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Utilizing changes in steady-state visual evoked potentials (SSVEPs) is an established approach to operate a brain-computer
interface (BCI). The present study elucidates to what extent development-specific changes in the background EEG influence the
ability to proper handle a stimulus-driven BCI. Therefore we investigated the effects of a wide range of photic driving on children
between six and ten years in comparison to an adult control group. The results show differences in the driving profiles apparently in
close communication with the specific type of intermittent stimulation. The factor age gains influence with decreasing stimulation
frequency, whereby the superior performance of the adults seems to be determined to a great extent by elaborated driving responses
at 10 and 11 Hz, matching the dominant resonance frequency of the respective background EEG. This functional interplay was only
partially obtained in higher frequency ranges and absent in the induced driving between 30 and 40 Hz, indicating distinctions in
the operating principles and developmental changes of the underlying neuronal oscillators.

1. Introduction

Bioelectrical oscillations recorded with the electroencephalo-
gram (EEG) can be classified with regard to the relation of
stimulation [1]. Accordingly, oscillatory activity can either
be unrelated to any kind of external release (spontaneous
background activity) or, as opposed to this, time-locked
to situational events. Intermittent photic stimulation (IPS)
of variable frequency at a rate of 4 Hz or higher evokes
a synchronized cortical response consisting of rhythmic
activity linked to the stimulus at a frequency identical or
harmonically related to that of the triggering event [2, 3].
EEG activity that arises from such repetitive stimulation is
known as steady-state visual evoked potentials (SSVEPs).
It appears maximal over posterior regions of the head and
can be identified as sharp peaks in the amplitude-frequency
spectrogram of the EEG [4]. The general acceptance of
a resonance nature of induced driving responses is well
documented and was experimentally confirmed by several
investigators [5]. Most likely, the described effects occur due
to neural oscillators which preferably oscillate at specific
frequencies, so-called resonance frequencies [3]. Though it is

accepted that IPS enhances the resonance properties of EEG
oscillators, the underlying mechanisms of induced driving
responses continue to be debated. In all probabilities the
resonance emerges from different neural circuits that bear
various functional roles whereby it is assumed that SSVEP
activity rather arises from stimulus-induced phase resetting
within the dynamics of the ongoing EEG than from additive
amplitude modulation [6–9].

Experience has shown that the resonance phenomenon
evolves extremely selective with stronger responds to pre-
determined frequencies. A gradual increase of stimulation
frequencies across the entire EEG range allows to calculate an
individual characteristic of reactivity and a response profile
based on the peaks elicited in the EEG spectrogram [2].
Herrmann [3] reports on pronounced cortical reactions to
flickering stimuli in the 10, 20, 40, and 80 Hz range compared
to adjacent frequencies. According to [10] the amplitude of
the SSVEP in occipital regions peaks at 15 Hz. Though these
oscillators appear to be stable over a long period [11], former
investigations observe a large interindividual variability of
the driving response [5], a finding that may contribute
to the varying results in smaller samples. Nevertheless,

mailto:ejan@uni-bremen.de


2 Computational Intelligence and Neuroscience

a large number of studies (among others [2, 11, 12])
depict that the EEG photic driving is positively correlated
with the spontaneous alpha power spectral, meaning a
maximum increase in amplitude during stimulation near
the dominant resting EEG frequency (DRF). Though the
precise mechanism of action constituting the functional
interaction between driving profile and ongoing EEG activity
is not yet understood, the immediate proximity of preferred
resonance frequencies to the peak alpha activity suggests
the assumption that both rhythms share similar operating
principles in synchronizing neural activity [12]. Birca et al.
[13] do not find a considerable correlation between the
dominant frequency in the resting EEG and the frequency
of the IPS which elicited the best driving response. However,
similar to other studies [3, 14] they report that two out of
three subjects that feature a resting alpha peak surrounding
10 Hz revealed a preferred resonance frequency at this very
wave. Moreover, most investigators consistently report that
IPS near the peak alpha frequencies of the background
EEG suppresses the spontaneous EEG activity in terms of a
sharp decrease in amplitude at exactly the frequency of the
individual background alpha peak [2, 15].

