in the field of radiation oncology, where 

the work based on Ai has been done. Whether it’s the 
screening modalities, or diagnosis or the prognostic 
assays, Ai has come with more accurately defining results 
and survival of patients. Various steps and protocols in 
radiation oncology are now using Ai-based methods, 
like in the steps of planning, segmentation and delivery 
of radiation. Benefit of Ai across all the platforms of 
health sector may lead to a more refined and personal-
ized medicine in near future.
conclusion: Ai with the use of machine learning and arti-
ficial neural networks has come up with faster and more 
accurate solutions for the problems faced by oncologist. 
the uses of Ai,are likely to get increased exponentially 
. however, concerns regarding demographic discrep-
ancies in relation to patients, disease and their natural 
history and reports of manipulation of Ai, the ultimate 
responsibility will rest on the treating physicians.
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links related to the use of AI in oncology on various social media 
sites especially, from twitter handles of various researchers and 
oncologists are followed by the first author and he formulated the 
article from his read articles. Key words that were searched were; 
Artificial intelligence, machine learning, deep learning, convolu-
tional neural networks (CNN), radiation oncology, planning and 
mammography. Relevant publications were read and analysed 
and a comprehensive non-systematic review was made.

ReSultS—uSe of ai in oncoloGy anD 
RaDiation oncoloGy
Role in screening
Screening methods have long employed the utilization of various 
risk stratification methods to identify patient populations in 
which a said non-expensive, easy to interpret method can detect 
cancer at an early stage. The basic problem with these methods is 
that they utilize only a limited proportion of patients’ characteris-
tics for risk stratification. For example, screening mammography 
done to detect breast carcinoma in patients uses only age group 
of more than 40 years as the parameter of inclusion criteria. 
There has been conflicting literature regarding its benefit in 
females, with the data showing no benefit in reducing mortality 
in patients.1 Similar problems have been seen with screening for 
carcinoma of lung,2 prostate3 and ovary.4 As modalities of inves-
tigations, the screening procedures have excellent sensitivity, 
however, where these tests lack is the fact that a large number 
of patients have to be screened in order to get those minority of 
cases which have a detectable cancer in their bodies, thus having 
low yield and less impact on population.

AI can be of great help in substantially decreasing these number 
of subject populations to be screened. By analyzing the char-
acteristics of the patients taking in consideration many more 
factors than what a classical risk stratification programme 
utilises, it will help categorize population into low- and high-risk 
cohorts, and screening methods can be instituted accordingly. 
For example, patients to be screened for breast cancer can be risk 
stratified based on their age, family, menstrual, smoking history, 
body mass index and other host of risk factors to determine the 
probability whether mammography will be helpful in the patient 
or not. Similar approach has shown results in England, where 
analyzing patient data alone with machine learning, determined 
the risk of future cardiac events, superseding all the present 
probabilistic models5 Thus, in future, with the help of AI, cancer 
screening methods will be expected to be quicker, more precise, 
cost effective and result yielding.

Role in diagnosing; emphasis on radiology
AI algorithms, particularly deep learning methods, CNNs and 
variational auto-encoders, have shown great promise in iden-
tifying gross as well as subtle variation in routine imaging. 
Traditionally, in radiology, trained physicians visually assess the 
medical images for the detection, characterization and moni-
toring of diseases. AI methods enable automatic recognition 
of complex patterns in imaging data, providing quantitative, as 
well as qualitative assessments of radiographic characteristics 
within a short period of time. For most conditions, accurate 
and early diagnosis helps to start treatment earlier with the aim 

of reducing morbidity, mortality and treatment or disease-re-
lated complications. For example, females between 50 and 70 
are advised to have mammograms every 3 years to screen for 
breast cancer.6 A high proportion of mammograms has been a 
major problem yielding false-positive results when interpreted 
by radiologists.7 This leads to about 50% of the healthy being 
subject to further procedures to rule out breast cancer.8 With the 
help of AI, interpretation of mammograms has become 30 times 
faster than humans and with greater accuracy.9 Lei Zhen10 and 
associates presented an algorithm that combined several artifi-
cial intelligent techniques with the discrete wavelet transform 
(DWT) for detection of masses in mammograms. The verifica-
tion results showed that the proposed algorithm had a sensitivity 
of 97.3% and the number of false positives per image were 3.92. 
This figure is very less when compared with the cumulative false 
positivity with conventionally screened mammograms which in 
one review stands at 49% after 10 mammograms.11 These false 
positive tests not only lead to increased healthcare expenditure 
but also increased patient distress and anxiety level.12

Using AI in imaging can tell the radiologist about the suspicious 
scans that need to be looked at first among the huge number of 
other normal imaging findings. This has a tremendous poten-
tial in reducing time, aiding early diagnosis from the time of the 
mammogram, reducing the need for unnecessary biopsies and 
the concern of a misdiagnosis.13 Similar techniques to those 
described above are being deployed for the evaluation of eye 
imaging, skin lesions, electrocardiograms, X-rays and cross-sec-
tional imaging such as CT or MRI. Use of AI can also aid in 
complex imaging where lesion characteristics can be non-de-
fining, like classification of pulmonary nodules into benign or 
malignant..14

