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Background: Despite the popularity of the NeoBase 2 Non-derivatized MSMS assay (Perki-
nElmer, Turku, Finland), there are no reports of its comprehensive evaluation, including 
the ability to distinguish transient tyrosinemia of the newborn (TTN) from tyrosinemia type 
1 (TYR 1) using succinylacetone (SUAC). No newborn screening (NBS) cutoffs for pre-
term neonates in the Korean population have been suggested. We evaluated the NeoBase 
2 assay and identified analytes requiring different cutoffs in preterm neonates.

Methods: Residual NBS dried blood spot samples and proficiency testing (PT) materials 
of the Newborn Screening Quality Assurance Program and the Korean Association of Ex-
ternal Quality Assessment Service were used. Precision, accuracy, limit of detection (LOD), 
lower limit of quantification (LLOQ), linearity, recovery, carryover, and performance of SUAC 
were evaluated. Cutoffs were determined, and analytes requiring different cutoffs in pre-
term neonates were investigated.

Results: Mean CVs for within-run and between-day precision were within 15%. Accuracy 
analysis indicated high agreement with in-house derivatized assay results and results of 
other PT participants. All analytes demonstrated acceptable LOD, LLOQ, and linearity. Re-
coveries were acceptable, except for SUAC. Carryover was negligible. Cutoffs were estab-
lished for all analytes; Tyr, adenosine, and C20:0-lysophosphatidylcholine required differ-
ent cutoffs in preterm neonates. Differential diagnosis of TYR 1 and TTN was successful 
with simultaneous Tyr and SUAC measurement.

Conclusions: The NeoBase 2 assay demonstrated satisfactory performance. The addi-
tional analytes provide a wider diagnostic coverage, and the simultaneous measurement 
of Tyr and SUAC is efficient in excluding TYR 1. The new cutoffs for preterm neonates 
may decrease false-positive rates, without compromising diagnostic sensitivity.
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INTRODUCTION

Newborn screening (NBS) allows early detection of inborn errors 

of metabolism (IEM) in the presymptomatic stage, permitting 

prompt intervention, which can possibly change the natural course 

of the disease. Traditional NBS assays relying on a few enzymes 

can detect only a limited number of diseases. The introduction 

of tandem mass spectrometry (MS/MS) has allowed a significant 

expansion of disease coverage through rapid detection and quan-

tification of a wide range of metabolites, which has increased the 

detection rate and allowed earlier intervention [1, 2].

 Samsung Medical Center, Seoul, Korea, has been using liquid 

chromatography (LC)-MS/MS with an in-house developed de-

rivatized assay for NBS. In recent years, the number of labora-

tories using non-derivatized assays has steadily increased, wher-

eas the number of laboratories using derivatized assays has de-

creased. The NeoBase 2 Non-derivatized MSMS kit (NeoBase 

2; PerkinElmer, Turku, Finland) has been adopted in multiple 

institutes. According to the Newborn Screening Quality Assur-

ance Program (NSQAP) QC report by the Centers for Disease 

Control and Prevention (CDC), approximately 65% of participants 

used a non-derivatized assay, and the NeoBase 2 assay accounted 

for approximately 21% of the non-derivatized assays [3]. Among 

15 organizations participating in a program for metabolite test-

ing provided by the Korean Association of External Quality As-

sessment Service (KEQAS), nine used the NeoBase 2 assay as 

of 2020.

 Despite the popularity of the NeoBase 2 assay revealed in 

proficiency testing (PT), only one study has comparatively ana-

lyzed the evaluation parameters of linearity, precision, and car-

ryover for the NeoBase 2 assay [4]. Although a verification re-

port on the prior version—the NeoBase Non-derivatized MSMS 

kit (NeoBase; PerkinElmer)—has been published [5], there is 

no validation report on the analytical performance of the Neo-

Base 2 assay other than that from the manufacturer itself. The 

only published report regarding the performance of the Neo-

Base 2 assay is a premarket notification from the manufacturer 

for US Food and Drug Administration 510(k) clearance (510(k) 

No. K173568) [6]. Compared with the NeoBase assay, the Neo-

Base 2 assay measures additional analytes, expanding the diag-

nostic coverage, and has improved succinylacetone (SUAC) re-

covery and a shorter SUAC sample preparation time. In addi-

tion, despite SUAC being one of the target analytes in the Neo-

Base 2 assay, its performance in measuring SUAC and its ability 

to distinguish transient tyrosinemia of the newborn (TTN) from 

tyrosinemia type 1 (TYR 1) have not been reported.

 The incidence of TTN ranges from 0.29% to 1.80% [7, 8]. 

The prevalence of TYR 1 is estimated to be 1 in 100,000 glob-

ally, and its prevalence in Korea is deemed to be lower, with only 

a few cases reported to date [9, 10]. Because of the difference 

in the prevalence of these two conditions, institutes without a 

SUAC assay set up are forced to repeat NBS in duplicate until 

the Tyr concentration returns to the normal range, unless the 

case is highly suspicious of TYR 1. As the NeoBase 2 assay al-

lows for the simultaneous measurement of Tyr and SUAC, it 

would benefit laboratories not assaying SUAC. Furthermore, al-

though the requirement for different preterm cutoffs has been 

suggested in the literature [11-13], there is no consensus on 

preterm cutoffs, and no cutoffs have been reported for the Ko-

rean population. Our aim was to carry out a comprehensive eval-

uation to determine the feasibility of adopting the NeoBase 2 

assay and to establish new cutoffs in preterm neonates for ana-

lytes that require different cutoffs in the Korean population.

