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Automated fall risk assessment of elderly
using wearable devices
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Abstract

Introduction: Falls cause major expenses in the healthcare sector. We investigate the ability of supporting a fall risk

assessment by introducing algorithms for automated assessments of standardized fall risk-related tests via wearable

devices.

Methods: In a study, 13 participants conducted the standardized 6-Minutes Walk Test, the Timed-Up-and-Go Test, the

30-Second Sit-to-Stand Test, and the 4-Stage Balance Test repeatedly, producing 226 tests in total. Automated

algorithms computed by wearable devices, as well as a visual analysis of the recorded data streams, were compared to

the observational results conducted by physiotherapists.

Results: There was a high congruence between automated assessments and the ground truth for all four test types

(ranging from 78.15% to 96.55%), with deviations ranging all well within one standard deviation of the ground truth. Fall

risk (assessed by questionnaire) correlated with the individual tests.

Conclusions: The automated fall risk assessment using wearable devices and algorithms matches the validity of the

ground truth, thus providing a resourceful alternative to the effortful observational assessment, while minimizing the risk

of human error. No single test can predict overall fall risk; instead, a much more complex model with additional input

parameters (e.g., fall history, medication etc.) is needed.
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Introduction

Many care facilities, such as nursing homes or geriatric
wards, experience high costs due to follow-up treat-
ments related to injuries caused by fall.1 Nursing
homes experience around 1.5 falls per bed per year,2

resulting in average costs of 944 Euro per fall.3

Approximately 25% to 46% of all patients in stroke
rehabilitation wards have been reported to fall at least
once during their stay.4–6 Alarmingly, 75% of deaths in
the age group of 65þ in the USA are caused by falls,2

thus concerning 13% of the country’s population. In
different regions including Europe, USA, and
Australia, between 0.9% and 1.5% of the total health
care expenditures of each region are related to fall.7

About 0.2% of the USA’s gross domestic product
(547 USD PPP) is paid for costs related to fall per
inhabitant per year (ib.).

Factors that contribute to the risk of falling include
injuries or pathologic conditions (e.g., hip fracture,
stroke) or even unfamiliar environments and
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medication.8,9 A literature review investigated risk fac-
tors in a variety of settings, and found gait instability,
agitated confusion, urinary incontinence and urinary
frequency, and falls history to be most relevant.9

Many review articles emerged on fall risk prevention
in recent years.10,11 While it is prudent to identify the
individual’s fall risk first to allocate resources accord-
ing to needs, less research has been conducted on the
assessment of fall risk. The last systematic reviews on
assessment tools for fall risk have included studies up
to 2016.12–14 Lusardi et al.13 identified five
performance-based measures, including the Timed Up
and Go test (�12 seconds) and Sit-to-Stand test, that
were rated as “currently the most evidence-supported
functional measures to determine individual risk of
future falls” in ambulatory older adults.13 Aranda-
Gallardo et al.12 conducted a meta-analysis on three
fall risk assessment tools used for prediction of falls
in acute hospitalized patients. Unfortunately, the
authors did not include any behavioural measures,
and the validity of the three questionnaires that the
review compared varied considerably depending on
the population and the environment.12

The manual assessment using standardised physical
tests is an established procedure for the fall risk esti-
mation. Muscle strength, static and dynamic balance
(postural control), walking behaviour and mobility
are often examined and provide quantifiable parame-
ters that are commonly used in combination with ques-
tionnaires and anamnestic information to determine
the likelihood of fall risk. Since manual tests are
time-consuming and allow for human error and bias,
a technology-assisted assessment would be preferred.

The possibility of assessing human behaviour and
classifying human motions has been extensively
shown in the field of human activity recognition.15–18

Within the broad spectrum of activity recognition,
behaviours that are important for fall risk detection,
such as gait analysis,9 can also be detected using wear-
able sensors,19 including smartwatches.20–22 Haescher
et al.1 investigate fall risk prevention using a wrist-
worn smartwatch and present a multifactorial model
that take into account basal fall risk (using question-
naires, medical history, e.g., asking for the need of a
permanent walking aid), environmental fall risk (chal-
lenging outdoor conditions such as weather, familiarity
of the environment), and variable fall risk (assessed by
manual tests, such as the Timed Up and Go test).1

Thus, our overall ambition is to develop an objective
and automated fall-risk assessment by using wearable
technology in combination with a multi-parametrical
model to provide an estimate of fall risk and in this
way could be used to support fall prevention in elderly
people. The objective of the study was to investigate to
what degree the mobile wrist-worn device, equipped

with sensors, provides comparable and accurate results
when compared to observational clinical assessments in
a group of older adults living in the nursing home.

