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Abstract: Genomic biomarkers such as DNA methylation (DNAm) are employed for age prediction.
In recent years, several studies have suggested the association between changes in DNAm and its effect
on human age. The high dimensional nature of this type of data significantly increases the execution
time of modeling algorithms. To mitigate this problem, we propose a two-stage parallel algorithm for
selection of age related CpG-sites. The algorithm first attempts to cluster the data into similar age
ranges. In the next stage, a parallel genetic algorithm (PGA), based on the MapReduce paradigm
(MR-based PGA), is used for selecting age-related features of each individual age range. In the
proposed method, the execution of the algorithm for each age range (data parallel), the evaluation of
chromosomes (task parallel) and the calculation of the fitness function (data parallel) are performed
using a novel parallel framework. In this paper, we consider 16 different healthy DNAm datasets that
are related to the human blood tissue and that contain the relevant age information. These datasets
are combined into a single unioned set, which is in turn randomly divided into two sets of train and
test data with a ratio of 7:3, respectively. We build a Gradient Boosting Regressor (GBR) model on the
selected CpG-sites from the train set. To evaluate the model accuracy, we compared our results with
state-of-the-art approaches that used these datasets, and observed that our method performs better
on the unseen test dataset with a Mean Absolute Deviation (MAD) of 3.62 years, and a correlation
(R2) of 95.96% between age and DNAm. In the train data, the MAD and R2 are 1.27 years and 99.27%,
respectively. Finally, we evaluate our method in terms of the effect of parallelization in computation
time. The algorithm without parallelization requires 4123 min to complete, whereas the parallelized
execution on 3 computing machines having 32 processing cores each, only takes a total of 58 min.
This shows that our proposed algorithm is both efficient and scalable.

Keywords: age prediction; MapReduce; parallel genetic algorithm; CpG-site selection; GBR Model

1. Introduction

Aging is a natural and undeniable process in the life of living organisms. This process is affected
by various factors such as inheritance, environment, lifestyle and disease [1]. The aging process alters
the telomeres, gene expression and cellular structures in living organisms. By evaluating biomarkers,
one can find out about the biological changes that occur in the body [2]. Several biomarkers can be
used for age predicton. One of the human age-related biomarkers is DNA methylation (DNAm),
which is biologically and chemically more stable than biomarkers such as RNA messenger (mRNA)
and proteins [2], and among these biomarkers, it is also more correlated with age [3].

DNAm, which often occurs in a CpG sequence, is an epigenetic sign and plays an important role
in regulating cells to establish and maintain cellular identity. Various studies have shown that DNAm
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changes with age [4–8]. This change in DNAm can be disclosed at specific CpG-sites in all individuals,
although individual differences may affect the “speed” of this change [6].

Various models for age prediction have been applied to DNAm data such as regression models
including Linear regression [9,10], Multivariate linear regression [2,7], Multiple linear regression [3,11],
or machine learning algorithms such as Support Vector Regression [1], Random Forest Regression [6],
Artificial Neural Networks [12,13], and Gradient Boosting Regression [4,14]. In a vast majority of these
studies, the mean absolute deviation (MAD) and the correlation between the actual value of age and
DNAm (R2) were reported to describe the model’s performance. Furthermore, most of these studies only
used a simple statistical feature selection algorithm such as Pearson’s correlation to select age-related
CpG-sites [1,4,14]. In general, traditional feature selection algorithms are divided into three categories:
filter, wrapper and embedded methods. Filter methods often use statistical functions, and therefore
they are among the most rapid feature selection methods. Since these methods do not use a model to
evaluate the selected features, they are not accurate enough, and additionally may select redundant
features as they do not consider the interactions between features. As a consequence, many informative
features may be ignored. For example, Naue et al. [6] used the Mutual Information and Li et al. [4] used
the Pearson’s correlation to select a subset of features. In wrapper methods, in contrast to filter methods,
a model is used to evaluate a subset of features, so as the data volume increases, the model accuracy and
algorithm time complexity are both increase. For instance, Vidaki et al. [12] used stepwise regression
method to select 23 CpG-sites out of the 45 CpG-sites. The embedded methods combine the benefits
of the two previous methods and select the subset of features during the modeling process with less
computation time than wrapper methods. For example, Weidner et al. [7] used an embedded methode,
called Recursive Feature Elimination, in order to select five features to evaluate the multivariate linear
regression model.

