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Abstract

Gold nanoparticles (AuNPs) and gold ion complexes have been investigated for their antibacterial 

activities. However, the majority of the reports failed to disclose the concentration of free Au(I) or 

Au(III) present in solutions of AuNPs or gold ion complexes. The inconsistency of antibacterial 

activity of AuNPs may be due to the effect of the presence of Au(III). Here we report the 

antibacterial activity of Au(I) and Au(III) to four different bacteria: one nonpathogenic bacterium: 

E. coli and three multidrug-resistant bacteria: E. coli, S. typhimurium DT104, and S. aureus. Au(I) 

and Au(III) as chloride are highly toxic to all the four bacteria, with IC50 of 0.35 – 0.49 µM for 

Au(III) and 0.27–0.52 µM for Au(I).The bacterial growth inhibition by both Au(I) and Au(III) 

increases with exposure time and is strongly affected by the use of buffers. The IC50 values for 

Au(I) and Au(III) in different buffers are HEPES (0.48 and 1.55 µM) > Trizma (0.41 and 0.57 µM) 

> PBS (0.14 and 0.06 µM). Bacterial growth inhibition by AuNPs is gradually reduced by 

centrifugation-resuspension to remove residual Au(III) ion present in the crude synthetic AuNPs. 

After 4 centrifugations-resuspensions, AuNPs become non-toxic. In addition, both Au(I) and 

Au(III) are cytotoxic to skin keratinocyte and blood lymphocyte cells. These results suggest that 

Au(I) and Au(III) in pure or complex forms may be explored as a method to treat drug-resistant 

bacteria, and the test of AuNPs toxicity must consider residual Au(III), exposure time, and the use 

of buffers.

Keywords

Gold nanoparticle; Gold (I) and (III) ions; Antibacterial effect; Cytotoxicity

Introduction

Gold nanoparticles (AuNPs) have attracted considerable interests for fundamental and 

applied research. As AuNP applications continue to increase, growing human safety 

concerns are gaining attention [1–9]. It was pointed out that the toxic effects of AuNPs are 

complex due to co-existing chemicals, such as the presence of citrate and Au(III) ions during 

the photomutagenecity test of AuNPs [10]. Gold nanorods are toxic to human skin cells due 

to the surface coating chemical CTAB (cetyltrimethylammonium bromide), but not the gold 

nanorods [11– 13]. CTAB alone is toxic to cells at sub-micromolar concentrations. The free 
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CTAB molecules in gold nanorod solutions may be a result of inadequate purification and 

desorption of surface CTAB from the gold nanorods. Thus, it was suggested that proper 

control experiments must be carried out when studying the toxicity of AuNPs.

Studies on the antimicrobial effects of AuNPs are summarized in a recent review article 

[14]. Among the 70 plus reports on the antimicrobial effect of AuNPs, at least eight of them 

suggested that AuNPs are either not or very weakly antibacterial, while the others reported 

various degrees of antibacterial activity. These discrepancies in the antibacterial activities of 

AuNPs may be due to several factors: 1) the use of surface coating agents on AuNPs 

including antibiotics, 2) the test methods, and 3) residual Au(III). Since most AuNPs 

preparation methods involve chemical reduction of Au(III) salts in aqueous, organic, or 

mixed phases in the presence of reductants and surface-coating agents such as antibacterial 

compounds, the AuNPs solution is a mixture since some of them are used without proper 

purification.

Residual Au(III) ions could cause false antibacterial test results [10,14,15]. In fact, gold ions 

as organic complexes have been of interest as antimicrobial agents [14,16–18]. Many 

reported that Au(I) and Au(III) complexes with organic ligands are effective against a wide 

variety of microorganisms [16–23] including the review article by Gilisci and Djuran that 

summarized the antibacterial activity of Au(I) and Au(III) complexes [17]. Au(I) and Au(III) 

complexes are soluble in organic solvents, but their lack of aqueous solubility limits the 

potential use as antibacterial or therapeutic agents.