Method

Participants

In this cross-sectional study, participants were
recruited from a nursing home in west of Sweden, out
of a pool of attendees of the routine balance training
program. Data collection took place between April and
June, 2019. Inclusion criteria were: (i) age �65 years;
(ii) able to perform the clinical assessment tests without
any walking aid. To clarify, this did not exclude any
individual who would use a walking aid in everyday
life; it merely means that the walking aid was not
used during the tests. Exclusion criteria comprised
Parkinson’s disease and/or any other disease that
might hinder the performance of the selected assess-
ments or compromise the safety of the patient during
assessments. Written informed consent was obtained
from all participants or participant’s legal representa-
tive. Participants did not receive any compensation for
their participation. The Declaration of Helsinki for
medical research was followed, but no ethical approval
was applied prior the study since the data was collected
during the clinical routine and handled fully anony-
mized by the research team (authors of the study).

In total, 13 participants were included (6 male, 7
female). The mean age of the participants was
79.61 years (SD 4.55 yrs). The participants had a
mean weight of 71.23 kg (SD 15.07 kg). The average
height of the participants was 168.31 cm (SD 8.95 cm).

Standardized clinical assessments

The data was collected during the ordinary balance
training session according to clinical routine. The par-
ticipants performed four standardized tests in a con-
trolled clinical environment: 6-Minutes Walk Test
(6MWT),23 Timed Up and Go Test (TUG),24 30-
Second Sit-to-Stand Test (STS, also called 30-Second
Chair Stand Test, 30STS),25,26 and 4-Stage Balance
Test (4SBT).27–29 The tests were performed by a phys-
iotherapist who instructed the participants, observed
the tests, and recorded the observed test results in
means of time via stopwatch or repetitions via count-
ing. The participants performed the tests up to seven
times with a break of at least seven days in between.
Physiotherapist were always close to the participants to
avoid accidental loss of balance or fall during testing.

6-Minutes Walk Test (6MWT). In this test, participants
were instructed to walk as far as possible during six
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minutes. The walking distance was marked by two

turning points 20m apart from each other. After six

minutes of circling the turning points, the participant

was asked to stop, and the number of turns was

counted and multiplied by the distance (20m). The

remaining distance walked (between the turning

points) was measured by using a tape measure.

Timed up and Go Test (TUG). In this test, participants had

to stand up and walk a distance of 3 meters. At the 3-

meter mark, participants made a turn and went back to

the starting point in order to sit down again. The time

taken for the whole test was measured using a

stopwatch.

Sit-to-Stand Test (30STS). In this test, the participants had

to transition between standing up and sitting down as

often as possible during a 30-second period. During the

test, the arms had to be crossed in front of the chest.

This way, the ability of standing up without using the

arms was tested. The number of transitions within

30 seconds was counted by the therapist. The 30-

second limit was controlled via a stopwatch.

4-Stage Balance Test. In this test, the participants had to

stand as still as possible in four different postures (see

Figure 1) for the duration of 10 seconds each (measured

with stopwatch). The postures were ordered hierarchi-

cally starting with the easiest (standing feet together)

and ending with the most difficult (standing on one

leg). Participants could choose freely which foot to

position forward or upward in the three postures

‘half step’, ‘tandem’ and ‘balancing on one foot’ (see

Figure 1). In case a participant lost balance in one of

the postures, the test was stopped and marked as failed.

All remaining postures were marked as failed as well.
For the detection of the different postures with the

wearable, the subjects were asked to perform a clap at

the beginning and end of each posture. In case of a

failure, the participant was asked to clap twice.

Apparatus

The participants performed the standardized clinical

tests while wearing a CE-certified smartwatch

(Huawei smart watch 2) at their left wrist to enable

an automated assessment (see Figure 2). The watch

recorded raw data of the acceleration sensor and gyro-

scope. The data was sampled at 50Hz. The smartwatch

data was sent to a cloud platform for processing the

results. An app was programmed to provide an easy-to-

use interface for the therapists (see an example in

Figure 2).
At the beginning of every recording session, the

physiotherapist selected an anonymized 6-digit identi-

fier for each participant. Subsequently, each test was

selected by choosing the particular test icon on the

wearable screen (see Figure 2). After selecting the

test, a start button was pushed to initiate the recording

of accelerometer and gyroscope raw data. As soon as

the patient finished a test and the physiotherapist had

logged the ground truth, a stop button was pressed in

order to stop the recording and upload the data.

Fall risk

All test results were analysed with regard to their infer-

ence on the individual fall risk. To this end, the fall risk

for both the observed test results recorded by the phys-

iotherapist and for the automated algorithm-based test

results was classified into a binary scoring of “high”

versus “low” risk of falling, referring to each test’s stan-

dardized cut-off values. In both cases, defined cut-off

Figure 1. The Balance Test involves four different feet positions
(postures) that have to be performed for ten seconds each, from
left to right: a) standing with feet together, b) half step, c) tandem,
d) balancing on one foot. For the detection of the different
postures with the wearable, the subjects were asked to perform
a clap at the beginning and end of each posture. In case of a
failure, the participant was asked to clap twice.