Nonetheless, a proper feature selection method should be used to select a subset of optimal features
that are both informative alone and interact well with other selected features. Wrapper methods are a
good choice regardless of their timing constraints. However, as the feature search space gets bigger,
the runtime also increases by a wide margin. This is a serious problem in genomic data, where the
number of features ranges from several tens to hundreds of thousands. There are several solutions for
improving execution time of the complex wrapper methods for analyzing genomic data. In a series of
studies, wrapper methods are used in combination with fast filter methodes [15–18]. In this approach,
first, the dimensionality of the feature space is reduced from several thousand to several tens of features
by taking advantage of a filter feature selection algorithm, and then a wrapper feature selection method
is used to choose features from the remaining ones. However, in this way the previous problem still
exists since many important features may be removed when reducing the data size from thousands to
tens of features. Another set of studies used parallel computing to overcome the challenge of high
execution time of feature selection methods. For example, Nieto et al. used the PSO algorithm in a
parallel manner to select cancer-related genes in microarray data [19]. In a similar work, Keco et al.
used a type of parallel genetic algorithm to select features from microarray data for cancer classification
task [20], and Brahim et al. split the data into several partitions and executed feature selection algorithm
on each partition independently. Finally, they combined the selected features from each partition and
created their model [21]. Islam et al. proposed a scalable parallel gene selection method using the
Map Reduce programming model. They generated a predefined number of potential gene subsets
of equal sizes, then calculated the classification accuracy of each subset using the KNN algorithm in
parallel. Finally, they ranked features based on their existence in best gene subsets and select genes
with highest rankings [22].

The goal of this study is to select the most important features in human age prediction using a
rapid parallel framework. To achieve this goal, we first divide the training samples into three age
groups based on similarity of their age change pattern to get better results. Second, we use the wrapper
based genetic algorithm as feature selection method to find a set of features that optimize MAD of
regression model for each age group. Third, we take advantage of parallel computing approaches
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in three parts of our proposed method and change some standard operators of genetic algorithm
to lower the execution time. Finally, we evaluate our proposed method using 16 publicly available
DNAm datasets, and obtain a MAD of 3.62 for the test data. We observe that the execution time of our
proposed method is around 71.08 times lower compared to the sequential mode.

2. Materials and Methods

2.1. Data Collection and Preproccesing

The datasets used in this paper are collected from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi). This site is a source for a variety of public genomic data. These datasets were retrieved from
two platforms: (1) HumanMethylation27 BeadChip (2) HumanMethylation450 BeadChip. In this
paper, we use 16 healthy DNAm datasets from blood tissue, all of which are in matrix format. In these
datasets, columns represent CpG-sites and rows represent healthy samples. Table 1 details each dataset.

Table 1. Sixteen healthy blood DNAm datasets.

Availability DNA Origin No. Case Age Range Citation Platform

GSE30870 Blood PBMC 1 40 (0, 103) [23]

450 K

GSE32149 Blood PBMC 71 (3.5, 76) [24]
GSE36064 Blood PBMC 78 (1, 16) [25]
GSE40279 Whole Blood 500 (26, 101) [26]
GSE41169 Whole Blood 95 (18, 65) [27]
GSE53128 Whole Blood 43 (47, 59) [28]
GSE65638 Blood 16 (21, 32) [1]

GSE20236 Whole Blood 93 (49, 74) [29]

27 K

GSE20242 Blood CD4 + CD14 50 (16, 69) [29]
GSE27097 Blood PBMC 1 398 (3.6, 18) [25]
GSE27317 Blood Cord 168 (0, 0) [30]
GSE34257 Blood Cord 84 (0, 0) [31]
GSE34869 Blood Cord 24 (0, 0) [32]
GSE36642 Blood Cord 123 (0, 0) [33]
GSE36812 Blood Cord 48 (0, 0) [34]
GSE37008 Blood PBMC 91 (24, 45) [35]