Role in prognostication
Cancers are a unique set of diseases in the sense that they are 
associated with the risk of harbouring micrometastases which 
lead to increased risk of recurrence, whether local or systemic. 
Since a long time, cancer management strategies have employed 
various risk assessment tools for determining the probability 
of future metastatic potential. For example, characteristics of 
post-operative histopathology characters like grade, size, local 
infiltration status, number of lymph nodes involved etc. have 
been widely used as a marker of recurrence in post-operative 
cases. In other cases, e.g. in prostate cancer, use of nomograms is 
widespread and possibly one of the earliest ways of deriving risks 
of locoregional and metastatic recurrence based on experiences 
in similar clinical situations.15,16 This prognostic assessment, has 
potentiated the emergence of various genetic, molecular markers 
and signatures in the tumours.17,18 However, as shown by the 
recent results of TailorX,19 and the its limited adoption among 
clinicians20 in breast carcinoma, the risk assessment tools are still 
evolving. Besides this, the conventional risk assessment and treat-
ment tailoring tools use only a limited set of characteristics like 
stage, histopathology features to access risk of local and systemic 
recurrence and eventually the indication of adjuvant therapy. AI 
has the potential of not only utilising the historical parameters 
like stage, histopathology characteristics, genetic make-up of the 
tumour, but also has the ability of taking into consideration the 
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different characteristics of a patient like age, sex, performance 
status, geographical inconsistencies and the historical back-
grounds of the disease to formulate meaningful prognostication 
assays and thus guiding therapy.21 By meaningfully analyzing the 
data, AI generated algorithms can give a more precise estimate of 
the risk of future locoregional or metastatic potential. Much has 
already been done in this regard.22,23 The precise risk estimation 
will go a long way in ensuring proper tailored treatment on an 
individual basis and further follow-up actions can be made more 
result oriented and cost effective.

ai in radiation oncology
Patient treatment workflow in radiotherapy includes many steps 
like patient positioning and immobilization, acquisition of plan-
ning CT, segmentation of tumour and organs at risk (OARs), 
radiation planning and determining the preferred dose, time 
and fractionation schedule, optimizing the beam positions for 
optimum dose coverage and normal tissue sparing followed by 
actual delivery of radiation and finally, post-treatment follow-up. 
AI systems are particularly suited to facilitate and improve the 
efficiency of this workflow. Machine learning has been proposed 
for automatic organ segmentation, error prevention, or treat-
ment planning.24,25

Image acquisition
Imaging is an important part of radiation planning. As electronic 
density values have always been required for dose calculation 
algorithms, CT scans remain the basic imaging for planning 
purposes. However, this dependence on CT scans for gener-
ating electron density values for attenuation correction, is the 
reason why we have not been able to make a smooth transition 
from planning on a CT scan and diagnostic PET CT to MRI or 
PET MRI based planning, respectively; despite MRI having the 
advantage of better soft tissue delineation and ability of multi-
planar image acquisition. For example, in treatment of a brain 
lesions, MRI, though a better imaging modality for tumour visu-
alization can only be useful only when its scans are accurately 
mounted over a planning CT scan for better tumour delineation. 
As a solution to it, there have been constant efforts in the form 
of atlas-based method, sparse coding-based method, learn-
ing-based methods, to use the MRI data for generating a CT 
scan, also referred to as synthetic CT scans (sCT). Of the various 
methods to convert MRI data into sCT, deep embedding CNN, 
an AI based method, has emerged as more efficient, less time 
consuming, with generation of higher resolution images and 
less artefacts.26 So, in future, the use of AI may offset the need 
for a mandatory planning CT scan as synthetic CT scans can be 
generated from the MRI, quicker and with more reliable electron 
density data for plan generation. A synthetic CT scan will also 
have a positive impact in case of segmentation where the errors 
in fusion may be reduced as the sCT generated will get easily 
and more accurately fused with the MRI that forms the basis of 
the synthetic CT. Its use has been increasingly seen in MRI only 
prostate radiotherapy,27,28 where statistical decomposition algo-
rithms have been utilized for sCT creation and plan generation 
from the primary MRI image.

Tumour and organs at risk segmentation
The contouring of OAR and target volumes is an important 
aspect of treatment planning in radiation oncology. This 