We hypothesize that 1) Au(I) or Au(III) is antibacterial; 2) synthetic AuNPs, if followed 

with proper removal of residual Au(III) ions, are weakly or not toxic to bacteria; 3) the 

antibacterial activity of Au(III) and Au(I) is dependent on the exposure time and the use of 

different buffers. Thus, we evaluated the biological activity of Au(I) and Au(III) on four 

bacteria: one nonpathogenic bacterium E. coli and three multidrug-resistant bacteria E. coli, 

S. typhimurium DT-104, and S. aureus; and two human cell lines: a skin keratinocyte and a 

blood lymphocyte cell line. The effect on the antibacterial activity by treatment time and the 

use of buffers (PBS, Trizma, and HEPES) were evaluated. The antibacterial effect of AuNPs 

was studied upon centrifugations to remove residual Au(III) from the synthesis.

Materials and Methods

Materials

Chloroauric acid (HAuCl4, 99%, a form of Au(III) in solution) was purchased from Sigma-

Aldrich and used without further purification. Gold (I) chloride (AuCl) was purchased from 

Strem Chemicals (Newburyport, MA). AuCl, due to its limited water solubility, was first 

suspended in nanopure water through sonication, and then the undissolved AuCl was filtered 

through 0.2 µm filter (Corning Incorporated, NY). The filtered solution had a final Au(I) 

concentration of 2.87 mM determined by ICP-MS (Varian Model No. 820-MS). Bacteria 

and cell lines used in this study include non-pathogenic E. coli (BAA-1431), multidrug-

resistant E. coli (BAA-1161), multidrug-resistant S. typhimurium DT-104 (ATCC 700408), 

multidrug-resistant S. aureus (MRSA, BAA-44), and the blood lymphocyte cell line, 

TIB-152, were purchased from American Type Culture Collection (ATCC) (Manassas, VA). 
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The HaCaT keratinocyte, a transformed human skin cell line, was obtained from Dr. Norbert 

Fusenig of the Germany Cancer Research Center (Heidelberg, Germany). RPMI-1640 

medium was purchased from ATCC (Manassas, VA). Trypsin EDTA solutions were 

purchased from Cambrex Bio Science (Walkersville, MD). Tryptic Soy Broth (TSB) and 

Tryptic Soy Agar (TSA) used to grow the bacteria, and Trizma base (tris-

(hydroxymethyl)aminomethane) and HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) salts were purchased from Sigma-Aldrich (St. Louis, MO). 

Fetal bovine serum (FBS), Dulbecco’s Minimum Essential Medium (DMEM), penicillin/

streptomycin, dimethyl sulfoxide (DMSO), phosphate buffered saline (PBS), and CellTiter 

96® AQueous One Solution Cell Proliferation Assay (MTS) were purchased from Fisher 

Scientific (Houston, TX).

Gold nanoparticle synthesis, purification, and characterization

AuNPs were prepared by adding 5 mL of HAuCl4 (10 mM) solution and 5 mL of 38.8 mM 

sodium citrate (Na3C6H5O7) to 45 mL of boiling H2O. Further heating (100°C) up to 20 min 

caused the solution to turn from yellow to wine red [24]. The solution was centrifuged at 

5000 rpm for 2 h at 20°C and the resulting AuNPs pellet was washed with 5 mL of 0.1 mM 

sodium citrate buffer to remove residual Au(III) ions and citrate ions. This procedure was 

repeated 1–4 times to eliminate residual Au(III) ions. All experiments were carried out with 

the AuNPs ranging 15–25 nm (Figure 1). The characterization of AuNPs was carried out by 

UV-Vis and TEM (JEM 1011, Joel Inc.) and AuNP concentration (0.97 mM) was 

determined using UV-Vis as reported previously [10,13].

Bacterial growth inhibition assay with Au(I), Au(III), and synthesized AuNPs

Bacterial growth inhibition was carried out using the spread plate counting method as 

reported before [25]. E. coli, Salmonella DT-104, and S. aureus were cultured in TSB 

growth medium at 37°C, 200 rpm for 10–12 h in a shaker incubator. The bacterial cultures 

were centrifuged at 3000 rpm for 20 min, and residual bacteria were resuspended in 

sterilized physiological saline (0.85% NaCl). Bacterial density was adjusted to 3 × 108 

cells/mL in PBS. The final exposure concentrations for Au(III) were 0, 0.01, 0.03, 0.1, and 

0.3 µM, and for Au(I) were 0, 0.1, 0.3, 1, and 3 µM. The final concentrations of Au(III) and 

Au(I) for time dependent experiments were 0.1 and 1 µM, respectively. Au(III) and Au(I) 

solution at different concentrations were combined with the cultured bacteria and placed in a 

shaker incubator with continuous agitation at 200 rpm for 2 h or a designate time at 25°C. 

