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Summary

We used a two-step enrichment approach to iso-
late root-colonizing hexachlorocyclohexane (HCH)-
degrading microorganisms. The first step consists of
the use of classical liquid enrichment to isolate y-HCH
degraders. The fy-HCH-degrading microbes were
attached in mass to corn seeds sown in soil with
vHCH, and after plant development we rescued bac-
teria growing on root tips. Bacteria were then sub-
jected to a second enrichment round in which growth
on liquid medium with v-HCH and inoculation of corn
seeds were repeated. We then isolated bacteria on M9
minimal medium with y-HCH from root tips. We were
able to isolate four Sphingomonas strains, all of
which degraded o-, B-, - and 8-HCH. Two of the
strains were particularly good colonizers of corn
roots, reaching high cell density in vegetated soil and
partly removing y-HCH. In contrast, these bacteria
performed poorly in unplanted soils. This study sup-
ports the hypothesis that the removal of persistent
toxic chemicals can be accelerated by combinations
of plants and bacteria, a process generally known as
rhizoremediation.

Introduction

The organochlorine pesticide lindane [y-hexach-
lorocyclohexane (HCH)] and its non-insecticidal isomers
(o, B-, 8-HCH) continue to pose serious environmental
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and health concerns, particularly in sites where they have
been produced and inappropriately stored or disposed of.
Despite being banned commercially for decades (Simon-
ich and Hites, 1995), HCH remains a persistent contami-
nant in many soils. The y-isomer of HCH, known as
lindane, has been widely used as a pesticide. This com-
pound is highly recalcitrant, has dispersed throughout the
biosphere and has bioaccumulated in many species. Con-
taminated environments frequently contain mixtures of
several HCH isomers (mostly o-, -, - and -HCH) which
differ in their toxicity, water solubility (and thus mobility
and bioavailability) and recalcitrance (Mohn et al., 2006).
The y-isomer has insecticidal effects, whereas B-HCH is
less harmful but extremely recalcitrant to aerobic degra-
dation. Several groups have found that the 3-isomer inhib-
its bacterial growth, thus possibly limiting bioremediation
(Dogra et al., 2004; Mohn et al., 2006; our unpublished
results).

Natural attenuation of HCH is attributed to microbial
activity and as a result, bioremediation is considered a
potential strategy for the long-term in situ attenuation of
HCH contamination. Support for this strategy comes from
studies suggesting that HCH degradation occurs in a
variety of soil types, including aerobic and anaerobic ones
(MacCrae etal., 1969; Tu, 1976; Jagnow etal., 1977;
Doelman et al., 1985; Bachmann et al., 1988), and that
the organisms responsible for HCH degradation are
enriched with repeated applications of lindane (Wada
et al., 1989; Nagata et al., 1999). However, direct appli-
cation of Sphingomonas sp. UT26 and related strains into
soil had very little effect, mainly because of poor survival
of these microorganisms in soil and their high sensitivity to
low water content (our unpublished results).

Rhizoremediation, the degradation of contaminants by
microorganisms in the rhizosphere (the soil affected by
plant roots), holds great potential for the remediation of
contaminated soil (Kuiper et al., 2004a,b) In the ‘rhizo-
sphere effect’ plants provide nutrients in the form of root
exudates, oxygen and favourable redox conditions to soil
microorganisms, and this in turn results in increased bac-
terial diversity, population density and activity compared
with bulk soil (Molina et al., 2000; Vilchez et al., 2000;
Espinosa-Urgel and Ramos, 2001). Moreover, plants
may be used as bio-injectors of pollutant-degrading
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microorganisms into contaminated soil (Ramos-Gonzalez
et al., 2005). Kuiper and colleagues (2004a) described an
approach to select bacteria able to degrade a pollutant
and colonize the rhizosphere of plants. This approach
involves a two-step enrichment process in which bacteria
are isolated in liquid culture from the roots of plants
growing in contaminated sites, and these cultures are
used to re-colonize plant roots so that biodegrading
microbes can be isolated once again. Here we used this
two-step process to enrich HCH-degrading bacteria able
to colonize the roots of maize plants (Fig. 1). We estab-
lished enrichments to isolate bacteria capable of degrad-
ing not only insecticidal y-HCH, but also recalcitrant
B-HCH and growth-inhibiting 3-HCH. In particular, we
attempted to enrich ‘rhizodegraders’, root-colonizing bac-
teria able to degrade HCH isomers. The soil samples
came from Ansio (Vizcaya, Spain) and Chemnitz-
Schweizerthal (Germany), and varied greatly in levels of
HCH contamination and the presence of the various HCH
isomers. At some points the level of HCH was > 1 mg of
HCH per gram of soil.