process, however, is time consuming and has marked interob-
server variability depending on the skill level of the observer.29 
Automatic contouring software have helped to speed up the 
process and improve consistency between observers. There are 
a number of commercially available products but these are not 
frequently used in clinical practice.30 In the recent past, a lot of 
effort has been put into learning new ways to recognize struc-
tures in a range of different imaging modalities (CT, PET, and 
MRI). Approaches range from knowledge-based algorithms 
such as atlas-based contouring, machine learning and statistical 
shape and appearance models; region-based methods such as 
adaptive thresholding, graph cuts and watershed contouring; or 
a combination of the knowledge- and region-based methods.31 
Recently, machine learning techniques, and deep learning 
methods, using AI in particular, have become popular for a 
wider range of tasks. Tim Lustberg,32 in his recent study tried 
to compare the aspects of contouring manually, with auto-seg-
mentation and with deep learning methods. The deep learning 
contouring outperformed the atlas-based contouring for lungs 
and spinal cord. Deep learning (DL) performed better for the 
oesophagus but further improvements remained necessary. 
When compared to manual methods performing a similar 
task, a median time saved of 79% was seen with the help of 
deep learning methods. Kuo Males and colleagues33 proposed 
a novel deep dilated CNN-based method for fast and consis-
tent auto-segmentation of target and OARs volume delinea-
tion. They developed a novel multiple-scale convolutional 
architecture to extract multiple-scale context features, e.g. fine 
texture and boundaries and achieved pixelwise segmentation 
which are very useful for accurate auto-segmentation. A total 
of 218 patients chosen randomly were used for training, and 
the remaining 60 for validation. The dice similarity coeffi-
cient was used to measure segmentation accuracy and mean 
dice similarity coefficient values of deep dilated CNN were 
87.7% for the CTV, 93.4% for the bladder, 92.1% for the left 
femoral head, 92.3% for the right femoral head, 65.3% for 
the intestine and 61.8% for the colon, which were better than 
the historically obtained values. Also, the test time was 45 s 
per patient for segmentation of all the CTV, bladder, left and 
right femoral heads, colon and intestine which is much faster 
to the time taken for conventionally drawing the structures. 
However, not all organs can be segmented with the same accu-
racy and consistency as there still are uncertainties associated 
with structures like optic chiasm and submandibular glands as 
shown in one study.34

With continuous ongoing research, we can expect, in near future 
for AI based methods like the CNN to have a significant role in 
generating the contours (including target volumes and OARs) 
for a patient, at a much faster and more consistent manner than 
what we are able to do at present.

Image registration
Image registration is the process of spatially aligning two or 
more image data sets of the same scene taken at different times, 
from different viewpoints. It takes the use of mathematical trans-
formations applied to an image while making it more aligned 
to the reference image. There are various registration methods 
that are available in the market. In radiotherapy, the two major 
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methods of registration used are the intensity-based techniques 
and rigid methods. In their survey about medical image registra-
tion techniques, Viergever et al reviewed the developments that 
took place between 1998 and 2016.35 They have stated, that deep 
learning approaches to image registration could very well be the 
new game changer in making the registration process easier and 
more user-friendly and have advocated applying deep learning 
concepts in making image registration an integral part of the 
entire spectrum of routine clinical imaging. Yang et al36 and 
Miao et al37 have used DL and CNN based methods respectively 
with faster, real-time registration than intensity-based models.

Radiation planning
Radiation planning is a complex process that involves using 
computer-based optimization for achieving specific dosimetric 
objectives before radiation is actually delivered. The process is 
currently laborious and time consuming and also involves some 
degree of “hit and trial”. AI can be used in getting a more refined 
and faster planning process. The different beam alignment and 
beam on time along with the complex dynamism of collimator 
movement has the potential to be optimized into an algorithmic 
scale and used effectively. McIntosh et al38 have pioneered the 
planning process of head and neck radiotherapy using a voxel-
based dose prediction and dose mimicking method. Multiple 
patient atlas selection and machine learning methods were used 
to predict per voxel dose distributions which successfully inte-
grated these methods with dose mimicking to create a novel 
fully automated radiotherapy treatment planning pipeline. Their 
AI-dependent methods have achieved the highest overall accu-
racy and in a fraction amount of time. Such strategy can be espe-
cially useful in adaptive radiotherapy planning where time is 
an important constraint.39 The adaptive radiotherapy planning 
process can be applied in real-time conditions, provided they 
are fast and accurate. In this case, the DL approaches for auto-
matic segmentation and image registration, which are potentially 
faster than standard approaches, could allow reduction in radia-
tion planning process. Machine learning is now used for knowl-
edge-based planning that implies use of software tool to predict 
the dose–volume histogram of critical organs in relationship to 
the tumour. The tool helps to achieve quality inverse planning in 
less time.

Accessing and individualizing the dose constraints for a patient, 
during planning process, is another area where AI has been 
used.40 AI has the ability to affectively formulate algorithms which 
can include not only the conventional wisdom of dose–volume 
constraints, but also the various patient related factors like age, 
gender, ethnicity and genetic makeup into helping the clinician 
to make a better clinical assessment during that dose tradeoff in 
complicated radiation planning.41 Next step forwards the knowl-
edge-based planning is being used experimentally for knowledge 
based adaptive planning where apart from inputs from radiology 
imaging information all relevant patient information, (clinical, 
dosimetry, tumour biology) will help in adapting radiotherapy to 
a personalized level thereby minimizing toxicity and improving 
tumour control at the same time. The clinical applications and 
usages will be a reality in near future.42 The future of AI is bright, 
in fact it has immense potentiality to predict which patients 
will benefit from radiation. PORTOS is the first of many future 

clinical radiogenomics assays which helps to determine the radi-
ation sensitivity for tumour based on predictive biomarkers.43