The time dependent samples (100 µL) were transferred onto TSA plates after 30, 60, 90, 

120, 150 and 180 min of shaking. The transferred samples were evenly spread onto the pre-

prepared agar plates, and all plates were inverted and incubated at 37°C for 24 h. For the test 

with different buffers, PBS (pH 7.4), Trizma (pH 7–9) and HEPES (pH 7.4) buffers were 

used at the final concentration of 1 mM. In addition, we tested the inhibition of bacterial 

growth by AuNPs with 0–4 centrifugations at 2 h exposure.

Cytotoxicity assay

HaCaT cells were grown in complete medium (DMEM, 10% FBS, and 1% Fungizone, 

penicillin/streptomycin) in 25 cm2 cell culture flasks. Cells were cultured in a humidified 

Shareena Dasari et al. Page 3

Biochem Pharmacol (Los Angel). Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



incubator with 5% CO2 at 37°C. After the cells grew to confluence, they were detached by 

25% trypsin/DTA and diluted to 3×105 cells/mL by their respective complete media as 

reported before [26]. A 200 µL cell suspension in complete medium was added to each well 

of a 96-well plate and incubated under 5% CO2 at 37°C for 24 h for cell adhesion. TIB-152 

cells were grown in complete medium (RPMI-1640, 10% FBS) in 75 cm2 culture flasks in 

the incubator until 1×106 cells/mL was achieved, and they were then centrifuged and 

resuspended in RPMI-1640 medium. After incubation, the supernatant was pipetted, and the 

adherent cells were washed with 1× PBS before exposed to Au(III). Then a total of 90 µL of 

DMEM (for HaCaT) or EMEM (for TIB-152) and 10 µL of Au(III) at desired concentrations 

were added to each well. A total of 3 wells were used for the test at each concentration. 

After 2 h or 24 h of treatment, cell viability was determined by the MTS assay: 20 µL MTS 

solution was added directly to each well after treatment and the absorbance was read at 490 

nm using a 96-well Multiskan Ascent Plate Reader with Ascent software. The control test 

was performed with PBS buffer.

Statistical analysis

At least three independent experiments were carried out for each point. All statistical 

analyses were performed using the SAS 9.3 software. Significance was determined with 

Generalized Linear Model and Tukey’s test to distinguish the differences between the 

variables for bacterial growth inhibition assays. Significance was determined with 

Generalized Linear Model (Duncan) for cytotoxicity assays. The significance level was 

defined as p < 0.05. IC50 values were determined using SPSS software (IBM® SPSS® 

Statistics, Version 22).

Results and Discussion

Concentration and time-dependent inhibition of Salmonella DT-104, E. coli and MRSA 
growth by Au(I) and Au(III)

We tested bacterial growth inhibition of the four selected bacteria after exposure to Au(I) or 

Au(III) for 2 h. Figure 2 shows the concentration dependent inhibition of the multi-drug 

resistant E. coli (BAA-1161) growth after exposure to 0.1, 0.3, 1, and 3 µM of Au(I) or 0.01, 

0.03, 0.1, 0.3, and 1 µM of Au(III). The other three bacteria show the same pattern of 

inhibition (data not shown). These results confirm that Au(III) and Au(I) are toxic to all the 

four bacteria even at very low concentrations.