Figure 2. The Huawei Watch 2 worn on the left wrist, showing
the interface. The interface shows four icons, one icon for each
of the four tests. 1) 4SBT (upper left icon), 2) TUG (upper right
icon), 3) 30STS (lower left icon), 4) 6MWT (lower right icon).
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points described in the literature were used.30–33 For

the 6MWT, a distance below the reference values

(adjusted for age and sex) indicated an increased fall

risk.30,31 Each participant who took �12 seconds to

perform the TUG was scored with increased risk of

falling.30 For the 30SCT, reference values adjusted

for age and sex for number of sit-to-stand were used

to define the increased risk of falling.31 Each partici-

pant who failed to perform the third balance position

(tandem standing, 4SBT) for ten seconds was scored

with increased risk of falling.32,33

In addition, the physiotherapists appraised the risk

of falling as either “low” or “high” based on the check-

list of risk for falling,34 originally developed as the Fall

Risk Questionnaire (FRQ).35 A score of 4 points or

more on the FRQ indicated a high risk of falling.

This label was used as a theoretical ground truth to

which both the observational data and the data derived

by the algorithm were compared to assess each of their

convergent validity.

Data analysis

We conducted three types of data analysis for the data

assessed with the wearable device: 1) visual data anal-

ysis, 2) automated data analysis (via an algorithm), 3)

automated data analysis after excluding participants

that did not follow the protocol (outliers). Data pre-

processing included converting the movement signal to

a representation in the frequency domain, followed by

a peak detection. Visual analysis was performed by

having at least two data scientists analyse the recorded

raw data, thriving for consensus between interrater

judgements. In the automated data analysis, the algo-

rithm, which was developed for automatic detection of

the relevant parameters, was used. The algorithm

includes of Butterworth filtering for reducing noise

and artefacts and enables the automatic detection of

the start position and the end position of the test as

well as relevant parameters identified for each test (e.g.,

the turning points in the 6MWT). The last method used

the aforementioned algorithm, which was applied to a

data subset that had been cleaned of outliers by a data

analyst.
Data from visual and automated analysis (via an

algorithm) were compared to observational testing

(ground truth, recorded by the physiotherapists who

conducted the tests). The accuracy and mean deviation

from the ground truth were calculated for three meas-

ures: distance walked during the 6MWT, time taken to

perform the TUG, and number of transitions per-

formed during the 30SCS. For these three tests,

descriptive properties were calculated as the main

analysis.

When comparing the fall risk classified by using the

defined cut-off points of the clinical standardized tests,

the observational data was used as ground truth and

the data derived by the algorithm was tested against the

observational data.
Due to an error in designing the interface for the

physiotherapists, the final scoring of the 4SBT was

binary (either having passed the fourth position (stand-

ing on one leg) or not, with no data available on posi-

tions 2 and 3). One-leg standing balance have shown to

be a predictive marker for injurious falls in elderly pop-

ulation.29,35 Thus, the accuracy was computed for each

test between the physiotherapist’s observation and the

algorithm’s appraisal, and an F1 score was computed

for the binary result of the 4SBT. The F1 score is the

harmonic mean of precision and sensitivity. It is a mea-

sure of accuracy, considering both precision (positive

predictive value) and recall (sensitivity). The score

ranges from its best value at 100% (perfect precision

and recall) to its worst value at 0%.
Additional variables derived from sensor data are

presented descriptively, since there is no data from

observational testing that can be used for comparison.

For the 6MWT, step length, number of turns at the

cones, step impact, and walking endurance were com-

puted. Step impact indicates the speed of treading, i.e.,

how fast the foot hits the ground and endurance factor,

computed as slope (Dt), indicates the speed changes

over the course of the six minutes. For the TUG,

time for standing up, time for sitting down, and,

while walking, the number of steps, step length, and

step impact were calculated. A lower number of steps

might be a result of a higher step length, indicating

more gait stability. For 30STS, the number of transi-

tions (sit-to-stand and stand-to-sit) and the durations

for the transitions (i.e., the time it took to stand up and

the time it took to sit down) were obtained. For the

4SBT, the failing or passing of each of the four pos-

tures and the duration of holding each posture, as well

as the compensatory arm movement during each pos-

ture were calculated. The arm movement serves to keep

the balance, as is it is used to equalize the movement

caused by instability. Stability can thus be defined as

the reverse of the equalizing motion.