MATERIALS AND METHODS

Samples
Residual dried blood spot (DBS) samples submitted for NBS 

were stored at –20°C in sealed plastic bags with desiccant. The 

samples were collected on DBS cards (Honeywell Burdick & 

Jackson, Morristown, NJ, USA) and were punched with a DBS 

puncher (PerkinElmer) to a disk of 3.2 mm in diameter. PT ma-

terials were obtained from the NSQAP (seven amino acids, 21 

acylcarnitines, and SUAC) and KEQAS (13 amino acids and 14 

acylcarnitines). This study was approved by the Institutional Re-

view Board (IRB) of Samsung Medical Center (IRB Nos. 2019-

01-127 and 2021-02-078). The need for informed consent was 

waived because residual DBS samples were utilized.

Analytical method
The NeoBase 2 Non-derivatized MSMS kit was used following 

the manufacturer’s guidelines. The assay was conducted using 

a Waters ACQUITY H-Class ultraperformance liquid chromatog-

raphy (UPLC) system coupled with a Waters XEVO tandem tri-

ple-quadrupole mass spectrometer (Waters Corporation, Milford, 

MA, USA). Analytes were quantified using the MassLynx 4.2 

software (Waters Corporation). The mobile phase consisted of 

84% acetonitrile (100% HPLC-grade acetonitrile diluted with 

20% HPLC-grade distilled water) mixed with 0.1% formic acid. 

The optimal UPLC gradient was obtained at a flow rate of 130 

µL/min (Supplemental Data Table S1). The MS analysis was con-

ducted under the following conditions: capillary voltage, 3.0 kV; 
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source temperature, 120°C; desolvation temperature, 350°C; 

desolvation gas flow, 800 L/hr; and cone gas flow, 70 L/hr. De-

tailed information on the MS operation parameters is presented 

in Supplemental Data Table S2. The in-house derivatized assay 

was performed as described previously [14].

Method validation
We comprehensively evaluated the NeoBase 2 assay, consider-

ing the CLSI NBS04, CLSI C62-A, and other guidelines for the 

validation of LC-MS/MS [15-17]. The evaluation parameters in-

cluded limit of detection (LOD), lower limit of quantification (LLOQ), 

linearity, recovery, accuracy, precision, and carryover. The LOD 

and LLOQ were determined using blank DBS samples. Linearity 

and extraction recovery were assessed using AAAC Multilevel 

DBS (Lot No. 676609; PerkinElmer), which comprises 25 ana-

lytes at six dilution levels starting from the non-spiked endoge-

nous concentration. The AACC Multilevel DBS samples were 

run in duplicates. Spike recoveries of the other five levels were 

calculated relative to the non-spiked endogenous concentration. 

Accuracy was evaluated using two methods: extraction recovery 

and method comparison. For method comparison, 20 NSQAP 

PT materials and 54 KEQAS PT materials were utilized. In addi-

tion, the NeoBase 2 assay was compared with the in-house de-

rivatized assay in parallel for two weeks, using 64 DBS samples 

submitted for NBS.

 In total, 29, 27, and 32 analytes were compared using the 

NSQAP PT materials, KEQAS PT materials, and in-house de-

rivatized assay, respectively. In a qualitative evaluation, the clas-

sification of a measured value as normal or abnormal was com-

pared. For comparisons with the in-house derivatized assay, the 

agreement of the results was assessed based on the cutoffs for 

each method. For the PT samples, the agreement with the in-

tended response was evaluated. PT samples that were not graded 

because of poor peer agreement (consensus <80%) were ex-

cluded from the qualitative analysis. For quantitative compari-

son, the results of 15 NSQAP PT materials were compared with 

the mean of the results for other participants using the NeoBase 

2 assay. As there were at most 16 participants in the KEQAS PT, 

and kit-specific mean or median values of each analyte were 

not reported, the mean of all participants was imputed. As non-

derivatized assays cannot distinguish certain analytes with simi-

lar properties, only analytes that are exclusively measured were 

compared with the in-house derivatized assay. The percent de-

viations were calculated, and Bland–Altman plots were gener-

ated.

 Precision was evaluated using QC materials of the NeoBase 2 

assay (PerkinElmer, Lot No. 687285) and the NSQAP (CDC, Lot 

Nos. A1915, B1915, C1915, and D1915). For five days, a run 

was performed in triplicate per day to assess within-run preci-

sion and between-day precision. To determine carryover, a blank 

DBS card (Honeywell Burdick & Jackson) was assayed directly 

after a high-level NeoBase 2 QC material was assayed, and this 

was repeated eight times. Throughout the study, data analyses 

were performed with R 4.0.2 (R Foundation for Statistical Com-

puting, Vienna, Austria). All plots were generated using the gg-

plot2 3.3.5 package [18] in R 4.0.2 (R Foundation for Statistical 

Computing).

Cutoff determination
In total, 351 DBS samples from term neonates without definite 

medical problems submitted for NBS between September 2020 

and February 2021 were evaluated. As only presumptively heal-

thy neonates were included in the analysis, maximum or 99.5 

percentile values were presumed to be the upper limits and mini-

mum or 0.5 percentile values the lower limits. The presumed 

cutoffs were compared with cutoffs used in other institutes, and 

peer percentiles were retrieved from Collaborative Laboratory In-

tegrated Reports (CLIR) (https://clir.mayo.edu). Cutoffs were es-

tablished according to the CLSI NBS04 and CLSI EP28-A3 guide-

lines [15, 19]. Precision near the cutoff concentration was eval-

uated using QC materials having a concentration proximate to 

the cutoff of each analyte.