From the concentration-dependent inhibition data, IC50 values were determined by SPSS 

and are listed in table 1. Among the four bacteria, the Gram positive MRSA has the highest 

IC50 values (0.49 µM for Au(I) and 0.52 µM for Au(III)), while the three Gram negative 

bacteria have similar IC50 values 0.35–0.39 µM for Au(I) and 0.27–0.36 µM for Au(III). The 

difference in toxicity for the Gram positive and the Gram negative bacteria could be due to 

differences in cell wall structure. The bacterial cell wall plays a vital role in resistance or 

susceptibility [27]. There is very little difference in IC50 values between Au(I) and Au(III) 

for E. coli: 0.38 µM versus 0.34 µM for BAA-1431 and 0.35 versus 0.36 for BAA-1161, and 

MRSA, 0.49 µM versus 0.52 µM, respectively. However, Au(III) is more toxic to the 
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Salmonella DT104 than Au(I) (IC50 of 0.27 µM versus 0.39 µM). The reasons for these 

differences in toxicity need further investigation.

Wang et al first reported the photomutagenicity of Au(III) on S. typhimurium TA102 and 

pointed out that Au(III) is also toxic to the bacterium at a concentration at 1 µM [10]. Nam 

et al very recently reported an extensive study of Au(III) toxicity to a variety of 

microorganisms including bacteria in 2014 [15]. Due to the toxicity of Au(I) and Au(III), the 

tests of antibacterial activity of AuNPs as well as Au(I) and Au(III) complexes have to 

consider the possible presence of residual Au(I) and Au(III). Without proper purification to 

remove the residual Au(I) and Au(III), it may lead to erroneous results.

Time-dependent inhibition experiments were carried out to see how exposure time affects 

the toxicity of Au(I) and Au(III). Figure 3 shows the inhibitory effects on E. coli after 

exposure to Au(I) and Au(III) up to 3 h at two different concentrations (0.1 and 1 µM). At 1 

µM, the percent of bacterial growth inhibition increases from exposure time of 30 min to 60 

min, and it reaches near 100% inhibition at longer than 60 min. At 0.1 µM, the inhibition is 

not detectable at 30 and 60 min exposure, but continues to increase from 90 to 180 min (3 

h). It seems not reaching maximum inhibition even at 3 h. Nam et al examined much longer 

exposure time of 72 h [15]. They found that Au(III) continues to be toxic for some bacteria 

at longer exposure times. This clearly shows that the toxicity of Au(I) and Au(III) to these 

bacteria is exposure time dependent and suggests that exposure time must be factored in 

when conducting similar tests.

Effect of buffers on the growth inhibition of Au(I) and Au(III) to nonpathogenic E. coli

PBS, Trizma, and HEPES are three commonly used buffers. The effect of using these 

buffers (0.01, 0.03, 0.1, 0.3, 1 and 10 µM) on the toxicity of Au(I) and Au(III) to the 

nonpathogenic E. coli was tested with 2 h exposure time (Figure 4). The IC50 values were 

determined using SPSS, and they are listed in table 2: 0.14, 0.41, and 0.48 µM for Au(I) and 

0.06, 0.57 and 1.55 µM for Au(III), in PBS, Trizma, and HEPES buffers, respectively. 

Complete (100%) inhibition was observed for bacteria exposed to Au(III) and Au(I) at 1 µM 

in PBS buffer, whereas in Trizma and HEPES buffers at 10 µM of Au(III) and Au(I), some 

bacteria are still viable. Therefore, the buffers used for this type of test have a profound 

effect on their toxicity. It is more profound for Au(III), where the IC50 in HEPES is 24 times 

of that in PBS. We believe that the use of buffers has an effect on how Au(I) and Au(III) 

behave in solution and how they interact with the bacterial cells. More advanced studies are 

needed to understand the effect of these buffers on the antibacterial effect of gold ions.

Effect of centrifugation-resuspension on the growth inhibition of AuNPs to nonpathogenic 
E. coli

E. coli growth inhibition by 50 µM of AuNPs (non-centrifuged) was compared with 

centrifuged (1–4 centrifugations-resuspensions) at 5000 rpm for 2 h each at 20°C. There is a 

37% inhibition with non-centrifuged AuNPs, but the bacterial growth inhibition decreases to 

17, 14, 10, and 1%, respectively, upon 1–4 centrifugations (Figure 5). This demonstrates that 