Given that the photic driving interacts with the compo-
sition of the ongoing EEG as illustrated above, the functional
interplay should be influenced by development-specific
changes within the background EEG. It is known that the
interindividual variability of quantitative EEG parameters
increases with age [16] and there are marked changes in
the (relative) band power during cognitive development.
Thereby it is generally believed that brain maturation is
associated with a substitution of slow activity by a faster,
particularly, decrease in the lower frequency range (delta and
theta) and a continuous—though not equable—increase in
faster bands (alpha and beta), since the development of the
EEG is usually nonlinear [17]. Matthis et al. [18] observe
the closest correlation with age in the relative amount of
activity in the fast alpha band. This is accompanied by the
finding that the individual occipital alpha rhythm frequency
increases from around 8 Hz in 3–5-year-old children to
approximately 10 Hz in subjects older than 10 years of age.
Still, quantifying the magnitudes of elicited SSVEP responses
led to no considerable age-related changes in children older
than 3 years of age, whereas phase alignment values showed
a gradual increase with age over occipital regions [13].

IPS is one of the most important functional tests used
in the clinical EEG examination especially for detecting
photoparoxysmal responses in the epileptic population [19].
Beyond, utilizing changes in SSVEPs is an established
approach to operate a brain-computer interface (BCI). In
the course of this a subject shifts his/her visual attention to
sources of light that oscillate at different constant frequen-
cies, respectively. As depicted above, focusing a flickering
stimulus exhibits frequency-specific photic driving that can
be detected over occipital areas and subsequently translated
into a specific command [20]. This specific visual attention-
based BCI approach has been successfully validated in
different series of tests on healthy subjects [20–24] and
is currently adapted to disabled users in the EU-project
BRAIN (http://www.brain-project.org/) (for first beginnings

see [25, 26]). The latter efforts correspond to the classic
goal of BCI research and make up the principal focus of
most research groups, to provide severely disabled users
with communication and control [20]. However, a systematic
investigation of the achievements of varying young age
groups in an SSVEP-based BCI scenario against the back-
ground of the described physiological mechanisms has—to
our knowledge—not been conducted yet.

The principal goal of the present study was to assess to
what extent development-specific changes in the background
EEG influence the ability to proper handling of a stimulus-
driven BCI software at an early stage. This implies that we
are giving priority to both, the individual BCI performance
in terms of the grade of accuracy as well as a possible causal
connection to age-dependent dynamics in the oscillatory
activity with emphasis on the associated varying frequency
synchronization. To get to the bottom of these coherences we
are investigating the effects of a wide range of photic driving,
divided into three blocks of stimulation: a low frequency
part that covers the common alpha range (7–11 Hz), a
medium frequency section (13–17 Hz) that is known to
produce prominent SSVEP responses and therefore is mostly
consulted in corresponding publications [3, 10, 20, 27] and
a high frequency range (30–48 Hz) that is investigated as of
recently since such a fast repetitive stimulation above 30 Hz
is less visual annoying and diminishes user fatigue as well
as the risk of epileptic seizures for photosensitive subjects
[28, 29]. As a processing algorithm we consulted the Bremen
BCI, a software module that was tried and tested during
several series of tests in the past [20, 24, 30]. The user
application consisted of a monitor-based spelling device that
was evaluated in previous studies and enables the user to
write texts by successive selecting single characters [24, 30].

2. Methods and Materials

2.1. Subjects. A total of 51 adults and children aged between
six and 33 years were included in the present cross-sectional
study. Table 1 depicts (among physiological properties) the
male/female ratios and the distribution of participants in
the various age groups. All subjects were right handed and
had normal or corrected-to-normal vision and no prior
experience with BCIs. Inclusion in the study was based on the
following criteria: no obvious somatic disease, no history of
head injury, no neurological or psychiatric disorder, and no
drug-related illness. No participant was taking any form of
medication at the time of testing. All subjects were informed
that the repetitive visual stimulation might lead to epileptic
seizures and confirmed that they had never suffered from
epilepsy or various photosensitive reactions. The study was
approved by the Ethics Committee of the University of
Bremen. A written informed consent was obtained from
the adult participants (psychology students) and the legal
guardians of the children.