Two-step enrichment of HCH-degrading bacteria
that colonize the rhizosphere (‘rhizodegraders’)

Neufeld and colleagues (2006) found that differences in
soil microbial composition and diversity were associated
with the presence of HCH. To find out whether the
presence of pollutants favoured the proliferation of
HCH-degrading microorganisms, we used a two-step
enrichment approach adopted from Kuiper and col-

Fig. 1. Two-step root colonization and
recovery of lindane-degrading
microorganisms. About 10 g of soil was
suspended in 100 ml of M9 minimal medium
with y-HCH isomer. When y-HCH disappeared
1 ml of suspension was mixed with corn
seeds. After washing, the seeds were planted
in 40 g of vermiculite with 10 mg of y-HCH per
gram of vermiculite. Bacteria that colonized

1 cm root tip were removed and grown on M9
minimal medium with y-HCH. When growth
was apparent we inoculated the corn seeds
again, and after 10 days bacteria were
recovered by spreading the suspension on
M9 minimal medium plates with y-HCH as the
sole carbon source.

¥-HCH batch

Inoculation
of rhizosphere

leagues (2004a) to select HCH degraders able to colonize
the roots of maize plants. The first step was growth in
batch using modified M9 mineral medium (Abril et al.,
1989; Duque et al., 1993) and y- or - or 3-HCH as the
sole carbon source (10 mg ml™), and microorganisms
were isolated from rhizosphere soil (soil surrounding the
roots of plants) from HCH-contaminated sites in Germany
and Spain, or bulk soil from the same locations (Table 1).
Cultures were incubated at 28°C with shaking for 2 weeks
and monitored for HCH degradation as described previ-
ously (Béltner et al., 2005). We found HCH degradation in
all cultures with y-HCH, but no degradation in cultures with
f3- or 8-HCH as the sole carbon source, suggesting that -
and B-HCH were not used as carbon or energy source
when used in enrichment cultures.

After a first enrichment step in batch culture with
v-HCH-containing medium as described above, an aliquot
of the culture was used to inoculate surface-sterilized
maize seeds (Fig. 1). Corn seeds were surface-sterilized
through rinsing with sterile deionized water and washed
twice for 10 min with 70% (v/v) ethanol and once with 20%
(v/v) bleach, followed by thorough rinsing with sterile
deionized water. Surface-sterilized seeds were germi-
nated on a Petri dish in the presence of penicillin G
(500 ug mi~") (Oehrle et al., 2000) at 30°C for 2 days in
the case of root colonization assays, or for 3 days if
seedlings were to be transferred to a tube with soil or
vermiculate. Around 5 ul of bacterial culture containing
about 108 colony-forming units (cfu) ml~" was used to
inoculate the seeds. After incubation for 1 h without
shaking at 30°C, the seeds were washed and planted in
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Table 1. Description of soil samples used to isolate HCH-degrading microorganisms: name and characterization of HCH-degrading Sphingomo-

nas strains isolated in this study.

HCH isomers

Soil sample source Sample type Isolate degraded Closest relative (16S rDNA) Identities
Chemnitz-Schweizerthal Bulk soil DS-204B o B, v 0 Sphingomonas 1383/1386 (99%)
‘Dump site’, Germany herbicidovorans
AB042233
Chemnitz-Schweizerthal Bulk soil OF-178A o B, 7 0 Sphingomonas sp. DS3-1 1016/1022 (99%)
‘Old factory’, Germany AJ87127
Sphingomonas taejonensis 1016/1022 (99%)
AF131297
Chemnitz-Schweizerthal Rhizosphere soil from GOF-203 o, B,y 8 Sphingomonas 1360/1386 (99%)
‘Old factory’, Germany grasses herbicidovorans
AB042233
Bilbao, Ansio site, Spain Rhizosphere soil from Ans-PLO o B,y 0 Sphingomonas sp. D12 519/530 (97%)
Plantago lanceolata AB105809
Bilbao, Ansio site, Spain Bulk soil Ans-PL2 o B,y 0 Sphingomonas sp. D12 519/530 (97%)
AB105809

The enrichment strategy, strain identification based on 16S rDNA sequencing and HCH isomers degraded by the isolates are described in the text.

pots containing vermiculite or used to determine the
number of bacteria attached to the seed. Subsequently,
the seedlings were collected and the root tips were
removed. The attached rhizosphere bacteria were sus-
pended in M9 buffer by vigorous shaking of the root tips
with glass beads. Then the bacterial suspension was used
to inoculate a new batch culture with y-HCH. These bath
cultures were used to inoculate corn seeds that were
sown in vermiculite with HCH to favour enrichments in
root-colonizing HCH degraders. After the second round,
rhizosphere bacteria were spread on solid medium con-
taining different HCH isomers. We found only small colo-
nies (around 1 mm diameter) that appeared 1-2 weeks
after inoculation. Putative HCH degraders were recog-
nized as those surrounded by a clear zone in the HCH
film.