1 Peripheral blood mononuclear cell.

The number of samples in these datasets is less than 500, while the number of features varies
between 250,000 and 450,000. We merge the datasets to obtain enough samples for learning the ages.
This leads us to a final set that covers the age range of 0–103 years. The data preprocessing is done
by first removing the samples and columns that are completely null. Then, the columns containing a
missing value are imputed with the average strategy. Subsequently, the data is normalized, and the
outliers are detected and cancelled out. This leaves us with 2079 samples in our pre-processed dataset.
We randomly pick two-thirds of the pre-processed dataset as the train set, and use the remaining third
as the unseen test data. To validate the model, we perform three-fold cross-validation. The reason that
we did not choose more folds for cross-validation is that our dataset only contains a small number of
samples per age range and it is possible that some age ranges get omitted in validation.

2.2. Genetic Algorithm

Genetic algorithm (GA) is one of the meta-heuristic optimization techniques that use natural
evolution selection to find the optimal or a sub-optimal solution. Genetic algorithm uses genotype to
show the characteristics of organisms. Genotype space is the space where the chromosomes are encoded
and all GA operators are applied to this space. Chromosome evaluation is performed according to the

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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phenotype space, using the fitness function. The general flowchart of the genetic algorithm is shown in
Figure 1.Genes 2019, 10, x FOR PEER REVIEW 4 of 17 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1. Flowchart of general GA. 

2.3. Gradient Boosting Regressor 

The gradient boosting regressor (GBR) algorithm is one of the algorithms of the boosting family, 

which is used for the regression task. This method uses several weak regression decision trees. These 

trees are trained sequentially, and each subset tree is primarily trained with the data that was 

mistakenly predicted by the previous tree. This makes the model less likely to focus on simplest 

samples and focuses more on complex samples. In fact, GBR tries to combine multiple weak learners, 

which are the weak regression trees, and updates the original learner with gradient descent in each 

iteration, and ultimately builds a robust model. 

2.4. Statistical Measurements 

We used the criterion of MAD and degree of correlation R2 between actual age and predicted 

age to evaluate our age prediction model. The criteria are defined in Table 2. As defined below, 𝑚 

represents number of samples, 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚) is the actual age values and �̅�  is the predicted 

values. All calculations are done with Python 2.7. 

Table 2. Statistical criteria calculated in GBR 

Name Formula 

Mean Absolute Deviation  𝑀𝐴𝐷 =  
∑ |𝑦 𝑖 − �̅�|𝑚

𝑖=1

𝑚
 

Mean Square Error 𝑀𝑆𝐸 =  
∑ (𝑦 𝑖 − �̅�) 2𝑚

𝑖=1

𝑚
 

Figure 1. Flowchart of general GA.

2.3. Gradient Boosting Regressor

The gradient boosting regressor (GBR) algorithm is one of the algorithms of the boosting
family, which is used for the regression task. This method uses several weak regression decision
trees. These trees are trained sequentially, and each subset tree is primarily trained with the data that
was mistakenly predicted by the previous tree. This makes the model less likely to focus on simplest
samples and focuses more on complex samples. In fact, GBR tries to combine multiple weak learners,
which are the weak regression trees, and updates the original learner with gradient descent in each
iteration, and ultimately builds a robust model.

2.4. Statistical Measurements

We used the criterion of MAD and degree of correlation R2 between actual age and predicted
age to evaluate our age prediction model. The criteria are defined in Table 2. As defined below,
m represents number of samples, y =

(
y1, y2, . . . , ym

)
is the actual age values and y is the predicted

values. All calculations are done with Python 2.7.
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Table 2. Statistical criteria calculated in GBR.

Name Formula

Mean Absolute Deviation MAD =
∑m

i=1|y
i
− y|

m

Mean Square Error MSE =
∑m

i=1(y i
− y)

2

m

Root Mean Square Error RMSE =

√∑m
i=1(y i− y) 2

m

Correlation Degree R2 R2 = 1−
∑m

i=1(y i
− f(x i))

2∑m
i=1(y i− y) 2

2.5. Proposed Method

As depicted in Figure 2, the proposed framework is comprised of two main stages. In the first
stage, a classification process is performed. At this stage, samples are first grouped into three age ranges
and a new label is added to the data. The classification process is based on this new label. In the second
stage, a genetic algorithm is implemented for each age range in order to find the best contributing
features for the prediction of the target age range. The rest of this section details these stages.
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Figure 2. Flowchart of proposed framework. 1 n denotes number of subgroups for labeling training
and test sets.