Results

A total of 226 individual tests were recorded across the

13 participants. Each participant repeated each test

between one and eight times with an average of 4.35

times (SD 1.82 times), uniformly distributed across the

four test types (6MWT, 4SBT, TUG, 30STS). Due to

eight missings in the handwritten records of the phys-

iotherapists and two missings that resulted from
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forgetting to start the recording of the smartwatch, a

total of 216 test results were used for data analysis.

Accuracy of visual and automated data analysis. The accu-

racy and mean deviation based on the visual data anal-

ysis, automated data analysis (via an algorithm) and

automated data analysis after excluding outliers for

6MWT, the TUG and the 30STS are shown in

Table 1. Due to the above-mentioned error, there was

no sufficient ground truth data available for a similar

analysis for the 4SBT.
With regard to visual raw data analysis, we were

able to achieve an accuracy of 70–98% (depending on

the test) in comparison to the physiotherapists’ clinical

assessments (Table 1). An accuracy of 86–97% was

reached when the automated algorithm was used.

6-Minutes walk test

An example of the Gyroscope data recorded with the

smartwatch during one complete 6MWT is shown in

Figure 3. Exemplary, the Figure shows the gyroscope

data that corresponds to the accelerometer’s x-axis, but

the pattern can be seen in all rotations around all three

axes. The 18 high amplitude blocks indicate the

walking and the spikes between the blocks signify the
turns. The last (19th) block is shorter, indicating the
remaining distance until the test was stopped after
exactly 6minutes.

The visual analysis of the 6MWT data showed high
accuracy (97.57%). Only two tests had an error due to
a hardware malfunction and were subsequently elimi-
nated from analysis. The automated evaluation of the
6MWT provided an accuracy of 90.75% for the whole
data set (including outliers) and 96.55% (excluding
outliers). Outliers include participants who did not
follow the instruction of walking in circles but instead
crossed the middle line and walked in the shape of an
eight (1) around the two markers, as did the partici-
pant shown in Figure 3. This lead to walking the wrong
way around a cone once, which results in a flip of the
regarding peak (see Figure 4).

Further descriptive analysis reveals that the auto-
mated analysis differs from the ground truth by
30.50m on average. The difference decreases to
17.64m when excluding the outliers. This equals the
difference between the visual analysis and the ground
truth (16.68m), meaning that the algorithm performs
as well as an experienced professional rating the raw
data. Moreover, an additional analysis that did not use

Table 1. Results for visual data analysis, automated data analysis, and automated data analysis after removing the outliers.

Results

Visual Data Analysis

Automation Algorithm

(on whole data set)

Automation Algorithm on valid

data only (excluding outliers)

Test Accuracy Mean Difference Accuracy Mean Difference Accuracy Mean Difference

6MWT 97.57% 2.31% 90.75% 9.67% 96.55% 3.05%

TUG 69.22% 21.16% 84.64% 11.00% 86.42% 9.23%

30STS 91.78% 7.16% 78.15% 14.28% 78.15%a 14.28%a

Each was compared to the ground truth, i.e., the physiotherapist’s observations.
aNo outliers identified.

Figure 3. Gyroscope signal of a complete 6-Minutes Walk Test. This pattern of longer segments indicating straight walking separated
by short segments indicating turns is observed in all three rotations.

Haescher et al. 5



absolute numbers showed that the deviations neither

tend to systematically over- or underestimate the

ground truth, as the deviation decreased to 5.08m

when overestimations and underestimations were

juxtaposed.
As for the fall risk, the 6MWT showed an accuracy

of 94.64% for the comparison between the physio-

therapist’s observations and the fall risk determined

by the automatic algorithm. The sensitivity reached

97.29% whereas the specificity reached 89.47%. The

F1 score achieved 96%.

Timed up and go test

Figure 5 shows the process of cropping and filtering the

raw data (accelerometer data). After the pre-

processing, the total time taken for the test was

detected. The time taken to stand up and sit down

was calculated since the process of standing up and

sitting down is visible in the orientation with regard

to the earth’s gravity.

The results of the automated analysis differ by
1.75 seconds from the ground truth. This low deviation
is reduced even further when excluding outliers (yield-
ing a difference of 1.24 s from the ground truth). As the
visual analysis of the recorded data differed from the
ground truth by 3.01 seconds on average, the algorithm
outperforms an experienced professional in analysing
the recorded data. This result explains the lower accu-
racy reported in Table 1. Despite the deviations, how-
ever, the accuracy still lies at 69.22% for visual analysis
and above 84% for the automated analysis.

As for the fall risk, the TUG showed an accuracy of
94.64% for the comparison between increased fall risk
determined by the physiotherapists and the automatic
algorithm. The sensitivity reached 77.77% whereas the
specificity reached 97.87%. The F1 score achieved
82.35%.