Radiation delivery methods.
Monitoring intra- and interfraction motion during radiation has 
always been a challenging field, a near successful management of 
which has formed the basis of radical hypofractionated radiation. 
Monitoring of patient positioning and immobilization has tried 
to employ AI to reduce the uncertainty associated with motion. 
Ogunmolu et al44,45 have developed a soft-robot actuator for 
maskless H&N radiotherapy. Position-based visual-servoing of 
a radiotransparent soft robot was used to control the movements 
of flexion/extension of a manikin head. A Kinect RGB-D camera 
was used to measure head position and the error between the 
sensed and desired position was measured and used to control a 
pneumatic system which regulated pressure within an inflatable 
air bladder. Their results showed that the system was capable of 
controlling head motion to within 2 mm with respect to a refer-
ence trajectory.

The problems associated with tumour tracking have also been 
tackled with the help of AI. One limitation of tumour tracking 
is that, there exists a lag time of few microseconds between 
accessing the movement to finally correcting for it, calculated to 
be about 0.09 s in one study.46 This lag is usually corrected with 
the use predictive software which has an estimated accuracy of 
about 80%.47 Tumour tracking techniques can be refined with 
the incorporation of various patient data, especially breathing 
patterns and estimating the next breathing cycle.48 Park et al49 
have proposed a new predictor for intra- and interfractional data 
variation, called intra- and interfraction fuzzy deep learning 
(FDL) which, equipped with data of breathing patterns, predicts 
the movements more accurately and decreases the computation 
time for tracking to be more accurate. They also found that the 
average computation time of interfraction FDL was 1.54 ms for 
both intra- and interfractional variation, which is much smaller 
than the existing methods. By accounting for the reduced intra-
fraction motion and the lag time between signal initiation and 
radiation delivery, significant reductions in treating volumes 
can be achieved with more confidence in the field of radiation 
oncology.

DiScuSSion
We have tried to summarize the prominent areas of upcoming 
association of AI with Oncology and Radiation Oncology 
(Table 1). The aim of the article was not so much as to detail the 
aspects of various AI associated techniques but to sensitize the 
reader about the various aspects of oncology that are and have 
potential to be affected with AI. As has been shown, citing above 
examples, it has the potential to affect almost all the fields of 
oncology by making sure that the vast data available with us with 
relation to the disease and patient can be effectively used to guide 
the clinicians. AI also has the ability to shorten the clinician’s 
and diagnostician’s time as well as effort to get a particular work 
done. The future holds great potential for applying AI to improve 
many aspects of the patient care process. In the coming times, 
AI can be utilized in more personalized treatments to effectively 
formulate an appropriate plan of diagnostic tests, treatment and 
follow up along with monitoring the patient population’s health 
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and safety, leading to discovery of new medical knowledge that 
can directly impact the quality of care. There are other areas in 
oncology, like establishing guidelines and optimum frequency 
of follow up of a treated case, requirement of further biochem-
ical tests or imaging and their frequency. Various governmental 
and non-governmental agencies can take the help of AI to cover 
for population-based needs like disease prevention methods, 
assisting in establishment of need based medical and oncology 
centres. With use of vast knowledge of demographic data, it can 
be made possible by AI to determine which areas need what form 
of investment, in regard to medical equipment or workforce. 
However, as with any new technology, come newer problems and 
challenges. Caution must be observed in making decision solely 
based on AI generated information as the main prerequisite for 
AI is the evaluation of data and a computer-based learning will 
always be limited in condition of paucity of data. There have been 
reports of manipulation of AI based methods as well. Methods to 
fool AI in the form of spoofing in the field of facial recognition 
have been well studied and documented.50 The deep division 
in technology among the developed and developing countries 
is also a factor that may cause judgemental errors.51 Data of 
developed countries cannot just be extrapolated to developing 
countries without expecting any discrepency. Hence, equity of 
data representation and keeping the geographical variation of 
diseases, population and health services in mind seems to be the 
way forward.

It is the view of the authors, that the current emphasis should be 
given to acquire and access the large patient related data, espe-
cially from the developing countries, that can be used in deriving 
meaningful and applicable parameters for clinical use.

Lastly, it also should be borne in mind that a medical practitioner 
isn’t solely dependent on data, but on his experiences and judge-
ments as well. His ultimate goal is to make patient’s life better 
keeping in mind his expectations, requirement and resources, 
factors which sometimes become more important than just 
quick and precision medicine

concluSion
AI generated algorithms and machine learning are on the path 
to becoming an important tool in the management decisions of 
radiation oncology. They have the potential to influence every 
step of the workflow right from screening, diagnosis, risk stratifi-
cation, treatment planning, follow-up, and influence policy deci-
sions. However, it should not be considered one stop solution 
or a magic wand for all the problems. Equity in data collection 
should be made an important step so that the developing coun-
tries may not be thrust upon the technology for which they are 
not well prepared . Lastly, the AI generated processes should be 
validated thoroughly before decisions are made solely on their 
algorithms and inferences.

table 1.summary of the role of Ai in radiation oncology

Step of the workflow Present AI role
Present and future 

implications Reference no.
Image acquisition Development of sCT scan from 

MRI images.
1. No requirement of separate 

Planning CT
2. Better for image registration

26, 27 and 28.