 Cutoffs for preterm neonates (<37 weeks of gestation) were 

investigated using samples collected within 10 days after birth. 

In total, 118 preterm DBS samples were obtained between Sep-

tember 2020 and February 2021, and none of the neonates were 

diagnosed as having IEM. The distribution and 99.5 percentile 

of preterm and term neonates were determined for all analytes. 

If the difference of the 99.5 percentile (0.5 percentile for the 

lower cutoff) between preterm and term neonates was greater 

than the SD in term neonates, the requirement for a separate 

cutoff for the corresponding analyte was further investigated us-

ing box-and-whisker plots, which visually demonstrate the distri-

bution and degree of false classification. If the degree of false 

classification was non-negligible (i.e., the assay was unable to 

classify abnormality properly), different cutoffs that better repre-

sent the distribution in preterm neonates were suggested. False 

classification of one neonate was considered acceptable. For 

analytes requiring a different cutoff for preterm neonates, the 

99.5 percentile (0.5 percentile for the lower cutoff) value rounded 

to two significant figures was adopted.
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Table 1. Summary of the analytical performance characteristics

Analyte LOD (µM) LLOQ (µM)
Precision* (%CV) Linearity

Recovery* (%)
Carryover  

(µM)Within-run Between-day Range (µM)† R2

Ala 1.13 2.26 5.06±1.13 7.44±2.90 398.40–2,710.77 0.9976 80.2±13.2 3.45

Arg 0.17 0.33 3.46±0.94 1.72±1.59 6.03–1,311.86 0.9997 90.7±3.8 0.65

Cit 0.21 0.42 5.10±0.91 1.80±2.06 23.44–917.48 0.9978 92.5±7.4 0.23

Gln + Lys 0.46 0.92 4.50±1.39 1.99±1.68 2.57

Glu 0.17 0.33 4.56±1.11 4.79±1.99 0.14

Gly 2.16 4.31 4.27±1.46 2.24±1.86 424.46–2,791.61 0.9990 96.2±13.6 8.42

His 0.18 0.35 5.16±1.14 7.34±1.80 0.63

Leu + Ile 0.21 0.43 4.14±1.06 2.66±1.60 242.94–1,224.43 0.9962 88.4±16.1 1.74

Met 0.50 1.00 4.40±1.27 5.56±1.94 15.67–466.28 0.9981 81.5±6.2 0.53

Orn 0.66 1.33 3.72±1.05 2.52±1.64 114.72–1,317.90 0.9984 79.1±6.9 9.90

Phe 5.30 10.59 4.14±1.21 3.43±2.32 74.78–1,000.80 0.9986 83.9±8.4 0.23

Pro 0.20 0.39 4.20±1.20 5.56±2.08 212.29–1,408.03 0.9976 74.6±10.6 1.96

Tyr 0.52 1.05 3.66±1.39 3.21±2.10 78.77–1,452.52 0.9990 79.6±7.7 0.62

Val 0.15 0.30 4.01±0.85 4.00±1.73 227.75–1,188.23 0.9960 87.2±16.5 1.36

ASA 10.96±2.08 13.90±11.28 0.64

SUAC 0.03 0.07 5.68±1.98 3.62±2.40 0.53–38.69 0.9995 61.0±3.9 0.13

ADO 0.02 0.03 3.90±0.14 4.13±1.83 <0.01

D-ADO <0.01

C0 0.03 0.07 4.52±1.14 3.37±2.32 27.62–1,057.47 0.9995 83.6±5.2 0.12

C2 0.03 0.07 4.40±0.87 1.93±1.52 9.51–333.59 0.9984 94.0±6.9 0.07

C3 0.03 0.07 4.44±0.85 1.85±1.45 1.53–41.22 0.9990 93.3±6.2 0.01

C3DC + C4OH 4.10±0.71 4.29±1.26 <0.01

C4 4.96±0.76 1.30±1.45 0.26–19.79 0.9991 87.0±4.6 0.01

C4DC + C5OH 4.29±1.35 2.48±2.12 0.01

C5 4.71±1.02 4.01±2.25 0.14–18.05 0.9992 101.1±4.8 0.02

C5:1 5.97±1.02 3.04±2.54 <0.01

C5DC + C6OH 5.81±1.62 4.22±1.18 0.06–39.85 0.9998 83.3±2.4 <0.01

C6 4.63±1.04 2.15±2.15 0.05–21.63 0.9994 88.5±5.4 <0.01

C6DC <0.01

C8 4.85±1.07 2.24±2.08 0.04–17.51 0.9990 97.5±6.3 <0.01

C8:1 <0.01

C10 5.71±1.21 2.72±0.81 0.03–17.04 0.9990 83.5±5.1 0.04

C10:1 <0.01

C10:2 <0.01

C12 5.47±1.07 3.21±2.17 0.03–21.44 0.9986 96.0±6.2 <0.01

C12:1 <0.01

C14 5.15±0.77 2.47±2.29 0.11–20.17 0.9987 96.5±6.4 <0.01

C14OH <0.01

C14:1 0.02 0.03 5.32±0.97 2.20±2.10 <0.01

C14:2 0.02 0.03 <0.01

(Continued to the next page)
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In-depth evaluation of Tyr and SUAC
In total, 78 stored DBS samples from neonates with an increased 

Tyr concentration of >250 µM collected between March 2010 

and December 2020 were used. Since there have been no TYR 

1 patients in our institute, two NSQAP PT materials with increased 

Tyr and SUAC concentrations were also included in the analysis. 