The appearance of all colonies obtained with a given
source of soil was identical, and we therefore kept a single
isolate from each enrichment. Then we assayed y-HCH
degradation by gas chromatography-mass spectrometry
(GC-MS) as described before (Boltner etal., 2005).
Each of the isolates (Table 1) was able to degrade the
insecticide.

With this approach we isolated three Sphingomonas
strains from the ‘Old factory’ soil sample from the
Chemnitz-Schweizerthal site, and named the strains
DS-204B, OF-178A and GOF-203. On the basis of 16S
rDNA sequences, these strains belonged to the genus
Sphingomonas and exhibited high identity with strains
isolated previously (Table 1 and Fig. 2).

The same two-step enrichment with bulk soil and rhizo-
sphere soil from Plantago lanceolata plants collected at
the Ansio site in Bilbao (Spain) yielded two new isolates,
called Ans-PL0O and Ans-PL2, which were identical based
on analysis of their 16S rDNA sequences. These

© 2007 The Authors

members of the genus Sphingomonas were related to the
HCH-degrading a1-2, a4-2 and 04-5 strains previously
isolated by W.W. Mohn and V. de Lorenzo from the same
location (pers. comm.). This suggested that the Ansio
strain is well adapted to HCH degradation and root
colonization.

The four newly isolated strains were subjected to deg-
radation tests with different HCH isomers in minimal
medium supplemented with low concentrations of amino
acids. This source of carbon was chosen because these
series of experiments were designed with the aim of
testing rhizoremediation of lindane and because we pre-
viously showed that plant exudates are rich in amino acids
and support bacterial growth (Vilchez etal., 2000;
Revelles et al., 2004; Ramos-Gonzalez et al., 2005). We
found that all four strains were capable of removing
10 ug mi" o-, B-, v and (-HCH within 96 h in 25 ml of
batch culture assays carried out as described earlier by
Béltner and colleagues (2005) (Table 1 and Fig. 3).
B-HCH and &8-HCH are apparently unable to support
growth when used in enrichment cultures, although they
can be removed by a number of strains isolated by enrich-
ments with y-HCH. This is particularly relevant as it offers
the opportunity to remove chemicals that may not support
microbial growth.

Presence of lin genes and I1S67100 in HCH
rhizodegraders

Sphingomonas paucimobilis UT26 and other HCH-
degrading Sphingomonas strains from remote geographic
locations use a well-characterized pathway encoded by
the lin genes (Nagata et al., 1999; Kumari et al., 2002;
Dogra etal., 2004; Boltner etal., 2005). Polymerase
chain reaction with primers described previously (Béltner
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Fig. 2. Phylogenetic tree of the Sphingomonas isolates identified in this study. The tree was constructed with the PILE UP program.

et al., 2005) was used to generate amplicons for the struc-
tural genes linA, linB, linC, linD, linE and the transcrip-
tional regulator /inR, as well as the transposable element
1IS6100 supposedly involved in horizontal /in gene transfer
(data not shown). We sequenced the lin genes of strains
OF-178, DS204-B, GOF-203 and Ans-PL0, and found that

the sequences were 99—100% identical to the /in genes of
UT26. This is consistent with the finding that /in genes
spread via horizontal gene transfer among Sphingomo-
nas strains (Dogra et al., 2004; de Felipe et al., 2005).
The pathway for y-HCH degradation in S. paucimobilis
UT26 has been well characterized (Nagata et al., 1999)
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Fig. 3. Degradation of four HCH isomers by a culture of
Sphingomonas GOF-203. Gas chromatography-mass spectrometry
determination of lindane isomers was performed with an HP

6890 series gas chromatograph fitted with an HP 6890 mass
selective detector, using a capillary column (HP-5MS,

30 m x 0.25 mm x 0.25 um). The injector and detector temperatures
were 260°C and 280°C, respectively, and the carrier gas (helium)
flow rate was 1.3 ml min~'. The temperature programme started at
50°C, then temperature was increased at a rate of 8°C min™'
between 50°C and 190°C, followed by a final stage at 190°C for
2.5 min. Cultures of strain GOF-203 in modified M9 minimal
medium (Abril et al., 1989) were supplemented with 10 ug mI~' of
the indicated HCH isomer and 0.3% (w/v) casamino acids. At the
indicated times the concentration of HCH isomers was determined
as indicated above. HCH isomers used from the outside to the
inside of the figure were o (grey bars), B (black bars), y (dotted
bars) and & (open bars) respectively.

and we assume that the same pathway operates in the
rhizodegrader Sphingomonas strains isolated in this
study.