Tumour segmentation Deep learning methods in 
contouring OAR and target tissue.

1. Faster, more consistent contouring
2. Helpful in adaptive planning

31, 32, 33 and 34.

Image registration Deep learning approaches. Faster and more precise image 
registration than intensity-based 
methods

36, 37.

Radiation planning Voxel based dose prediction and 
dose monitoring.

Faster and more precise planning 
process

38 and 39.

Using historical patients’ data and 
present patient’s characteristics.

Individualisation of dose constraints 40 41, 42 and 43.

Radiation delivery Using soft resort activator 
controlling flexion of neck.

Decreased intra fraction motion. 44 and 45.

Using deep learning for estimating 
breathing pattern.

Accurate tumour tracking with less 
errors of lag and predictive measures

48 and 49.

RefeRenceS:

 1. Nelson HD, Cantor A, Humphrey L, Fu R, 
Pappas M, Daeges M. Griffin screening for 
breast cancer: a systematic review to update 
the 2009 U. S. Preventive Services Task Force 
Recommendation [Internet]. Rockville (MD): 

Agency for Healthcare Research and Quality 
2016;.

 2. Wille MMW, Dirksen A, Ashraf H, Saghir 
Z, Bach KS, Brodersen J, et al. Results of the 
randomized Danish lung cancer screening 
trial with focus on high-risk profiling. Am 

J Respir Crit Care Med 2016; 193: 542–51. 
doi: https:// doi. org/ 10. 1164/ rccm. 201505- 
1040OC

 3. Barry MJ. Screening for prostate cancer--the 
controversy that refuses to die. N Engl J Med 

https://doi.org/10.1164/rccm.201505-1040OC
https://doi.org/10.1164/rccm.201505-1040OC


6 of 7 birpublications.org/bjro BJR Open;1:20180031

BJR|Open  Rattan et al

2009; 360: 1351–43. doi: https:// doi. org/ 10. 
1056/ NEJMe0901166

 4. Henderson JT, Webber EM, Sawaya GF. 
Screening for Ovarian Cancer: An Updated 
Evidence Review for the U.S. Preventive 
Services Task Force [Internet. 319. Rockville 
(MD: Agency for Healthcare Research and 
Quality (US); 2018. pp. 5954. doi: https:// doi. 
org/ 10. 1001/ jama. 2017. 21421

 5. Weng SF, Reps J, Kai J, Garibaldi JM, 
Qureshi N. Can machine-learning improve 
cardiovascular risk prediction using routine 
clinical data? PLoS One 2017; 12: e0174944. 
doi: https:// doi. org/ 10. 1371/ journal. pone. 
0174944

 6. Cancer Research UK ‘Breast Screening’. 
Webpage 2017;.

 7. Bleyer A, Welch HG. Effect of three decades 
of screening mammography on breast-
cancer incidence. N Engl J Med 2012; 367: 
1998–2005no.. doi: https:// doi. org/ 10. 1056/ 
NEJMoa1206809

 8. Patel TA, Puppala M, Ogunti RO, Ensor 
JE, He T, Shewale JB, et al. Correlating 
mammographic and pathologic findings 
in clinical decision support using natural 
language processing and data mining 
methods. Cancer 2017; 123(no. 1): 114–21. 
doi: https:// doi. org/ 10. 1002/ cncr. 30245

 9. Griffiths S. This AI Software Can Tell If 
You’re at Risk from Cancer before Symptoms 
Appear’, Wired. 2016;.

 10. Zheng L, Chan AK. An artificial intelligent 
algorithm for tumor detection in screening 
mammogram. IEEE Trans Med Imaging 
2001; 20: 559–67. doi: https:// doi. org/ 10. 
1109/ 42. 932741

 11. Elmore JG, Barton MB, Moceri VM, Polk S, 
Arena PJ, Fletcher SW. Ten-year risk of false 
positive screening mammograms and clinical 
breast examinations. N Engl J Med 1998; 
338: 1089–96. doi: https:// doi. org/ 10. 1056/ 
NEJM199804163381601

 12. Brodersen J, Siersma VD. Long-term 
psychosocial consequences of false-positive 
screening mammography. Ann Fam Med 
2013; 11: 106–15. doi: https:// doi. org/ 10. 
1370/ afm. 1466

 13. Patel TA, Puppala M, Ogunti RO, Ensor 
JE, He T, Shewale JB, et al. Correlating 
mammographic and pathologic findings 
in clinical decision support using natural 
language processing and data mining 
methods. Cancer 2017; 123: 114–21. doi: 
https:// doi. org/ 10. 1002/ cncr. 30245

 14. Armato SG, Drukker K, Li F, Hadjiiski 
L, Tourassi GD, Engelmann RM, et al. 
LUNGx challenge for computerized lung 
nodule classification. J Med Imaging 2016; 3: 
044506. doi: https:// doi. org/ 10. 1117/ 1. JMI. 3. 
4. 044506