To identify samples with a significant change in analyte concen-

trations due to long-term storage, the samples were retested us-

ing the in-house derivatized assay. Samples with a percent differ-

ence between the previous and retested concentrations >30% 

were excluded from the analysis. Tyr concentrations measured 

using the NeoBase 2 assay were compared with those measured 

using the in-house derivatized assay. The capability of the Neo-

Base 2 assay to simultaneously detect increases in Tyr and SUAC 

concentrations was evaluated.

RESULTS

Performance of the NeoBase 2 assay
The results of the performance evaluation are summarized in 

Table 1. Although the LOD and LLOQ of most amino acids were 

obtained, they were indeterminate for some analytes, including 

most of the acylcarnitines, as no definite peak was observed in 

repeated measurement of blank materials. For all analytes, the 

mean within-run precision and between-day precision CVs were 

within 15%. In the linearity evaluation, all analytes demonstrated 

a high coefficient of determination (R2)>0.99 (Supplemental 

Data Fig. S1). The mean recoveries of amino acids and acylcar-

nitines were 74.6%–96.2% and 83.3%–101.1%, respectively. 

SUAC had a low mean recovery rate (61.0%) compared with 

other analytes. Carryover was acceptable for all analytes. Assays 

of blank materials in the carryover evaluation did not reveal any 

interfering peaks. 

 Detailed results of the qualitative accuracy evaluation are pre-

sented in Table 2. The results for the NSQAP PT materials showed 

100% agreement with the intended responses in all comparisons. 

However, among the 1,428 comparisons made using the KEQAS 

PT materials, three results were inconsistent with the intended 

responses (Supplemental Data Table S3). In addition, among 

2,048 comparisons made with the in-house derivatized assay, 

Analyte LOD (µM) LLOQ (µM)
Precision* (%CV) Linearity

Recovery* (%)
Carryover  

(µM)Within-run Between-day Range (µM)† R2

C16 0.02 0.03 5.05±1.75 3.00±2.21 1.13–54.88 0.9984 91.4±7.2 0.01

C16OH 6.14±2.82 4.43±1.51 <0.01

C16:1 <0.01

C16:1OH 0.01

C18 5.10±1.81 2.75±2.40 0.80–37.70 0.9981 92.5±7.5 0.01

C18OH 7.23±2.09 2.16±2.73 <0.01

C18:1 5.93±2.88 3.13±3.21 <0.01

C18:1OH <0.01

C18:2 6.54±3.03 3.20±3.11 <0.01

C18:2OH 0.04

C20 <0.01

C22 0.01

C24 <0.01

C26 4.82±1.57 2.19±3.09 0.01

C20:0-LPC 6.74±2.87 4.13±2.89 <0.01

C22:0-LPC 6.41±1.69 3.08±2.92 <0.01

C24:0-LPC 6.65±1.88 1.59±2.33 <0.01

C26:0-LPC 9.07±6.80 3.38±2.98 0.02

*The results of precision and recovery analyses are presented as mean±SD; †The mean values of the duplicate runs were used.
Abbreviations: LOD, limit of detection; LLOQ, lower limit of quantification; ASA, argininosuccinic acid; SUAC, succinylacetone; ADO, adenosine; D-ADO, 
2´-deoxyadenosine; LPC, lysophosphatidylcholine; amino acids are abbreviated as three-letter symbols according to the International Union of Pure and Ap-
plied Chemistry (IUPAC) nomenclature. 

Table 1. Continued
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Table 2. Summary of the accuracy results with the degree of qualitative agreement

Analyte
Accuracy (% agreement [total agreement rate, abnormality agreement rate])

NSQAP PT* KEQAS PT* In-house derivatized assay

Ala 100% (52/52, 14/14) 100% (64/64, 0/0)

Arg 100% (20/20, 2/2) 100% (54/54, 11/11) 95.3% (61/64, 1/1)

Cit 100% (20/20, 3/3) 100% (54/54, 13/13) 100% (64/64, 1/1)

Glu 100% (49/49, 6/6) 100% (64/64, 0/0)

Gly 98.1% (52/53, 12/12) 100% (64/64, 2/2)

His 100% (49/49, 11/11) 98.4% (63/64, 1/1)

Leu + Ile 100% (19/19, 4/4) 100% (53/53, 20/20) 100% (64/64, 3/3)

Met 100% (20/20, 5/5) 100% (54/54, 21/21) 98.4% (63/64, 1/2)

Orn 100% (51/51, 15/15) 100% (64/64, 2/2)

Phe 100% (20/20, 3/3) 100% (54/54, 21/21) 100% (64/64, 1/1)

Pro 100% (54/54, 16/17) 100% (64/64, 0/0)

Tyr 100% (20/20, 2/2) 100% (53/53, 19/19) 100% (64/64, 1/1)

Val 100% (20/20, 5/5) 100% (52/52, 15/15) 100% (64/64, 2/2)

SUAC 100% (20/20, 2/2)

C0† 100% (20/20, 1/1) 100% (49/49, 18/18) 100% (64/64, 1/1)

C2† 100% (18/18, 0/0) 100% (54/54, 18/18) 98.4% (63/64, 0/1)

C3 100% (19/19, 1/1) 100% (53/53, 16/16) 100% (64/64, 2/2)