AuNPs, once the Au(III) is completely removed, do not inhibit the growth of E. coli. Based 

on figure 2 and the calculated IC50 values of 0.34 µM for Au(III), the percent of inhibitions 
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of 37, 17, 14, 10 and 1% correspond to Au(III) concentrations of 0.11, 0.05, 0.04, 0.02 and 

0.001 µM. This demonstrates that residual Au(III) present in AuNPs was removed through 

3–4 centrifugations. Without purifications, false toxicity result could occur. We tried to 

obtain the accurate Au(III) concentrations in the supernatant after centrifugations, but the 

use of an ICP-MS, which determines total gold concentration, did not yield accurate Au(III) 

concentration due to the small amount of AuNPs retained in the supernatant.

Cytotoxicity of Au(III) to skin (HaCaT) and blood (TIB-152) cells

Since Au(III) is antibacterial, we want to know if it is also cytotoxic to human cells: skin 

keratinocyte (HaCaT) and blood lymphocyte (TIB-152) cells. The reason these two cell lines 

were chosen was because they are the likely targets during skin exposure and blood 

transport of environmental toxins. The cells (HaCaT and TIB152) were exposed to Au(III) 

at 1, 10 and 100 µM for 2 h and 24 h. The cell viability was determined by MTS assay 

(Figure 6). Au(III) is not toxic at 1 and 10 µM at both exposure times, but it is toxic at 100 

µM for both cell lines with cell viabilities of 36% and 8% against HaCaT cells at 2 h and 24 

h exposure times, respectively. Whereas 100 % inhibition was observed at 24 h exposure 

time against TIB-152 cells at 100 µM Au(III) (Figure 6).

Concluding Remarks

This work clearly demonstrates that both Au(I) and Au(III) ions are strongly antibacterial 

against all four tested bacteria: one nonpathogenic E. coli and three multidrug resistant 

bacteria: E. coli, S. typhimurium DT104, and S. aureus (MRSA). Nonlinear dose-dependent 

growth inhibition is observed and the antibacterial effect of Au(I) and Au(III) ions vary 

slightly with the type of bacteria. The length of treatment has a significant effect on the 

antibacterial effect of Au(III) and Au(I). For sub-IC50 concentrations, both Au(I) and (III) 

ions continue to inhibit the bacterial growth even after 3 h. The use of buffer plays a 

significant role in altering the antibacterial activity of both Au(III) and Au(I). The 

antibacterial activity is strongest in PBS, followed by Trizma and HEPES. Centrifugation of 

AuNPs 1–4 times to remove residual Au(III) ions reduces the antibacterial effect of 

“AuNPs”, suggesting that AuNPs alone do not inhibit bacteria growth for the four bacteria 

tested. Au(III) ions are also toxic to HaCaT and TIB152 cells at high concentrations (100 

µM). The antibacterial effects of Au(III) and Au(I) may be further explored for medical 

purposes, especially against those three multi-drug resistant bacteria.

On the other hand, test of biological effects of nanoparticles, due to the fact that 

nanoparticles in solution are often a chemical mixture [26], careful controls and purifications 

must be carried out. Our results demonstrate that the antibacterial effect of AuNPs is 

strongly dependent on the number of centrifugations to remove excess Au(III), the use of 

buffers, the exposure time, the type of bacteria and test method. This might explain the 

discrepancies in the literature concerning the antibacterial effect of AuNPs since there was 

no mentioning about purification of the AuNPs in most of the reports. For some of the 

antibacterial results of the gold (I) and (III) organic complexes, one may need to investigate 

whether free gold ions played a role [14].

Shareena Dasari et al. Page 6

Biochem Pharmacol (Los Angel). Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

We thank National Science Foundation for grants: Partnership for Research and Education in Materials (NSF 
PREM DMR-1205194) and the Analytical Core Laboratory (NIH grant No. G12MD007581). We also thank Dr. 
Zikri Arslan, Physical Chemistry Lab at Jackson State University for providing assistance in ICP-MS analysis in 
the study.

References

1. Bishop P, Ashfield LJ, Berzins A, Boardman A, Buche V, et al. Printed gold for electronic 
applications. Gold Bulletin. 2010; 43:181–188.