30-Second sit-to-Stand test

Figure 6 shows the result of a 30-Second Sit-to-Stand
Test. The graph shows the accelerometer raw data

Figure 4. Turning points of the 6-Minutes Walk Test (6MWT). The signal is recorded by a gyroscope. The participant changed
turning directions once at 09:18:10, as visible in the graph by the peak that is flipped upside down.

Figure 5. Filtered and cropped signal of accelerometer TUG recording. The starting event is getting up, whereas the stopping event
is sitting down.
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(green graph) and the filtered and cropped data (blue
graph).

The visual analysis of the recorded data shows a
high congruence with the ground truth (91.78%). The
automated data analysis and the ground truth share a
lower congruence (78.15%), as they differ on average
by 1.79 sit-to-stand-transitions. The recorded data
allows for a better analysis, as the visual analysis only
differs by 0.68 transitions from the ground truth.

As for the fall risk, the 30STS showed an accuracy of
76.78% for the comparison between increased fall risk
determined by the physiotherapists and the automatic
algorithm. The sensitivity reached 86.20% whereas the
specificity reached 66.66%. The F1 score achieved
79.36%.

4-Stage Balance Test

Since the ground truth of the Balance Test (4SBT) is
binary, we chose the F1 score over the mean deviation.
An F1 score of 86.59% was achieved. The congruence
between the automated analysis and the ground truth
was higher for the first part of the 4SBT (namely,
92.73%) than for the fourth part (78.18%).
Moreover, it was exceeded by the congruence of the
visual analysis with the ground truth (100% for the
first part, 89.09% for the fourth part), meaning
the recorded data is a promising basis for accurate
analyses when improving the algorithm.

No comparison between the visual, automated and
observational analysis could be computed due to miss-
ing ground truth (observational data). An error in the
interface of the digital evaluation sheets only allowed
the physiotherapists to mark whether a participant had
passed or failed the first posture and whether a partic-
ipant had passed or failed the last posture. No infor-
mation was given on posture two and three, the latter
being used for determining the fall risk. Since no par-
ticipant had failed the first posture and only in 20 per-
cent of the balance tests posture four was passed,

sample size was too small to conduct inferential anal-
yses on the informative cases only. Instead, additional
variables have been identified and extracted from the
recordings (see section on additional parameters).

As for the fall risk, the 4SBT showed an accuracy of
76.78% for the comparison between increased fall risk
determined by the physiotherapists and the automatic
algorithm. The sensitivity reached 95.45% whereas the
specificity reached 8.33%. The F1 score achieved
86.59%.

Additional information provided by the recorded
smartwatch data

The additional variables obtained from the smartwatch
during the clinical tests, for which no ground through
data was available, are presented descriptively in
Table 2. Data is presented for a prototypical represen-
tative for each of the two classifications of fall risk: one
participant with a low risk of falling and one partici-
pant with a high risk of falling risk (as classified by the
questionnaire).

The participants with high risk of falling demon-
strated shorter step length, lower step impact and had
a larger decrease of speed over the 6MWT, indicating a
lower endurance factor during the 6MWT than the
participants with low risk. In addition, in the TUG
and 30STS, the participants with high risk of falling
showed longer time in transfers between sitting and
standing. In the 4SBT, the amount of arm compensa-
tory movement was larger for the participants with
high risk of falling.

Figure 7 illustrates the equalizing motion for two
participants while holding positions that were both
simply marked as “passed the first posture” in the phys-
iotherapist’s observation. Participant LS (low risk of
falling according to the questionnaires) passed the
first three postures while participant SP (high risk of
falling according to the questionnaires) only passed the
first two postures. In the recorded data, we can see that

Figure 6. Acceleration sensor data of a 30-Second Sit-to-Stand Test (LS0000).

Haescher et al. 7



participant LS used much less equalizing arm motion

to balance than participant SP in the second posture,

which serves as an additional indicator for fall risk.

Discussion

The goal of this study was to evaluate if four individual

tests can be conducted in a digital system. In this study,

after removing the outliers, the 6MWT could be auto-

mated with an accuracy of 97%, the TUG with an

accuracy of 85%, and the 30STS with an accuracy of

78%. To ensure the algorithm neither underestimates

Table 2. Additional parameters computed for a participant with low risk of falling (LS) and a participant with high risk of falling (SP) in
the four clinical tests during one testing session.