 15. Kattan MW, Stapleton AM, Wheeler TM, 
Scardino PT. Evaluation of a nomogram used 
to predict the pathologic stage of clinically 
localized prostate carcinoma. Cancer 1997; 
79: 528–37. doi: https:// doi. org/ 10. 1002/( 
SICI) 1097- 0142( 19970201) 79:3<528::AID-
CNCR15>3.0.CO;2-5

 16. Diaz A, Roach M, Marquez C, Coleman 
L, Pickett B, Wolfe JS, et al. Indications 
for and the significance of seminal 
vesicle irradiation during 3D conformal 
radiotherapy for localized prostate 
cancer. International Journal of Radiation 
Oncology*Biology*Physics 1994; 30: 323–9. 
doi: https:// doi. org/ 10. 1016/ 0360- 3016( 94) 
90011-6

 17. Hegi ME, Diserens A-C, Gorlia T, Hamou 
M-F, de Tribolet N, Weller M, et al. 
MGMT gene silencing and benefit from 
temozolomide in glioblastoma. N Engl J Med 
2005; 352: 997–1003. doi: https:// doi. org/ 10. 
1056/ NEJMoa043331

 18. Paik S, Shak S, Tang G, Kim C, Baker J, 
Cronin M, et al. A multigene assay to predict 
recurrence of tamoxifen-treated, node-
negative breast cancer. N Engl J Med 2004; 
351: 2817–26. doi: https:// doi. org/ 10. 1056/ 
NEJMoa041588

 19. Sparano JA, Gray RJ, Makower DF, Pritchard 
KI, Albain KS, Hayes DF, et al. Adjuvant 
chemotherapy guided by a 21-gene 
expression assay in breast cancer. N Engl J 
Med 2018; 379: 111–21. doi: https:// doi. org/ 
10. 1056/ NEJMoa1804710

 20. Chen J, Wu X, Christos PJ, Formenti S, 
Nagar H. Practice patterns and outcomes 
for patients with node-negative hormone 
receptor-positive breast cancer and 
intermediate 21-gene recurrence scores. 
Breast Cancer Res 2018; 20: 26. doi: https:// 
doi. org/ 10. 1186/ s13058- 018- 0957-3

 21. Burke HB, Goodman PH, Rosen DB, Henson 
DE, Weinstein JN, Harrell FE, et al. Artificial 
neural networks improve the accuracy of 
cancer survival prediction. Cancer 1997; 
79: 857–62. doi: https:// doi. org/ 10. 1002/( 
SICI) 1097- 0142( 19970215) 79:4<857::AID-
CNCR24>3.0.CO;2-Y

 22. Chaudhary K, Poirion OB, Lu L, Garmire 
LX. Deep Learning-Based multi-omics 
integration robustly predicts survival in liver 
cancer. Clin Cancer Res 2018; 24: 1248–59. 
doi: https:// doi. org/ 10. 1158/ 1078- 0432. CCR- 
17- 0853

 23. Chen Y, Millar JA. Machine learning 
techniques in cancer prognostic modeling 
and performance assessment, frontiers of 
Biostatistical methods and applications in 
clinical oncology. 2017;: 193–230.

 24. Naqa IE, Murphy MJ. What Is Machine 
Learning? In: Naqa I. E, Li R, Murphy M. J, 

eds. Mach. Learn. Radiat. Oncol., Springer 
International Publishing; 2015. pp. 3–11.

 25. Feng M, Valdes G, Dixit N, Solberg TD. 
Machine learning in radiation oncology: 
opportunities, requirements, and needs. 
Front Oncol 2018; 8. doi: https:// doi. org/ 10. 
3389/ fonc. 2018. 00110

 26. Xiang L, Wang Q, Nie D, Qiao Y, Shen D. 
Deep embedding Convolutional neural 
network for synthesizing CT image from 
T1-weighted Mr image. 2017; 02073arXiv 
preprint arXiv:1709.

 27. Arabi H, Dowling JA, Burgos N, Han X, 
Greer PB, Koutsouvelis N, et al. Comparative 
study of algorithms for synthetic CT 
generation from MRI: consequences for 
MRI-guided radiation planning in the pelvic 
region. Med Phys 2018; 45: 5218–33. doi: 
https:// doi. org/ 10. 1002/ mp. 13187

 28. Siversson C, Nordström F, Nilsson T, 
Nyholm T, Jonsson J, Gunnlaugsson A, 
et al. Technical note: MRI only prostate 
radiotherapy planning using the statistical 
decomposition algorithm. Med Phys 2015; 
42: 6090–7. doi: https:// doi. org/ 10. 1118/ 1. 
4931417

 29. Vinod SK, Jameson MG, Min M, Holloway 
LC. Uncertainties in volume delineation 
in radiation oncology: a systematic review 
and recommendations for future studies. 
Radiother Oncol 2016; 121: 169–79. doi: 
https:// doi. org/ 10. 1016/ j. radonc. 2016. 09. 009

 30. Sharp G, Fritscher KD, Pekar V, Peroni M, 
Shusharina N, Veeraraghavan H, et al. Vision 
20/20: perspectives on automated image 
segmentation for radiotherapy. Med Phys 
2014;41 [Internet..