2. Bond GC, Louis C, Thompson D. Catalysis by gold. Gold Bull. 2006; 39:3–8.

3. Chen S, Wang Z, Ballato J, Foulger S, Carroll D. Monopod, bipod, tripod, and tetrapod gold 
nanocrystals. J Am Chem Soc. 2003; 125:16186–16187. [PubMed: 14692749] 

4. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-
related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 
2004; 104:293–346. [PubMed: 14719978] 

5. Fan Z, Fu P, Yu H, Ray P. Theranostic nanomedicine for cancer detection and treatment. J Food 
Drug Anal. 2014; 22:3–17. [PubMed: 24673900] 

6. Goodman C, McCusker C, Yilmaz T, Rotello V. Toxicity of gold nanoparticles functionalized with 
cationic and anionic side chains. Bioconjugate Chem. 2004; 15:897–900.

7. Hussain S, Warheit DB, Ng SP, Comfort KK, Grabinski CM, et al. At the Crossroads of 
Nanotoxicology in vitro : Past Achievements and Current Challenges. Toxicol Sci. 2015; 147:5–16. 
[PubMed: 26310852] 

8. Louis, C.; Pluchery, O. Gold Nanoparticles for Physics, Chemistry and Biology. World Scientific 
Publishing Co Pte Ltd; 2012. p. 1-308.

9. Van der Zande B, Böhmer M, Fokkink L, Schönenberger C. Colloidal dispersions of gold rods: 
synthesis and optical properties. Langmuir. 2000; 16:451–458.

10. Wang S, Lawson R, Ray P, Yu H. Toxic effects of gold nanoparticles on Salmonella typhimurium 
bacteria. Toxicol Ind Health. 2011; 27:547–554. [PubMed: 21415096] 

11. Alkilany A, Murphy C. Toxicity and cellular uptake of gold nanoparticles: what we have learned 
so far? J Nanopart Res. 2010; 12:2313–2333. [PubMed: 21170131] 

12. Alkilany A, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, et al. Cellular uptake and cytotoxicity of 
gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009; 5:701–708. 
[PubMed: 19226599] 

13. Wang S, Lu W, Tovmachenko O, Rai US, Yu H, et al. Challenge in understanding size- and shape-
dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008; 
463:145–149. [PubMed: 24068836] 

14. Zhang Y, Dasari T, Deng H, Yu H. Antimicrobial Activity of Gold Nanoparticles and Ionic Gold. J 
Environ Sci Health C. 2015; 3:286–327.

15. Nam S-H, Lee WM, Shin YJ, Yoon SJ, Kim SW, et al. Derivation of guideline values for gold (III) 
ion toxicity limits to protect aquatic ecosystems. Water Res. 2014; 48:126–136. [PubMed: 
24094731] 

16. Elsome A, Hamilton-Miller J, Brumfitt W, Noble W. Antimicrobial activities in vitro and in vivo 
of transition element complexes containing gold(I) and osmium(VI). J Antimicrob Chemotherap. 
1996; 37:911–918.

17. Glišić B, Djuran M. Gold complexes as antimicrobial agents: an overview of different biological 
activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 
2014; 43:5950–5969. [PubMed: 24598838] 

18. Ozdemir I, Temelli N, Günal S, Demir S. Gold(I) Complexes of N-Heterocyclic Carbene Ligands 
Containing Benzimidazole: Synthesis and Antimicrobial Activity Molecules. Molecules. 2010; 
15:2203–2210. [PubMed: 20428038] 

19. Elie B, Levine C, Ubarretxena-Belandia I, Varela-Ramírez A, Aguilera RJ, et al. Water-Soluble 
(Phosphane) gold(I) Complexes. Applications as Recyclable Catalysts in a Three-Component 

Shareena Dasari et al. Page 7

Biochem Pharmacol (Los Angel). Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coupling Reaction and as Antimicrobial and Anticancer Agents. Eur J Inorg Chem. 2009; 
23:3421–3430. [PubMed: 23524957] 

20. Fernández G, Vela Gurovic M, Olivera N, Chopa A, Silbestri G. Antibacterial properties of water-
soluble gold(I) N-heterocyclic carbene complexes. J Inorg Biochem. 2014; 135:54–57. [PubMed: 
24662463] 