Results

Test Parameter

Participant LS has not

(low risk)

Participant SP

(high risk)

6MWT Distance in m 492.44 300.19

Number of steps 784 618

Step length in m 0.63 0.48

Step impact in m/s2 4.48 4.37

Number of turns 24 14

Endurance factor (slope, Dt)a 0.11 0.20

TUG Stand up duration in s 0.9 1.5

Sit down duration in s 0.7 1.9

Number of steps 14 19

Step length in m 0.5 0.4

Step impact in m/s2 4.32 4.07

30STS Number of transitions “sit to stand” 11 7

Number of transitions “stand to sit” 12 6

Stand up duration in s 1.0 1.9

Sit down duration in s 1.1 1.9

4SBTb Arm movement (variance averaged over all 4 tests) 0.12 4.31

aThe factor denotes how quickly the participant loses speed; the smaller the value, the higher the endurance.
bWhether each test part was passed or failed in the 4SBT cannot be listed in the table, as this information was not logged in the study due to an error in

implementation.

Figure 7. Comparison of two Balance Test results (LS0000) vs. (SP0001). The graph shows an increase in variance (motion scoring)
for participant LS0000 and a fail in the last posture. Participant SP0001 has a much higher increase in variance (motion score) between
posture one and two and failed in the third posture. Equalizing arm motion increases with the more difficult postures, as illustrated in
Figure 8 (data of participant KA who completed all four postures), which shows a continuous increase in motion within the four parts
of the 4SBT.

Figure 8. Change of three axes variance (motion score) over
the four balance postures (KA0000). As the level of difficulty is
increasing, a rise of variance is measured.

8 Journal of Rehabilitation and Assistive Technologies Engineering



nor overestimates the participant’s fall risk, we tested
whether the algorithm yields results comparable to the
physiotherapist’s observations. Descriptive analyses
confirmed this balance for the 30SCS and the TUG,
but showed a trend to overestimate the results of the
6MWT (though this trend diminished once outliers
were excluded). The 6MWT and the 30STS showed
no significant differences compared to the classification
based on the physiotherapist’s observations. The TUG
did yield a significant difference between automated
detection and the physiotherapist’s observations,
despite its comparably high accuracy and despite the
low average deviation of 1.24 seconds, which lies well
within the standard deviation of the ground truth
(3.28 seconds). In the analysis of the motion recordings,
it was difficult to determine the beginning and end of
the test (in case the user did not sit still, which was
annotated by the physiotherapists for 5 incidences) as
well as the moment of “sitting down” during the test, as
the algorithm captures the moment the user sits still,
not when the user touches the chair.

A computation of accuracy and accordance was not
possible for the 4SBT, since the ground truth data was
incomplete, and the additional task involved in the test
procedure (clapping between the tests and double clap
in case of a failed or missed test) was too demanding
for the participants. The digital tests provide the poten-
tial to compute additional parameters for evaluating
the individual fall risk that could not be recorded
before. In addition to this, the digital test is objective
and independent from the human bias that might occur
in classical settings with physiotherapists.

6-Minutes Walk Test (6MWT)

Very high accuracy was achieved for the visual analysis
of the 6MWT data (98%). The accuracy, however, was
lower for the automated analysis (91%). This was
mainly caused by the two participants who did not
walk in circles, but instead crossed the midline between
turning points (walked in the figure of eight; 1). When
excluding these outliers, the performance of the auto-
mated analysis increased to the performance of the
visual analysis. The algorithm relies on a proper per-
formance of the test and is afflicted if participants do
not walk in circles but change directions within the test
or cross the centre line when walking from turning
point to turning point (i.e., walked in the shape of an
eight; 1). Because of this, the algorithm might miss a
turn around the cones, resulting in a discrepancy of 20
meters (one segment) in the final distance. In the cur-
rent state of algorithmic development, these changes in
position influence the accuracy in detection. In future
versions of the algorithm, this type of behaviour must
be considered, as taken up in the section future scope.

Timed up and Go Test (TUG)

For the TUG, the accuracy of the automated algorithm
(85%) outperformed the visual data analysis. The low
accuracy on the visual analysis (69%) was caused by
difficulties to distinguish where the test started or
ended. After the recording had been started on the
device, the participant might have moved an arm
before the test was started, for example. To deal with
these confounding influences (motion artefacts in the
recordings prior to the actual test or after the actual
test), participants were asked not to move for one
second before starting the test. Some participants
struggled to comply. Therefore, the algorithms had to
be adjusted towards more constant parameters that
provide information about the process of standing up.

In the current development state, the automated
detection depends on a standardized starting and
ending posture (similar posture, e.g., hands on the
lap). Nonetheless, we were able to calculate the time
taken to stand up and sit down using the orientation
with regard to the earth’s gravity. It is worth noting
that the automated analysis differed from the ground
truth only by a mere 1.24 s on average.