C3DC + C4OH 100% (20/20, 3/3)

C4 100% (20/20, 1/1) 100% (53/53, 12/12) 100% (64/64, 0/0)

C4DC + C5OH 100% (20/20, 2/2) 98.1% (53/54, 6/6)

C5 100% (20/20, 2/2) 98.1% (53/54, 16/16) 100% (64/64, 0/0)

C5:1 100% (20/20, 1/1) 100% (64/64, 0/0)

C5DC + C6OH 100% (19/19, 1/1) 100% (53/53, 17/17)

C6 100% (19/19, 1/1) 100% (54/54, 13/13) 100% (64/64, 0/0)

C8 100% (20/20, 1/1) 100% (54/54, 13/13) 100% (64/64, 0/0)

C10 100% (20/20, 1/1) 100% (54/54, 12/12) 100% (64/64, 0/0)

C10:1 100% (20/20, 1/1) 100% (64/64, 0/0)

C10:2 100% (20/20, 1/1) 100% (64/64, 0/0)

C12 100% (54/54, 13/13) 100% (64/64, 0/0)

C14 100% (20/20, 4/4) 100% (53/53, 13/13) 100% (64/64, 0/0)

C14:1 100% (19/19, 3/3) 100% (64/64, 0/0)

C16 100% (20/20, 1/1) 100% (54/54, 14/14) 100% (64/64, 0/0)

C16OH 100% (20/20, 2/2) 100% (64/64, 0/0)

C18 100% (20/20, 1/1) 100% (53/53, 13/13) 98.4% (63/64, 0/0)

C18OH 100% (20/20, 2/2) 100% (64/64, 0/0)

C18:1 100% (20/20, 1/1) 100% (64/64, 0/0)

*Blank results indicate that the corresponding analytes are not included in the PT program; †The lower cutoff, upper cutoff, and both lower and upper cut-
offs were applied for comparison with the NSQAP PT, KEQAS PT, and in-house derivatized assay, respectively.
Abbreviations: ASA, argininosuccinic acid; SUAC, succinylacetone; ADO, adenosine; D-ADO, 2´-deoxyadenosine; LPC, lysophosphatidylcholine; KEQAS, Ko-
rean Association of External Quality Assessment Service; NSQAP, Newborn Screening Quality Assurance Program; PT, proficiency testing; amino acids are 
abbreviated as three-letter symbols according to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature. 
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Fig. 1. Bland–Altman plots comparing the NeoBase 2 non-derivatized assay results with those of (A) NSQAP participants using the Neo-
Base 2 assay for amino acids, SUAC, and acylcarnitines, (B) KEQAS participants regardless of the assay for amino acids and acylcarnitines, 
and (C) the in-house derivatized assay.
Abbreviations: NSQAP, Newborn Screening Quality Assurance Program; SUAC, succinylacetone; KEQAS, Korean Association of External Quality Assessment 
Service; amino acids are abbreviated as three-letter symbols according to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature.
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Table 3. Determined cutoffs and distribution of analyte concentrations in term and preterm neonates

Analyte (µM)
Cutoff Distribution (99.5 percentile [mean±SD])

Our lab
CLIR 50 

percentile
NSQAP  
[20]

KEQAS  
[21]

Cho, et al. 
[22]

Preterm Term

Ala 700 698.20 694 532.30 (261.79±74.86) 603.96 (266.15±75.50)

Arg   40 50 57.60 57.10 40 41.76 (13.84±8.98) 28.33 (11.24±5.30)

Cit 5 (L), 40 5 (L), 50 49.80 48.00 40 6.45*, 37.06 (13.67±5.70) 6.24*, 25.61 (11.95±3.19)

Gln + Lys 1,200 850 1,179.91 (600.04±194.87) 1,164.96 (654.53±148.29)

Glu 500 850 409.30 (239.99±61.36) 432.26 (224.09±55.85)

Gly 900 851 893.00 1,000 730.90 (389.19±105.64) 777.01 (430.59±92.15)

His 70 249.20 252 56.61 (25.77±8.04) 54.26 (28.96±7.36)

Leu + Ile 240 292 308.40 288.50 236 224.68 (135.37±37.20) 250.77 (116.62±30.92)

Met 45 51 55.00 58.60 60 42.32 (22.13±6.13) 39.63 (20.58±5.03)

Orn 300 228 280.20 300 131.79 (59.56±21.45) 125.24 (59.14±17.62)

Phe 100 100 130.20 118.20 99 72.15 (43.50±8.89) 78.30 (42.56±9.50)

Pro 350 401 362.30 354 280.47 (141.14±39.85) 250.56 (138.33±33.24)

Tyr 260 275 296.30 287.00 270 347.85 (103.28±58.74) 231.79 (73.71±33.91)

Val 250 250 270.20 269.60 211 208.96 (115.11±31.75) 213.58 (100.71±25.99)

ASA   1 0.61 (0.11±0.13) 0.55 (0.10±0.11)

SUAC 1.50 2 2.20 0.78 (0.63±0.07) 0.81 (0.60±0.07)

ADO 1.30 1.61 (0.46±0.27) 1.17 (0.39±0.16)

D-ADO 0.06 0.02 (0.01±0.01) 0.03 (0.01±0.01)

C0 8 (L), 70 8 (L), 65 8.37 (L) 62.47 8.20 (L), 60 10.42*, 71.61 (29.83±10.88) 9.18*, 49.24 (20.34±6.34)