2.5.1. Classification

Studies have shown that changing patterns of aging varies at different age ranges [36].
Therefore, in the first stage of the proposed method, we look for age ranges that have similar changing
patterns. At this stage, a label called the age class is given to the samples of the train and test sets. To find
age ranges with the similar changing pattern, we first assume that each decade has similar changes.
That is, we considered every sequential 10 years between 0 to 103 as one age class. Thus, we obtained
10 age classes, according to which we labeled the samples as follows.

• Class 1: 0 ≤ ages < 10
• Class 2: 10 ≤ ages < 20
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• Class 3: 20 ≤ ages < 30
• Class 4: 30 ≤ ages < 40
• Class 5: 40 ≤ ages < 50
• Class 6: 50 ≤ ages < 60
• Class 7: 60 ≤ ages < 70
• Class 8: 70 ≤ ages < 80
• Class 9: 80 ≤ ages < 90
• Class 10: 90 ≤ ages ≤ 103

A linear model using the SVM classifier is then built on these 10 age classes. Since the number of
features is high, we reduce the dimensions using PCA before constructing the model. In other words,
instead of building a model with 25,000 features, we used 60 new features found by PCA. The accuracy
of modeling on 10-labeled data was 0.68 (+/− 0.15). The confusion matrix in Figure 3a shows the age
classes that have been misclassified by SVM. By checking out this matrix and observing the similarity
between some classes, we performed the data labeling operation again. To this end, classes (1), (2, 3),
(4, 5), (6, 7), and (8, 9, 10) were merged respectively. The classification accuracy of SVM for this new
class label grouping was 0.80 (+/− 0.23). The confusion matrix of Figure 3b shows the classification
errors for the five-class label grouping. Finally, by examining the confusion matrix in the two previous
cases, we re-labeled the data according to the three age classes obtained through the integration of
classes (1, 2), (3, 4, 5), and (6, 7, 8, 9, 10). The accuracy of the model was 0.92 (+/− 0.12) using these
three age groups. The confusion matrix resulting from the modeling on these three age groups is
illustrated in Figure 3c. In this paper, three age groups have been considered for relabeling the train
and test sets since the changing pattern varies for different age ranges.
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derived from modeling on 5-labeled train data; (c) Confusion matrix derived from modeling on
3-labeled train data.

In Stage 1, the model is built on the train data that has three classes and 60 features. Afterwards
the test data is fed to the model to predict the label of test samples. At the end of this stage, each test
sample receives a new label indicating its age range. This label is used in the second stage of the
proposed method to predict the age of samples more accurately. Therefore, the higher the classification
accuracy at this stage, the lower the error rate in Stage 2.

2.5.2. Regression

In the second stage of the proposed method, the goal is to find CpG-sites that are most relevant
to aging in different age ranges. Genetic algorithm has been employed to accomplish this goal.
Before selecting features by genetic algorithm, a filter method has used to reduce the search space
relatively. To do this, the Pearson correlation coefficient of all the features is calculated and among them
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the k most correlated with age are selected. Finally, using the selected CpG-sites, the exact age of samples
in each age range is predicted (three age ranges are found in the previous step). Therefore, contrary to
the previous stage, the whole modeling process is performed using the regression task.

The parallel nature of GA enables us to implement the second stage of the proposed framework
in a parallel form. The proposed GA for CpG-site selection is parallelized in three parts. Since the data
is categorized into three groups based on age class label, the proposed GA is executed for each group
separately. Also, evaluation of the chromosomes and calculation of the fitness function is performed in
parallel using the MapReduce paradigm.