30-Second Sit-to-Stand Test (30STS)

For the 30-second Sit-to-stand Test, the accuracy was
found to be higher for the visual analysis (92%) than
for the automated analysis (78%). Factors that nega-
tively influenced the automated computation quality
were identified as the speed of performance and the
resulting variance in distinct posture transition states
(e.g., sitting or standing). Participants who performed
the transitions quickly did not stay in the posture very
long, whereas patients who performed transitions
slowly stayed in a particular state (e.g., sitting) for a
longer period. When the participants were too fast, it
occurred that the algorithm misinterpreted two transi-
tions as one. This led to detection errors and must be
addressed in the future when designing the process of
filtering the data. In the future, filters can be designed
so that fast-performing participants can still be
detected accurately (e.g., define cut-off frequencies
accordingly). Moreover, strong variations in starting
posture (especially arm posture) and end posture led
to varying levels of accuracy between different record-
ings that should also be considered in the further devel-
opment of the algorithm.

4-Stage Balance Test (4SBT)

It is very difficult to interpret the 4SBT data because
there are no ground truth data except for the passing or
failing of the test stages one and four. Information on
stages two and three was not available due to an error
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in designing the interface for the physiotherapists.
There was no place for the physiotherapists to enter
the data for stages two and three, and while sometimes
an optional comment was added to list this informa-
tion, it was not done so throughout. This makes it
impossible to give an accuracy of the developed algo-
rithm; however, the congruence of the mere marking
as” passed” or” failed” between the automated analysis
and the ground truth lay between 78.18 and as high as
92.73%, indicating a promising approach. The visual
analysis of the recordings even corresponded with the
ground truth to up to 100%, hinting at potential for
even more improvement.

However, if we consider the detection of the differ-
ent parts as a tool for calculating additional and clin-
ically relevant parameters, the automated analysis can
generate very interesting results from the recorded
data; for example, information about the amount of
motion that is necessary to keep the balance (e.g.,
arm movement). As shown in the results, this equaliz-
ing motion increases with the more difficult postures.

Additional parameters

Each of the four tests in the current study was evalu-
ated by relying on one parameter only (e.g., number of
steps in the 6MWT, total completion time in the TUG).
To overcome this limitation of the clinical tests, addi-
tional parameters that can be easily extracted from the
sensor data were computed, especially, when using a
smartwatch to record the tests. Step impact, for exam-
ple, indicates whether the foot is placed confidently and
pointedly on the floor, indicating stability. Participants
that are walking insecurely show a lower impact, since
they are carefully placing their feet, most likely due to
shorter step length and not raising their feet very high
from the ground as a consequence of low postural con-
trol. Low endurance, i.e., when the walking speed
decreases over time, can indicate whether the test wear-
ies the participant. Quantification of arm movement
during the 4SBT would allow a more detailed qualita-
tive analysis of static postural control instead of simply
looking at whether the patient was able to hold one
posture for a specified time (yielding a binary result).
Without a ground truth, it was impossible in this study
to determine the accuracy and clinical validity of these
parameters, but the descriptive analysis comparing the
results from one participant with low and one with high
risk of falling demonstrates the additional potential of
these parameters. Since the behavioural tests are con-
ducted as standard, sufficient data could be collected in
a timely manner - both in those with low and high risk
of falling, simply by routinely incorporating the smart-
watch in those standard examinations. Once thresholds
will have been determined according to the gathered

data, the smartwatch will allow for a much more
detailed and qualitative and thus more valid classifica-
tion of the fall risk.

Strengths, challenges, and limitations

As shown, wearable wrist-worn sensors can record and
compute parameters related to gait, postural control,
mobility and strength. By analyzing these parameters, a
personalised risk assessment can be enabled via a fall
risk model. Yet, even though the comparison of the test
outcomes and the fall risk according to the question-
naires shows that the data correlates, the whole fall risk
model is more complex and needs additional input,
such as patient anamnesis information. It is not possi-
ble to infer on the overall fall risk by solely looking at
the test results of any one test (TUG, 30STS, 4SBT, or
6MWT). This is in line with the literature, that suggests
that a single tests should not be used in isolation to
identify individuals at high risk of falls, e.g., in
community-dwelling older adults.36,37 While it is
known that no single measure is an accurate diagnostic
tool, there is limited information on which anamnestic
question, self-report measure, or performance-based
measure, or combination of measures, best predicts
future falls. Thus, guidelines recommend that patients
aged 65 years and older who are admitted to a hospital
should undergo a multifactorial falls risk assessment,
resulting in a vast number of required testing with lim-
ited staff.38 The proposed automated analysis can save
time and resources, producing relief and simultaneous-
ly improving the diagnostic efficiency, indicating
patients at risk, and enabling selective preventive
measures.