C2 5 (L), 55 7 (L) 7.03 (L) 55.45 49.56 4.24*, 35.96 (18.72±7.08) 5.64*, 43.14 (17.04±6.30)

C3 5.50 5.20 5.31 5.45 7.18 3.96 (1.73±0.78) 4.13 (1.76±0.69)

C3DC + C4OH 0.30 0.42 0.49 0.57 0.20 (0.09±0.03) 0.23 (0.08±0.04)

C4 0.54 1.05 0.95 0.72 0.70 0.58 (0.22±0.08) 0.38 (0.18±0.06)

C4DC + C5OH 0.65 0.80 0.71 0.66 0.60 0.36 (0.18±0.05) 0.39 (0.21±0.05)

C5 0.50 0.63 0.67 0.67 0.47 0.43 (0.20±0.07) 0.25 (0.14±0.04)

C5:1 0.05 0.11 0.15 0.20 0.02 (0.01±0.00) 0.02 (0.01±0.00)

C5DC + C6OH 0.20 0.30 0.34 0.28 0.30 0.16 (0.09±0.02) 0.17 (0.09±0.02)

C6 0.23 0.24 0.27 0.28 0.15 0.12 (0.05±0.02) 0.12 (0.05±0.02)

C6DC 0.20 0.20 0.16 (0.06±0.03) 0.12 (0.05±0.02)

C8 0.30 0.31 0.34 0.33 0.50 0.16 (0.07±0.03) 0.14 (0.04±0.02)

C8:1 0.40 0.33 0.29 (0.11±0.05) 0.22 (0.09±0.03)

C10 0.35 0.35 0.36 0.37 0.40 0.23 (0.10±0.04) 0.25 (0.10±0.04)

C10:1 0.16 0.22 0.25 0.22 0.09 (0.04±0.02) 0.08 (0.04±0.01)

C10:2 0.05 0.11 0.15 0.12 0.03 (0.01±0.00) 0.03 (0.01±0.00)

C12 0.35 0.49 0.41 0.51 0.25 (0.06±0.03) 0.30 (0.07±0.04)

C12:1 0.30 0.35 0.17 (0.02±0.02) 0.25 (0.03±0.03)

C14 0.50 0.63 0.60 0.62 0.61 0.42 (0.19±0.07) 0.44 (0.19±0.06)

C14OH 0.05 0.06 0.14 0.03 (0.01±0.01) 0.03 (0.01±0.01)

C14:1 0.45 0.48 0.46 0.40 0.26 (0.06±0.04) 0.37 (0.07±0.05)

(Continued to the next page)
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Analyte (µM)
Cutoff Distribution (99.5 percentile [mean±SD])

Our lab
CLIR 50 

percentile
NSQAP  
[20]

KEQAS  
[21]

Cho, et al. 
[22]

Preterm Term

C14:2 0.06 0.13 0.04 (0.02±0.01) 0.04 (0.02±0.01)

C16 7 7 6.92 6.21 5.57 4.99 (1.95±0.87) 5.94 (2.65±0.90)

C16OH 0.08 0.10 0.11 0.15 0.03 (0.01±0.00) 0.04 (0.01±0.01)

C16:1 0.60 0.53 0.36 (0.12±0.06) 0.43 (0.16±0.08)

C16:1OH 0.10 0.13 0.08 (0.04±0.01) 0.08 (0.04±0.01)

C18 1.80 2 2.10 1.98 2.00 1.47 (0.76±0.26) 1.59 (0.83±0.25)

C18OH 0.05 0.09 0.08 0.08 0.02 (0.00±0.01) 0.02 (0.01±0.01)

C18:1 3 3 3.09 1.81 2.74 (1.41±0.38) 2.54 (1.27±0.36)

C18:1OH 0.05 0.09 0.18 0.03 (0.01±0.01) 0.03 (0.01±0.01)

C18:2 1 0.65 0.90 (0.47±0.18) 0.63 (0.28±0.12)

C18:2OH 0.15 0.10 0.09 (0.05±0.02) 0.09 (0.05±0.02)

C20 0.08 0.05 (0.02±0.01) 0.06 (0.02±0.01)

C22 0.03 0.01 (0.01±0.00) 0.01 (0.01±0.00)

C24 0.05 0.03 (0.01±0.01) 0.03 (0.02±0.01)

C26 0.03 0.02 (0.01±0.00) 0.02 (0.01±0.00)

C20:0-LPC 0.57 0.61 (0.32±0.10) 0.45 (0.22±0.07)

C22:0-LPC 0.56 0.47 (0.24±0.08) 0.52 (0.20±0.08)

C24:0-LPC 0.80 0.60 (0.36±0.08) 0.57 (0.33±0.08)

C26:0-LPC 0.40 0.28 (0.16±0.04) 0.25 (0.15±0.03)

*The 0.5 percentile value is also shown as the lower cutoff was applied.
Abbreviations: ASA, argininosuccinic acid; SUAC, succinylacetone; ADO, adenosine; D-ADO, 2´-deoxyadenosine; LPC, lysophosphatidylcholine; L, lower cut-
off; CLIR, Collaborative Laboratory Integrated Reports; NSQAP, Newborn Screening Quality Assurance Program; amino acids are abbreviated as three-letter 
symbols according to the International Union of Pure and Applied Chemistry (IUPAC) nomenclature; (L), lower cutoff.

Table 3. Continued

seven results were discordant with the judgments made based 

on our in-house derivatized assay and cutoffs. The samples with 

discordant results all had concentrations near the cutoffs.