2.2. Display and Procedure. The adult subjects came to the
laboratory during the morning hours whereas the children
were tested at preferably corresponding times in a work

http://www.brain-project.org/


Computational Intelligence and Neuroscience 3

Table 1: Demographic characteristics of research participants and dominant resting EEG frequency (averaged peak frequency; standard
deviation in brackets) on selected locations.

Age group (years) n Gender ratio (m/f)
Dominant resting EEG frequency (DRF) (∅ Hz)

O1 O2 PO3 PO4

Group 1: ∅ 6.73 11 5/6 8.60 (0.69) 8.60 (1.42) 8.62 (1.24) 8.70 (1.35)

Group 2: ∅ 8.08 12 3/9 (x) (x) (x) (x)

Group 3: ∅ 9.86 14 11/3 9.24 (0.97) 9.25 (0.99) 9.23 (1.08) 9.27 (0.97)

Group 4: ∅ 22.36 14 1/13 11.30 (1.03)∗∗∗ 10.88 (0.70)∗∗ 10.68 (1.11)∗∗ 10.80 (0.96)∗∗

Significance marks: ∗∗P < .01 and ∗∗∗P < .001 denote the levels of significance between group 4 and all other age groups. (x) due to a record failure the
corresponding data is not evaluable.

room of their basic school, both environments exhibiting
a high level of background noise. To ensure a comparable
contrast of the flickering stimuli, the lightning conditions
were kept similar in both surroundings: true light but no
direct sunlight. Subjects were seated in comfortable chairs
about three ft. from a 17′′ BENQ Q7T5 LCD monitor with
a 60 Hz refresh rate. A quadratic frame equipped with five
rectangular light-emitting diodes (LEDs) (four positioned in
the middle of each edge, the fifth at the upper left corner)
was mounted to the screen, consequently surrounding the
displayed letter field. Each LED had an edge length of
20 × 14 mm. The specific oscillations were controlled by a
microcontroller (PIC16F877, Microchip, Chandler, Arizona,
USA). The speller arrangement was determined through
prior work [30, 31]: the characters were arranged regarding
their incidence in the German alphabet with rarely used
letters at the periphery and E (commonest) at the exact
center. At the beginning of each run, the cursor was presented
at this very position. Figure 1 depicts the consulted display.
Each LED was associated with a specific command, in
particular left, right, up, down and select (the top left LED).
Depending on the testing condition the five LEDs oscillated
with assigned frequencies: 7, 8, 9, 10, and 11 Hz (in the
following referred to as “low frequency stimulation”), 13, 14,
15, 16, and 17 Hz, (in the following referred to as “medium
frequency stimulation”) and 30, 32, 34, 36, and 38 Hz (in
the following referred to as “high frequency stimulation”).
Subjects were instructed to spell by focusing exactly the LED
that is associated with the desired command, meaning to
move the cursor up, down, left, or right. A character high-
lighted by the cursor could be selected by focusing the LED
coupled with the select command. The Bremen BCI software
automatically determines the best spatial filter for each
subject and subsequently computes the signal-to-noise ratio
(SNR) for each of the various stimulation frequencies [30]. If
the SNR at a specific frequency exceeds a defined threshold,
the corresponding command is executed (for details on the
processing algorithm see Section 2.4). To clarify this by an
example in the medium frequency condition (Figure 1(b))
and to navigate the cursor upwards, subjects had to focus
the upper LED. If the corresponding frequency activity
(15 Hz) exceeds the predetermined threshold, the command
is executed; if, for example, correspondingly high values
are detected for 17 Hz, the currently highlighted character
is selected. The bottom edge of the screen displayed the
letter string that was already picked. Except for the group of