It not only saves time and resources but also limits
the chance for human error. Human error – and human
bias – can distort test results. Since the results of the
observational testing were considered as the ground
truth (i.e., used as the actual correct value) in the cal-
culations, they could also influence the results within
this study. For example, the reaction time of the super-
visor using a manual stopwatch might influences the
time measured. It is also possible that the supervisor
forgets the number of turns or repetitions while count-
ing. In addition to these errors, the human observer
could be unconsciously biased, which could influence
his perception, e.g., of the defined start and stop posi-
tions, such as the actual moment a subject sat down on
a chair.

In case an automated algorithm recognizes the
defined starting point and ending point more precisely
than a human supervisor, the bias (human error/inac-
curacy) in the ground truth data could lead to a higher
error for the algorithm (in comparison to the ground
truth). While, usually, a higher error would indicate
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that the algorithm yields a lower accuracy than the
observation, in these cases, it would mean that the
algorithm actually outperforms the observation. This
needs to be considered when interpreting the corre-
spondence between the smartwatch data and the obser-
vational data reported in this study.

However, there are limitations and challenges to the
proposed approach. One main challenge in developing
a wearable system for automatic detection of standard-
ized tests is the design of a proper user interface. An
ideal solution would require as little input as possible.
Instead, an implicit detection approach would identify
the performed test automatically without a need of
explicit user inputs. This could improve the compliance
with regard to long-term usage.

Another main challenge is rooted in the fact that the
results of the current approach rely on an accurate
cropping of motions that either happen prior to the
actual test or post recording. Erroneous cropping
leads to errors in the automatic detection algorithms
and therefore to lower accuracy rates. In addition to
this, the speed of performing a particular test,
unwanted motion artefacts, breaks during a test, and
varying motion amplitudes may lead to signals that are
difficult to process. Filters need to be adapted to the
particular recording and user, to enable the best result
possible.

Participants who reported using walking aids in
their everyday lives were asked no to use those during
testing. This was done to enhance reliability and com-
parability of the motions measured by the smartwatch
during the tests. This may have decreased ecological
validity, as they are permitted and even encouraged
to be used when testing in the field.39,40 However, it
is also possible that this deviation in proceedings actu-
ally increased ecological validity of the tests for some
members of the population, since around one out of 4
individuals who own walking aids actually do not use
them in their everyday lives,41–43 which would cause
testing the fall risk with walking aids to underestimate
the actual fall risk. Nonetheless, it will be very interest-
ing to re-test the automated fall risk detection with
smart wearables while using walking aids in a future
study.

Future scope

While the results are very promising, with the high
accuracy rates reflecting face validity, the next step
should entail replicating the conformity with inferential
statistics, by either enlarging the sample size or employ-
ing mixed model approaches. In addition, the results
show that the automated assessment achieves a very
high precision in those tests that were performed cor-
rectly. However, we cannot assume that the

participants always perform the tests in the expected

way. They may change walking direction, move too

much or simply forget what they were instructed to

do. To minimize the recording of confounding effects

of these breaches in adherence, the physiotherapists

could be provided with more control over starting

and stopping the test remotely. A solution could be

provided by introducing a smartphone app to operate

the recording of the smartwatch. In addition to this,

algorithmic understanding of the occurrence of breaks

within tests needs to be investigated further. Breaks are

possible, e.g. in the 6-Minutes Walk Test, but they did

not occur within this pilot.
The algorithm used in the current study provided

valid information about participants’ performance on

the selected functional tests, which confirms our objec-

tive that it has a potential to support identification of

individuals in risk of falling. The algorithms could be

further designed to collect different data for different

interests. The suggested additional parameters (e.g.,

number of steps, step impact, time to sit, time to

stand, etc.) would enable a broader view on the perfor-

mance of each participant. However, the definitions of

ground truth and evaluation of their predictive value,

precision, accuracy, and validity need to be tested. In

the future, these parameters might provide valuable

insights for clinicians in understanding the physical

and mental state of the elderly. The benefits include a

reduction of efforts for both the practitioner and the

individual being tested, as well as improved objectivity

and quantification of problems.

Conclusion

The overall contribution of this study is the develop-

ment of an objective and automated fall risk

assessment. We present wearable technology and a

multi-parametrical model to estimate fall risk and, con-

sequently, to support fall prevention. The proposed

approach has been evaluated and has proven to

match up to observational diagnostics performed by

a physiotherapist.
By introducing an automated detection (e.g., via a

smartwatch), additional parameters that would cur-

rently overwhelm the examiner (e.g., physiotherapist)

can be introduced. Thus, a multiparametric assessment

of the users fall risk can be enabled without increasing

the cognitive load and workload of the physiotherapist.

Since the wrist-worn device and the automated analysis

facilitate the diagnostic part, resources become avail-

able for the physiotherapists to focus on the physical

training to reduce the fall risk of the patient.
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