The first important issue in designing the GA is chromosome encoding. Encoding means
representation of the solutions of the problem. We have used binary encoding for this purpose.
Each gene in the chromosome has one bit (0 or 1) representing one of the CpG-sites. The length of the
chromosomes is the same as the total number of CpG-sites. We filter out from the dataset the CpG-sites
whose corresponding genes in the chromosome are zero, and thus the features that remain in the
dataset only belong to the CpG-sites whose corresponding genes are equal to one in the chromosome.
Next, GBR is employed to evaluate chromosomes based on MAD. The termination criterion we have
considered for the genetic algorithm is the number of iterations. Therefore, this process will continue
until the condition is satisfied. Figure 4 shows the full details of the proposed parallel genetic algorithm
(PGA). The description of each number in Figure 4 is as follows.

1. The input of this algorithm is three datasets, each belongs to one age range. These datasets are
DNAm matrices. Matrix rows represent samples and columns represent CpG-sites. The first
column in each dataset represents the exact age of the samples.

2. Binary method is used to represent chromosomes of genetic algorithm. Value 1 in a gene from the
chromosome indicates that the CpG-site corresponding to that gene is selected. Value 0 means
deleting CpG-site from the data set. Based on selected CpG-sites by each chromosome, the dataset
is filtered and each chromosome generates its own reduced dataset.

3. The reduced dataset contains all samples of the input dataset belongs to age group i. Reduction
means the filtering of CpG-sites whose corresponding genes in the chromosome have a value 0.

4. The reduced dataset is randomly divided into n parts with 100 samples to perform fitness
calculations on these parts in parallel. Figure 5 shows how to do this partitioning.

5. For each partition, one GBR is trained. We have used cross-validation method for evaluating the
proposed regression algorithm.

6. At this point, all modeling results (MAD, MSE, RMSE, and R2) are averaged over all partitions of
the primary partitioned dataset.

7. We used multi-objective fitness function for each chromosome based two factors: (1) calculated
MAD in Step 6; and (2) the number of selected CpG-sites. Since it is a regression problem and
the value of MAD has been used in fitness, the lower the value of MAD, the higher the rank of
the chromosome. The number of selected CpG-sites are used as a penalty in fitness calculation
to make sure that chromosomes that have the fewest selected CpG-sites are ranked higher.
The fitness value is calculated from the following formula. According to this formula, for every
50 “1” in the chromosome sequence, one unit is added to the MAD value. That is, fitness value is
increased by one unit. As a result, between two chromosomes with the same amount of MAD,
the chromosome with the fewest numbers of selected CpG-sites has a better fitness and will have
more chance to be selected in next step. The formula for the fitness function is

Fitness = MAD +
Number o f selected CpG− sites f eatures

50
(1)

8. After calculating the fitness value of all the chromosomes within the population, the selection
operator is applied according to a roulette wheel strategy.
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9. The crossover operator applies to the two parents selected in the previous step. We designed a
crossover operator that is compatible with our problem. According to this operator, if the value
of genes in the same position in the parents was same, the corresponding genes in the offspring
would take the same value. However, if the value of genes in the same position in the parent was
different, the first child would probably 50% either take value from the first parent or take value
from the second parent. Then a complementation value of first child is given to the second child.
Figure 5 illustrates the crossover operator logic implemented in this paper.

10. At this point, it is time to perform mutation operator. The standard mutation operator changes
the value of each gene of the chromosome with a low probability. However, since the length of
the chromosome array is equal to the number of CpG-sites (about 25,000 features), this operation
takes much time. In addition, since the number of “0” in a chromosome is much more than “1”,
the chances of converting “0” to “1” are greater. With this in mind, we designed the mutation
operator as follows: k genes from the chromosome are selected for complementation. The way
the two genes are selected is that the probabilities of choosing “1” and “0” cells are the same
each time.

11. In this step, the next generation chromosomes must be prepared. In the proposed PGA best
chromosomes in the current generation are preserved for the next generation. The rest of the next
generation chromosomes are determined using the selection and reproduction operators which
are described earlier in Steps 8, 9, and 10 of the proposed PGA.
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Figure 5. Proposed ParentDifference-based crossover operator.