Colonization rate of strains GOF-203 and Ans-PL0O

To determine the colonization rate of two of the new
isolates found in association with plant rhizospheres, we
first determined the strains’ ability to adhere to corn
seeds. Assays were performed exactly as described by
Espinosa-Urgel and colleagues (2000) with Pseudomo-
nas putida. We found that the number of bacteria capable
of adhering to corn seeds was in the range of 10-10° cfu
per seed, which is about one order of magnitude below
that of P. putida, but at least one to two orders of magni-
tude higher than adherence of the UT26 strain that is a
poor root colonizer. Ten pre-germinated corn seeds
covered with each of the two Sphingomonas strains under
study (GOF-203 and Ans-PL0) were transferred to Falcon
tubes with sterile vermiculite to which 30 ml of plant nutri-
tive solution was added. Plants were incubated at 24°C
with light exposure for 12 h in a 24 h period. We then
determined the number of cfu per gram of root. Coloniza-
tion by both strains was uniform, with an average value of
around 5 + 1 x 108 cfu per gram of root. We also deter-
mined the cfu throughout the root system. We found that
in the first centimetre of the root end tip, the number of cfu
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was on the order of 10° per gram of root, whereas in the
upper root segments the number of cfu ranged between
8 x 108 and 1.5 x 108 per gram of root. To a certain extent
this indicates a differential root colonization rate, which
may be attributable to differences in the availability of
nutrients in different root segments (Loper and Henkels,
1997; Jaeger etal, 1999; De Angelis etal, 2005).
This hypothesis is in agreement with findings in other
microorganisms (Yang and Crowley, 2000; Marschner
et al., 2002; van Diepeningen et al., 2005; Green et al.,
2006).

Similar assays to those reported above with vermicu-
lite were performed in a loamy silt soil with the following
characteristics (wt/wt): 38% sand, 43% silt and 19% clay;
pH 7.9; organic matter content 2.1% and 8% CaCOQO;
content. We found that GOF-203 and Ans-PLO also colo-
nize the root of corn plants, reaching almost 108 cfu per
gram of root. Then we performed a series of assays in
which we spiked the soil to about 0.5 mg of y-HCH per
gram of soil, a concentration often found in polluted soils,
and incubated pre-germinated corn seeds covered with
Sphingomonas GOF-203 and Ans-PLO. We monitored
the number of cfu in bulk soil and associated to the plant
roots, as well as lindane concentration in the soil.
[Lindane concentration was determined in soil extracts
obtained with a mixture of hexane/acetone (1:1) and
subjected to microwave pulses (2 min at 600 W, plus
9 min at 1200 W) followed by GC-MS of the treated
extract]. After 25 days of incubation with lindane, we
found that in the root soil the number of Sphingomonas
cells was around 107 cfu per gram of root. The concen-
tration of lindane decreased by about 30% with respect
to the initial concentration, whereas in the control inocu-
lated with the strain in unplanted soil the number of cfu
per gram of soil was below 10% and the decrease in
lindane concentration was less than 2%. In sterile
planted soil, lindane decreased by less than 3%. In
another control with uninoculated and unplanted soil, the
decrease in lindane concentration after 25 days was less
than 1%. These results indicated a positive effect of
plants on survival of the Sphingomonas strains in soil,
and an enhancement of their degradative properties.

Field studies will be needed to reveal the full potential of
this approach, but it should be mentioned that phytoreme-
diation and phytorhizoremediation have been shown to be
efficient ways to remove nitro-organic compounds and
polyaromatic hydrocarbons, and effective in immobilizing
heavy metals in the environment (Kuiper etal., 2001;
2004b; van Dillewijn et al., 2007). We therefore propose
that rhizoremediation holds great potential for the treat-
ment of persistent and recalcitrant organic chemicals,
although the efficiency of the process can be influenced
by a number of factors that may require adjustment to
achieve optimal results.
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