21. Nomiya K, Yamamoto S, Noguchi R, Yokoyama H, Kasuga NC, et al. Ligand-exchangeability of 
2-coordinate phosphine gold(I) complexes with AuSP and AuNP cores showing selective 
antimicrobial activities against Gram-positive bacteria. Crystal structures of [Au(2-Hmpa)(PPh3)] 
and [Au(6-Hmna) (PPh3)] (2-H2mpa=2-mercaptopropionic acid, 6-H2mna=6-mercaptonicotinic 
acid). J Inorg Biochem. 2003; 95:208–220. [PubMed: 12763666] 

22. Novelli F, Recine M, Sparatore F, Juliano C. Gold(I) complexes as antimicrobial agents. II 
Farmaco. 1999; 54:232–236.

23. Wenzel M, Bigaeva E, Richard P, Le Gendre P, Picquet M, et al. New heteronuclear gold(I)-
platinum(II) complexes with cytotoxic properties: are two metals better than one? J Inorg 
Biochem. 2014; 141:10–16. [PubMed: 25172993] 

24. Malcolm A, Parnis J, Vreugdenhil A. Size control and characterization of Au nanoparticle 
agglomeration during encapsulation in sol-gel matrices. J Non-Cryst Solids. 2011; 357:1203–
1208.

25. Dasari TP, Pathakoti K, Hwang H-M. Determination of the mechanism of photoinduced toxicity of 
selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ 
Sci. 2013; 25:882–888.

26. Zhang Y, Newton B, Lewis E, Fu PP, Kafoury R, et al. Cytotoxicity of organic surface coating 
agents used for nanoparticles synthesis and stability. Toxicol in Vitro. 2015; 29:762–768. 
[PubMed: 25746383] 

27. Hajipour M, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, et al. 
Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30:499–511. [PubMed: 
22884769] 

Shareena Dasari et al. Page 8

Biochem Pharmacol (Los Angel). Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
TEM image of the synthesized AuNPs with size range of 15–25 nm.
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Figure 2. 
Concentration dependent growth inhibition by Au(I) and Au(III) ions on multi-drug resistant 

E. coli (BAA-1161). Error bars are standard deviations (n=3). * Denotes significant with p < 

0.05.

Shareena Dasari et al. Page 10

Biochem Pharmacol (Los Angel). Author manuscript; available in PMC 2016 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Time-dependent growth inhibition by Au(I) and Au(III) against nonpathogenic E. coli at 

concentrations 0, 0.1 and 1µM.
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Figure 4. 
Growth inhibition of nonpathogenic E. coli by exposure to Au(I) and Au(III) at 0, 0.01, 0.03, 

0.1, 0.3, 1 and 10 µM for 2 h in PBS, Trizma and HEPES.
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Figure 5. 
Effect of centrifugations of AuNPs on growth inhibition of non-pathogenic E. coli by 

AuNPs. Control (C), Non-centrifuged (NC), 1× (Centrifuge 1), 2× (Centrifuge 2), 3× 

(Centrifuge 3) and 4× (Centrifuge 4). * Denotes significant with p < 0.05.
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Figure 6. 
Percent cell viability of HaCaT and TIB-152 cells after 2 h and 24 h treatment with Au(III).
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Table 1

IC50 for bacterial growth inhibition by Au(I) and Au(III). Only the IC50 against MRSA is significantly 

different against the other three bacteria (p < 0.05).

Au(I) (µM) Au(III) (µM)

E. coli (BAA-1431) 0.38 0.34

E. coli (BAA-1161) 0.35 0.36

Salmonella DT-104 (ATCC 700408) 0.39 0.27

MRSA (BAA-44) 0.49 (*) 0.52 (*)
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Table 2

IC50 values for Au(I) and Au(III) against nonpathogenic E. coli in PBS, Trizma and HEPES buffers. Only the 

values in PBS are significantly different (p < 0.05)

Au(I) (µM) Au(III) (µM)

PBS 0.14 (*) 0.06 (*)

Trizma 0.41 0.57

HEPES 0.48 1.55
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