 The results of the quantitative accuracy analysis are presented 

in Fig. 1. The mean percent difference between the NeoBase 2 

and the NSQAP participants, KEQAS participants, and in-house 

derivatized assay was –4.3%, –20.4%, and –28.8%, respec-

tively. In the quantitative comparison with NSQAP peer partici-

pants using the NeoBase 2 assay, decanoylcarnitine (C10) and 

SUAC showed a positive deviation. In the quantitative compari-

son with KEQAS peer participants, C10 showed a positive devia-

tion, whereas dodecanoylcarnitine (C12) and histidine (His) showed 

negative deviations. In the comparison with the in-house deriva-

tized assay, His and proline (Pro) showed negative deviations. 

Although the percent difference was large for analytes with low 

concentrations, the magnitude of the absolute difference in con-

centrations was insignificant (Supplemental Data Fig. S2).

Determined cutoffs and precision near the cutoff
The determined cutoffs are presented in Table 3, along with the 

50 percentile cutoff of peers in the CLIR database, mean cutoffs 

provided in the NSQAP 2020 annual summary report [20] and 

KEQAS 2020 report [21], and the cutoffs determined by Cho, et 
al. [22], which is the only study that published cutoffs for the 

Korean population. For all analytes, precision near the cutoff 

was acceptable, with CVs within 15%.

Investigation of preterm cutoffs
Fifteen analytes showed a difference in the 99.5 percentile be-

tween preterm and term neonates greater than the SD in term 

neonates (Fig. 2). Among these, Tyr, adenosine (ADO), and C20: 

0-LPC exhibited at least two false abnormalities with the cutoffs 

determined based on term neonates. For these analytes, pre-

term cutoffs were designated as 350, 1.6, and 0.61 µM (260, 

1.3, and 0.57 µM in term neonates), respectively. When we ap-

plied these new preterm cutoffs, only one neonate was classi-



Lee B, et al.
NeoBase 2 evaluation and newborn screening cutoffs

162  www.annlabmed.org https://doi.org/10.3343/alm.2023.43.2.153

Fig. 2. Box-and-whisker plots of selective analytes that potentially require a different cutoff in preterm neonates. Red dots and blue dots 
represent the values measured in preterm neonates and term neonates, respectively, and the dashed gray line indicates the established 
cutoff for term neonates.
Abbreviations: P, Preterm; T, Term; ADO, adenosine; LPC, lysophosphatidylcholine; amino acids are abbreviated as three-letter symbols according to the In-
ternational Union of Pure and Applied Chemistry (IUPAC) nomenclature.
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fied as abnormal for each analyte.

Analysis of Tyr and SUAC
In total, 44 samples (42 residual samples and two NSQAP PT 

materials) with an increase in the Tyr concentration were ana-

lyzed. The results demonstrated a good correlation between the 

NeoBase 2 assay and the in-house derivatized assay, with a Spear-

man correlation coefficient of 0.87 (P <0.01). All 42 residual 

samples with an increase in the Tyr concentration exhibited a 

low SUAC concentration. The NeoBase 2 assay revealed increases 

in both the Tyr and SUAC concentrations in the two NSQAP PT 

materials, which supports the feasibility of using the NeoBase 2 

assay in diagnosing TYR 1 (Fig. 3).

DISCUSSION

We demonstrated the satisfactory performance of the NeoBase 

2 assay based on various validation parameters, listed cutoffs 

for all analytes, and suggested preterm cutoffs for three ana-

lytes for the first time in Korea. MS/MS is widely used for mea-

suring various analytes [23-25], and several guidelines for the 

evaluation of MS/MS and NBS have been published [17]. How-

ever, there is no consensus on which parameters to assess and 

the degree of validation [17, 23]. The current comprehensive 

evaluation will aid future studies that aim to assess the perfor-

mance of an MS/MS method in measuring a number of target 

analytes. While our study was mostly in line with previous re-

ports on MS/MS validation in terms of the process used, our 

quantitative accuracy evaluation deserves attention. Although 
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Fig. 3. Scatter plots for (A) comparison of Tyr concentrations between the in-house derivatized assay and the NeoBase 2 assay and (B) Tyr 
and SUAC measured using the NeoBase 2 assay. The samples used in the analysis are composed of 42 residual clinical samples with an 
increased Tyr concentration and two NSQAP PT materials with an increase in both Tyr and SUAC concentrations.
Abbreviations: Tyr, tyrosine; SUAC, succinylacetone; NSQAP, Newborn Screening Quality Assurance Program; PT, proficiency testing. 
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quantitative analysis based on percent differences and visual-

ization in Bland–Altman plots provides intuitive result interpreta-

tion, it is not widely used in the evaluation of MS/MS methods as 

these are usually semi-quantitative and often include too many 

measurands. As this is a commonly used method in head-to-

head comparison of quantitative chemistry analyzers, adopting 

this method in MS/MS method validation would be effortless for 

major clinical laboratories. This approach not only verifies the 

quantitative agreement but also reveals analytes with a system-

atic bias, which justifies the use of significantly different cutoffs 

among laboratories.