3. Results

To evaluate the performance of the proposed MapReduce-based parallel GA, 16 DNAm datasets,
all of which are related to human blood tissue, have been tested from two aspects: (1) accuracy test and
(2) performance test. Since the data label is age, we have used the GBR regression model. We compared
the results of our work with results of recent research works on these 16 datasets. The results of
this comparison show that the proposed MapReduce-based parallel GA algorithm outperforms other
methods in terms of four regression criteria. On the other hand, we changed the degree of parallelism
(number of machines and processing cores) to do the performance test. The results of this test show
that using parallelization in the three steps of the algorithm we were able to accelerate the algorithm
implementation speed by 71.08 times. All tests are based on the parameters of the genetic algorithm
presented in Table 3 and parameters of GBR in Table 4, which are the best combination obtained after
several runs based on different parameter combinations.

Table 3. Parameters of proposed MR-based PGA algorithm.

Parameter Value

Encoding Binary
String length 8000 selected CpG-sites using Pearson correlation
Generation 100

Population size 100
Selection Method Roulette wheel
Crossover Method ParentDifference-based crossover
Mutation method Presented mutation operator in Step 10 of proposed parallel GA in Section 2.5.2

Elitist strategy Preserving the top 10 of the best chromosomes in a generation

Table 4. Parameters of GBR model.

Parameter Value

N_estimators 300
Max_depth 4

Min_samples_split 2
Subsample 0.6

Verbose 0
Warm_start true

alpha 0.6
Learning_rate 0.03

loss lad

3.1. Accuracy Test

GBR performs its learning process on the features selected by the proposed MR-based PGA.
Comparisons between the actual values and the predicted values in each age group are presented in
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Figure 6. Also, comparison between the actual values and the predicted values on the whole train
data by GBR model is presented in Figure 7a. According to this modeling, MAD of the train data was
1.27 years and the correlation between age and DNAm was 99.27%. Also, the MSE and RMSE were
6.33 and 2.51 years, respectively. In Figure 7b, the same comparison is made with all the test data.
According to this Figure, the MAD on the test data was 3.62 years and the correlation between age and
DNAm was 95.96%. The MSE and RMSE were 35.16 and 5.93 years, respectively. The details of the
results obtained by proposed method of this paper and the comparison with GBR model of other study
by Li et al. [4] are presented in Table 5.
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Table 5. Comparison of the regression performance between proposed GBR in this paper and proposed
GBR by Li et al. [4].

Ref. Validation Type MAD MSE RMSE R2

Train
Li et al. [8] Split 2.7171 20.7243 4.5524 0.9747

MR-based PGA Split 1.2740 6.3339 2.5167 0.9927

Test
Li et al. [8] Split 4.0593 39.8269 6.3109 0.9523

MR-based PGA Split 3.6233 35.1678 5.9302 0.9596

MR-based PGA 3-fold cross-validation on Train 3.2105 23.9033 4.3927 0.9672

By comparing the results of GBR model of this paper and the results reported in [4] we found that
our proposed method is more accurate. The reason behind this fact is that in each age range we found
the features that were most relevant to that age range. The cause of our proposed data label splitting
method (the presented three groups for the age class) is that the changing pattern of DNAm is varied
in different age ranges. As a result, with age grouping, more reasonable results are obtained. Table 6
presents the details of results for all three age groups. According to this table, we can conclude that
DNAm changes in the age range 0–20 years are more regular and these changes become more irregular
in the age range of 50–103 years.

Table 6. Comparison between MAD of GBRs made on three age groups.

Age Range MAD

3-fold CV on Train
0–20 1.4138
20–50 4.1451

50–103 5.3504

Train
0–20 0.6002
20–50 1.3036

50–103 2.2216

Test
0–20 1.3486
20–50 6.1429

50–103 5.5371

Figure 8 shows the convergence of the MR-based PGA applied to all three age groups toward the
optimal solution. The green lines show the MAD value of the best chromosome in each generation.
The red lines represent MAD value of the worst chromosome in each generation. The blue lines show
the average MAD of all chromosomes in each generation.
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3.2. Performance Test