 31. Hoang Duc AK, Eminowicz G, Mendes R, 
Wong S-L, McClelland J, Modat M, et al. 
Validation of clinical acceptability of An 
atlas-based segmentation algorithm for the 
delineation of organs at risk in head and neck 
cancer. Med Phys 2015; 42: 5027–34. doi: 
https:// doi. org/ 10. 1118/ 1. 4927567

 32. Lustberg T, van Soest J, Gooding M, 
Peressutti D, Aljabar P, van der Stoep J, 
et al. Clinical evaluation of atlas and deep 
learning based automatic contouring for 
lung cancer. Radiother Oncol 2018; 126(no. 
2): ISSN: 1879-0887): 312: 710.1016/j.
radonc.2017.11.012.. doi: https:// doi. org/ 10. 
1016/ j. radonc. 2017. 11. 012

 33. Men K, Dai J, Li Y. Automatic segmentation 
of the clinical target volume and organs at 
risk in the planning CT for rectal cancer 
using deep dilated convolutional neural 
networks. Med Phys 2017; 44: 6377–89. doi: 
https:// doi. org/ 10. 1002/ mp. 12602

 34. Ibragimov B, Xing L. Segmentation of 
organs-at-risks in head and neck CT images 
using convolutional neural networks. Med 

https://doi.org/10.1056/NEJMe0901166
https://doi.org/10.1056/NEJMe0901166
https://doi.org/10.1001/jama.2017.21421
https://doi.org/10.1001/jama.2017.21421
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1371/journal.pone.0174944
https://doi.org/10.1056/NEJMoa1206809
https://doi.org/10.1056/NEJMoa1206809
https://doi.org/10.1002/cncr.30245
https://doi.org/10.1109/42.932741
https://doi.org/10.1109/42.932741
https://doi.org/10.1056/NEJM199804163381601
https://doi.org/10.1056/NEJM199804163381601
https://doi.org/10.1370/afm.1466
https://doi.org/10.1370/afm.1466
https://doi.org/10.1002/cncr.30245
https://doi.org/10.1117/1.JMI.3.4.044506
https://doi.org/10.1117/1.JMI.3.4.044506
https://doi.org/10.1002/(SICI)1097-0142(19970201)79:3<528::AID-CNCR15>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0142(19970201)79:3<528::AID-CNCR15>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1097-0142(19970201)79:3<528::AID-CNCR15>3.0.CO;2-5
https://doi.org/10.1016/0360-3016(94)90011-6
https://doi.org/10.1016/0360-3016(94)90011-6
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1056/NEJMoa043331
https://doi.org/10.1056/NEJMoa041588
https://doi.org/10.1056/NEJMoa041588
https://doi.org/10.1056/NEJMoa1804710
https://doi.org/10.1056/NEJMoa1804710
https://doi.org/10.1186/s13058-018-0957-3
https://doi.org/10.1186/s13058-018-0957-3
https://doi.org/10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.1158/1078-0432.CCR-17-0853
https://doi.org/10.3389/fonc.2018.00110
https://doi.org/10.3389/fonc.2018.00110
https://doi.org/10.1002/mp.13187
https://doi.org/10.1118/1.4931417
https://doi.org/10.1118/1.4931417
https://doi.org/10.1016/j.radonc.2016.09.009
https://doi.org/10.1118/1.4927567
https://doi.org/10.1016/j.radonc.2017.11.012
https://doi.org/10.1016/j.radonc.2017.11.012
https://doi.org/10.1002/mp.12602


7 of 7 birpublications.org/bjro BJR Open;1:20180031

BJR|OpenReview article: Artificial intelligence in Oncology

Phys 2017; 44: 547–5731. doi: https:// doi. org/ 
10. 1002/ mp. 12045

 35. Viergever MA, Maintz JBA, Klein S,  
Murphy K, Staring M, Pluim JPW. A survey 
of medical image registration - under review. 
Med Image Anal 2016; 33: 140–4. doi: https:// 
doi. org/ 10. 1016/ j. media. 2016. 06. 030

 36. Yang X, Kwitt R, Niethammer M. Fast 
predictive image registration, in: deep learn. 
Data Labeling Med. Appl., Springer, Cham 
2016;: 48–57.

 37. Miao S, Wang ZJ, Zheng Y, Liao R. Real-time 
2D/3D registration via CNN regression, in: 
Biomed. Imaging ISBI 2016 IEEE 13th int. 
Symp. On, IEEE 2016;: 1430–4.