 In quantitative comparison, there were few analytes with a 

systematic difference. The positive deviation of SUAC was due 

to low concentrations reported by NSQAP participants using the 

NeoBase 2 assay. Our SUAC results were consistent with those 

of peers who used an assay other than the NeoBase 2 assay. The 

positive deviation of C10 was mainly due to low analyte concen-

trations. While C4DC+C5OH showed a positive deviation through-

out the measured range, the positively skewed results were mainly 

due to comparisons with KEQAS peer participants, including 

derivatized assays that solely measured C5OH. This finding is 

supported by the NSQAP PT and QC reports, which revealed 

higher concentrations for the NeoBase 2 assay than for other 

derivatized assays [3, 20]. While His showed a negative devia-

tion from the mean of the KEQAS participants, 7 out of 10 par-

ticipants submitted concentrations similar to ours, whereas the 

other three submitted approximately five-fold higher concentra-

tions, causing a positively skewed mean value. Considering this, 

the results of the quantitative accuracy evaluation were consid-

ered acceptable.

 A few analytes (Gln+Lys, Glu, and His) showed significant dif-

ferences in cutoffs among institutes. The primary role of Gln and 

Glu in NBS is to support the diagnosis of disorders related to low 

citrulline, such as ornithine transcarbamylase deficiency and 

carbamoyl phosphate synthetase 1 deficiency [26], which are 

accompanied by an increase in Ala and a decrease in Arg con-

centrations [27]. His is no longer included as a screening item 

in NBS in many countries as histidinemia is currently regarded 

as a benign condition [28, 29]. Considering the nature of the re-

lated disorders and the qualitative agreement with other labora-

tories, we believe the discordant cutoffs would not cause clinical 

misclassification. The differences in cutoffs suggest that each 

laboratory should establish their own cutoffs due to various as-

say types used and/or population differences in analyte concen-

trations among ethnicities. NBS using MS/MS is generally re-

garded a semi-quantitative assay as some analytes are isobaric 

and QC materials are not available for certain analytes, which is 

another reason for the discrepancy in the quantitative results 

and cutoffs among laboratories [30]. To reduce assay-related 

biases, harmonization of quantitative results, allowing head-to-

head comparison among laboratories, would be ideal [31]. In 

the qualitative accuracy evaluation using KEQAS PT materials, 

there was only one sample for each analyte with disagreement. 

All these samples had concentrations near the cutoffs, and 6%–
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19% of the peer participants submitted an unintended response 

identical to ours. Moreover, there were few qualitative disagree-

ments between the NeoBase 2 assay and our previous in-house 

derivatized assay using clinical samples. Nonetheless, as there 

were no IEM patients during the study period and all samples 

with discordant results had concentrations near the cutoffs, this 

would not affect diagnostic sensitivity.

 Differences in amino acid and acylcarnitine concentrations 

have been reported between preterm and term neonates, which 

complicate the interpretation of NBS results [32]. Acylcarnitine 

and amino acid concentrations are generally lower in preterm ne-

onates [12, 13]. However, acylcarnitines derived from branched- 

chain amino acids showed an opposite trend [12]. The probabil-

ity of TTN is higher in preterm than in term neonates [8]. The 

median ADO concentration is significantly higher in neonates 

with low birth weight [33]. In addition, the timing of blood collec-

tion affects analyte concentrations and thus the performance of 

NBS [11, 34]. These results complicate the interpretation of met-

abolic status in preterm neonates and substantiate the require-

ment for a different cutoff for IEM screening. The metabolic pro-

file of preterm neonates in this study was in agreement with those 

in previous reports. We determined different cutoffs for three ana-

lytes (Tyr, ADO, and C20:0-LPC) that showed significant differ-

ences between preterm and term neonates and are screening 

markers of TYR 1, adenosine deaminase severe combined im-

munodeficiency (ADA-SCID), and X-linked adrenoleukodystrophy 

(X-ALD), respectively. The suggested preterm cutoffs may overlap 

with disease-related concentrations. However, as TYR 1, ADA-

SCID, and X-ALD all have other means to support the diagnosis, 

a higher preterm cutoff would be beneficial in reducing the num-

ber of false positives. The pathognomonic marker for TYR 1 is 

SUAC [35]. The diagnosis of ADA-SCID can be supported by 

lymphopenia and low Ig concentrations [36]. The C20:0-LPC 

concentration does not significantly differ between healthy con-

trols and ALD [37, 38], and increases in C24:0-LPC, C26:0-LPC, 

and the ratio of these markers to C20:0-LPC or C22:0-LPC are 

used for diagnosis [37-39].

 There are a few limitations to our study. First, as a relatively 

small number of samples from preterm neonates were included 

in the analysis, we were unable to suggest cutoffs for subcate-

gories of preterm neonates based on gestational age. Second, 

samples from confirmed TYR 1 patients were not included in 

our evaluation of Tyr and SUAC, primarily because of the low in-

cidence of TYR 1. Our evaluation still showed that the NeoBase 

2 assay can detect concurrent increases in Tyr and SUAC con-

centrations. Although SUAC had a low recovery rate, this phe-

nomenon has also been observed in previous studies, which 

suggests that low recovery does not affect clinical sensitivity in 

distinguishing TYR 1 [35, 40].

 In conclusion, this study confirmed the performance of the 

NeoBase 2 assay in various measures. As the NeoBase 2 assay 

provides a wide diagnostic coverage with numerous analytes, 

we suggest that the introduction of the NeoBase 2 assay in clini-

cal laboratories may benefit patients, pediatricians, and labora-

tory personnel, including clinical pathologists and medical tech-

nologists. The cutoffs determined for the Korean population us-

ing the NeoBase 2 assay will be relevant for other institutes in 

Korea willing to introduce the NeoBase 2 assay in their laborato-

ries. By applying different cutoffs for certain analytes in preterm 

neonates, false-positive rates are expected to decrease, without 

compromising diagnostic sensitivity.
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