The performance test was done on three machines with Intel Core i7 9xx (Nehalem Class) 2.69 GHz
processors and 16 GB RAM memory and 25 GB SSD. To report the results of the performance test,
three sets of experiments were done. In the first set, as can be seen in Table 7, the execution time of
the proposed method on one and three machines is reported. In this test, each machine has only one
core. According to Table 8, the effect of parallelization and the enhancement of parallelism on the
chromosomes’ parallel execution were reported. It is noteworthy that in this experiment different age
groups were run on different machines. In Table 9, the third set shows the effect of using MapReduce
on the fitness calculation of chromosomes. Also, in this experiment different age groups were run on
different machines and each machine had 32 processing cores. If all three parts are run concurrently in
parallel, the execution time is reduced to 58 min. If none of the parts are run in parallel, the parallelism
is one. This means that the algorithm runs on a single machine. In this case, the runtime was about
68 h.

Table 7. Performance test for the parallel execution of the proposed algorithm for each age group
presented in minutes (each age group on one machine). Each machine has only one processing core.

Using One Machine Using Three Machines

Minutes 4123 1642

Table 8. Performance test for the execution time of the parallel evolution of chromosomes on three
machines presented in minutes (each chromosome runs on one processing core).

Parallelism

1 2 4 8 16 32

Minutes 1642 986 608 359 207 126

Table 9. Performance test for the execution time of parallel calculation of fitness function using
MapReduce on three machines that each machine has 32 processing cores presented in minutes (each
mapper runs on one thread).

Using MR Without MR

Minutes 58 126

Considering the results presented in the tables above, it can be concluded that with increasing
degree of parallelism, the execution time of the algorithm is significantly reduced. Also, the scalability
of the proposed algorithm is as much as the scalability of the underlying platform.

3.3. Analysis of the Selected CpG-Sites

The stepwise forward selection (SFS) algorithm is used to evaluate CpG-sites found in each age
range, and to rank them. The results reported in the accuracy test section are based on the CpG-sites
listed in Table 10 and their order in the table is based on their ranking in the SFS algorithm. In the SFS
algorithm, the CpG-sites are added incrementally. Each time the CpG-site is introduced, the selected
CpG-sites are tested. When the original introduced CpG-site becomes less significant due to the
introduction of the latter CpG-site, it is eliminated. This process is repeated until neither significant
CpG-sites are selected into the equation nor significant independent CpG-sites are removed from the
regression equation. Figure 9 shows the process of selecting CPG sites by the SFS algorithm.
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Table 10. Selected CpG-sites in each three age groups.

Age Range CpG-Sites

0–20 years

(1) cg14918082, (2) cg27210390, (3) cg01993576, (4) cg19686152, (5) cg19761273,
(6) cg13870494, (7) cg19945840, (8) cg09427311, (9) cg17791651, (10) cg06058597,

(11) cg10591174, (12) cg23591869, (13) cg21545849, (14) cg15368822, (15) cg20544605,
(16) cg03473518, (17) cg09626984, (18) cg03375002, (19) cg00831028, (20) cg08351331,

(21) cg16786458, (22) cg19180828.

20–50 years

(1) cg22736354, (2) cg05724065, (3) cg15673110, (4) cg20761322, (5) cg08635242,
(6) cg10986043, (7) cg00216361, (8) cg12261786, (9) cg17258195, (10) cg21430666,

(11) cg13614181, (12) cg14611174, (13) cg09118625, (14) cg17347389, (15) cg02868123,
(16) cg24715735, (17) cg24662961, (18) cg05346899, (19) cg26900154, (20) cg03022541,
(21) cg18546419, (22) cg12782180, (23) cg09001953, (24) cg26069252, (25) cg15365950,
(26) cg18722841, (27) cg11691938, (28) cg10588377, (29) cg02552572, (30) cg06165395,

(31) cg02973263, (32) cg04809787.