 38. McIntosh C, Welch M, McNiven A, Jaffray 
DA, Purdie TG. Fully automated treatment 
planning for head and neck radiotherapy 
using a voxel-based dose prediction and dose 
mimicking method. Phys Med Biol 2017; 62: 
5926–44. doi: https:// doi. org/ 10. 1088/ 1361- 
6560/ aa71f8

 39. McPartlin AJ, Li XA, Kershaw LE, Heide U, 
Kerkmeijer L, Lawton C, et al. MRI-guided 
prostate adaptive radiotherapy - A systematic 
review. Radiother Oncol 2016; 119: 371–80. 
doi: https:// doi. org/ 10. 1016/ j. radonc. 2016. 04. 
014

 40. Valdes G. Simone CB 2nd, Chen J, Lin a, 
Yom SS, Pattison AJ, carpenter Cm, Solberg 
td. clinical decision support of radiotherapy 
treatment planning: a data-driven machine 
learning strategy for patient-specific 

dosimetric decision making. Radiother Oncol 
2017; 125: 392–7.

 41. Kim KH, Lee S, Shim JB, Chang KH, Yang 
DS, Yoon WS, et al. A text-based data mining 
and toxicity prediction modeling system 
for a clinical decision support in radiation 
oncology: a preliminary study. Journal of the 
Korean Physical Society 2017; 71: 231–7. doi: 
https:// doi. org/ 10. 3938/ jkps. 71. 231

 42. Tseng H-H, Luo Y, Ten Haken RK,  
El Naqa I, Naqa E I. The role of machine 
learning in knowledge-based response-
adapted radiotherapy. Front Oncol 2018; 8: 
266. doi: https:// doi. org/ 10. 3389/ fonc. 2018. 
00266

 43. Kang J, Rancati T, Lee S, Oh JH,  
Kerns SL, Scott JG, et al. Machine learning 
and Radiogenomics: lessons learned and 
future directions. Front Oncol 2018; 8: 228. 
doi: https:// doi. org/ 10. 3389/ fonc. 2018. 00228

 44. Ogunmolu OP, Gu X, Jiang S, Gans NR. A 
real-time, soft robotic patient positioning 
system for mask-less head-and-neck cancer 
radiotherapy: an initial investigation, in: 
2015 IEEE int. Conf. Autom. Sci. Eng. CASE 
2015;: 1539–45.

 45. Ogunmolu OP, Gu X, Jiang S, Gans NR. 
Vision-based control of a soft robot for 
maskless head and neck cancer radiotherapy, 
in: 2016 IEEE int. Conf. Autom. Sci. Eng. 
CASE 2016;: 180–7.

 46. Shirato H, Shimizu S, Kunieda T, Kitamura 
K, van Herk M, Kagei K, et al. Physical 

aspects of a real-time tumor-tracking system 
for gated radiotherapy. International Journal 
of Radiation Oncology*Biology*Physics 2000; 
48: 1187–95. doi: https:// doi. org/ 10. 1016/ 
S0360- 3016( 00) 00748-3

 47. Murphy MJ, Jalden J, Isaksson M. Adaptive 
filtering to predict lung tumor breathing 
motion during image‐guided radiation 
therapy. Proceedings of the 16th International 
Congress on Computer‐assisted Radiology and 
Surgery 2002;: 539–44.

 48. Meyer P, Noblet V, Mazzara C, Lallement A. 
Survey on deep learning for radiotherapy. 
Comput Biol Med 2018; 98: 126–46. doi: 
https:// doi. org/ 10. 1016/ j. compbiomed. 2018. 
05. 018

 49. Park S, Lee SJ, Weiss E, Motai Y. "Intra-. and 
Inter-Fractional Variation Prediction of Lung 
Tumors Using Fuzzy Deep Learning," in 
IEEE Journal of Translational Engineering in 
Health and Medicine. 2016; 4: 1–12.

 50. Galbally J, Satta R. “Three-dimensional and 
two-and-a-half dimensional face recognition 
spoofing using three-dimensional printed 
models”. IET Biometrics 2015;.

 51. Luna D, Almerares A, Mayan JC, 
González Bernaldo de Quirós F, Otero C. 
Health informatics in developing countries: 
going beyond pilot practices to sustainable 
implementations: a review of the current 
challenges. Healthc Inform Res 2014; 20: 
3–10. doi: https:// doi. org/ 10. 4258/ hir. 2014. 
20. 1.3

https://doi.org/10.1002/mp.12045
https://doi.org/10.1002/mp.12045
https://doi.org/10.1016/j.media.2016.06.030
https://doi.org/10.1016/j.media.2016.06.030
https://doi.org/10.1088/1361-6560/aa71f8
https://doi.org/10.1088/1361-6560/aa71f8
https://doi.org/10.1016/j.radonc.2016.04.014
https://doi.org/10.1016/j.radonc.2016.04.014
https://doi.org/10.3938/jkps.71.231
https://doi.org/10.3389/fonc.2018.00266
https://doi.org/10.3389/fonc.2018.00266
https://doi.org/10.3389/fonc.2018.00228
https://doi.org/10.1016/S0360-3016(00)00748-3
https://doi.org/10.1016/S0360-3016(00)00748-3
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.1016/j.compbiomed.2018.05.018
https://doi.org/10.4258/hir.2014.20.1.3
https://doi.org/10.4258/hir.2014.20.1.3