50–103 years

(1) cg21296230, (2) cg09809672, (3) cg14094063, (4) cg19560758, (5) cg15297650,
(6) cg15399561, (7) cg02228185, (8) cg07944287, (9) cg19945840, (10) cg18815943,

(11) cg08005849, (12) cg18113787, (13) cg00635481, (14) cg07091958, (15) cg25809905,
(16) cg26508537, (17) cg08395899, (18) cg25671438, (19) cg18630855, (20) cg19722847,
(21) cg05361811, (22) cg26526440, (23) cg00915289, (24) cg24490859, (25) cg09462826,
(26) cg25490410, (27) cg06885782, (28) cg08158331, (29) cg17022914, (30) cg05140736,

(31) cg24110916, (32) cg10940099.
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4. Discussion

Most studies in the age prediction field used a simple statistical filter-based feature selection
method, such as Pearson correlation for age prediction [1,4,14]. The reason behind selection of the
mentioned feature selection method is its simplicity and also rapid operation. However, the problem is
that, because they do not use modeling algorithms in their feature selection process, then they usually
do not select an acceptable features set and lose many informative features. Another issue that is seen
in the feature selection phase of previous studies is that they do not consider the interaction between
the selected features set and give each gene a point individually. As a consequence, those approaches
are unable to find the set of features that work best together. For these reasons, we used GA to find the
best set of CpG-sites that are capable of optimizing MAD of GBR model from real ages. We found that
MAD of MR-based PGA achieved superior results in comparison to recent research works.

Bekaert et al. [37] and Alisch et al. [25] found that the relation between DNA methylation and age
is not a straight line. Thus, we decided to put together samples where DNAm values change similar
to each other, in a group, and build separate models on each group to get better results. Using the
SVM classifier and by utilizing the confusion matrix, we divide the dataset to three age groups and
consequently, we were able to obtain a better average MAD outcome than that of other previous
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studies. The results also show that aging pattern is more regular in young ages and very irregular in
old ages. As it can be seen in the results of this paper, MAD in the age range of 0–20 years is 1.34 years
(on test data) but in the age range of 50–103 is 5.53 years (on test data).

The implemented GA has hundred generations, and in each generation 100 GBR models are
evolved for 100 chromosomes. Also, each chromosome has 8000 genes. Therefore, another major
issue we faced was the long time it takes to run the feature selection process. The initial runtime of
the algorithm took over than 100 h to complete. To solve this problem, we used parallel computing
in our algorithm and implemented three parts of the algorithm in a parallel manner with the help
of the MapReduce. We also changed some operators of the GA to reduce their execution time.
For example, mutation operator in the GA works by generating a random number between [0, 1]
for each gene, and the value of a gene changes if the random number was more than the specific
threshold. However, running this operator consumes a lot of time for 8000 genes per chromosome.
To overcome this issue, we modified the mutation operator to randomly select a fixed number of genes
on each chromosome and change their values. Finally, by taking advantage of parallel computing and
modifications in some genetic algorithm operators, we lowered the execution time of the algorithm to
less than one hour.

Nevertheless, we acknowledge that our approach has some limitations. First, we did not consider
the impact of gender on age prediction. Some studies have reported that age-related DNAm may be
different in gender [38,39]. Second, we just studied blood tissue methylation patterns since DNAm
data on other tissues are limited. Some studies have used DNAm data from teeth and saliva [9,13,37].
If we can use DNAm datasets of different tissues of the body, we can build more complex models using
integration methods and get better results on age prediction. Third, our results imply that the ages of
samples at the boundaries of groups are poorly predicted. This problem occurred because samples
were grouped using crisp age ranges. In future works, one can use fuzzy logic to group samples to get
better results for samples at the boundaries of age ranges.

5. Conclusions

Predicting human age from genomic data such as DNA methylation is one of the growing areas in
recent investigations. An important problem of this data is its high dimensionality, which makes it
costly to process. To address this problem, we propose a two-stage parallel algorithm for age prediction.
First, the data is clustered into three age groups with similar changing pattern in DNAm. At this
stage, each record of the test data is given a new age group label by making use of an SVM classifier.
Second, CpG-sites that are correlated with age groups are selected using a rapid parallel genetic
algorithm. We take advantage of parallelism in the genetic algorithm to reduce the computational time
and cost. To evaluate our method, 16 different datasets in Geo site are used. The MAD of individual age
prediction was 1.27 years for the train set and 3.62 years for the test set. Our comparison analysis result
suggested better performance of our GBR model than those of the previous works. The performance
test also showed acceptable results. According to this test, parallelization of the algorithm was able to
reduce the runtime 71.08 times compared to the sequential mode.
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