the youngest subjects (sample 1: ∅ 6.73 yrs) all participants
used the present BCI system to spell six words, respectively,
two in each of the three conditions (low, medium, and
high frequency induced driving). The terms of stimulation
were determined randomly throughout the testing. The
word material was selected considering two premises: an age
appropriate composition and a uniform distribution of the
involved commands; as a result it was guaranteed that all
frequencies contribute just about equally to the spelling. An
entire session (including the preparation stage) took about
45 minutes. During a practice phase prior to the study
as such, we provided the opportunity to spell the subjects
name to ensure that the operating principle of the SSVEP-
based system was figured out. Every experimental run ended
just as the subject spelled the desired phrase (regardless
of whether accurate or approximately correct) or chose to
stop spelling. However, no run took less than two minutes
and at least 20 commands per word were executed. The
youngest subjects (sample 1: ∅ 6.73 yrs) followed an identical
operating procedure, however; due to age-related spelling
proficiency they were assigned to different word material and
spelled only one term per condition. To ensure that eventual
group differences within the performance exclusively result
from the endogenous frequency development instead from
age-specific deficits in visual searching abilities, the younger
subjects were assisted by the investigator regarding character
or LED selection. Prior to the SSVEP investigation we
recorded the resting EEG during relaxed wakefulness with
the subjects focusing a fixation cross for one minute and
afterwards keeping their eyes closed for the same limited
period.

2.3. Data Collection. EEG data was recorded from the surface
of the scalp via eight sintered Ag/Ag-Cl EEG electrodes. AFZ

served as ground; the input electrodes PZ, PO3, PO4, O1,
OZ, O2, O9, and O10 were mounted according to the inter-
national 10–20 system of electrode placement [32]. Standard
abrasive electrolytic electrode gel was applied; shielded cables
connected the electrodes and the high impedance amplifier
system (Porti32, Twente Medical Systems International).
The sampling frequency was 2048 Hz; during the EEG
acquisition a high-pass filter at 0.1 Hz was applied and a
digital FIR low-pass filter at 552.96 Hz (0.27 × sampling
rate) was directly applied in the amplifier. The general-
purpose software platform BCI2000 [33] was consulted for
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Figure 1: Display with LEDs surrounding the letter field of the spelling device. Figures refer to the respective flickering frequency in Hz. (a)
Low frequency stimulation. (b) Medium frequency stimulation. (c) High frequency stimulation. The cursor is positioned over the E.

data acquisition, storage, and real-time data processing. The
SSVEP signal processing module (Bremen BCI software; see
next chapter) was implemented in the BCI2000 framework.

2.4. Online Calculations: The Bremen BCI. The Bremen BCI
signal processing algorithm is implemented in C++ and
programmed for detecting SSVEP activity in a BCI scenario.
Friman et al. [30] proposes multichannel signal detection
for SSVEP applications using the following linear model that
decomposes the measured signal yi(t) into three parts:

yi(t) =
Nh∑

k=1

ai,k sin
(
2πk f t + φi,k

)
+
∑

j

bi, j z j(t) + ei(t). (1)

The first part of this model is the evoked SSVEP response
signal modeled as a number of sinusoids with frequencies
given by the stimulus frequency f and a number of harmonic
frequencies Nh, and the corresponding amplitude ai,k and
phase φi,k. The second part describes the background brain
activity and nuisance signals zj(t), which are added to each
electrode signal and scaled with the weight factor bi, j . The
nuisance signals are concurrent brain processes or external
disturbances such as breathing artifacts and power line
interference. The last part ei(t) describes a noise component
in the measurement, which is specific for electrode number
i.

In this work, eight input electrodes were used to record
the neural activity from the occipital region of the scalp.
To ensure a proper performance of analysis the recorded
electrode signals are combined into channel signals [30]. For
this, Bremen-BCI uses the minimum energy combination
(MEC), a spatial filter that readjusts the input channels in
order to minimize nuisance influence. As a result, electrodes
with insufficient contact to say electrodes that transmit poor
signals receive a low weighting or might even be ignored.
Moreover, the combination matrix is constantly adapted to
change the signal quality over time. This procedure is being
executed every 125 ms. To provide sufficient EEG data for a
proper analysis, classification is always based on a 2 s sliding
window showing the recorded data in steps of 125 ms. In
other words, the system stimulates the subject with a certain

frequency and estimates the signal power that lies on each
channel sl and in the kth SSVEP harmonic frequency, as

P̂k,l =
∥∥∥XT

k sl
∥∥∥

2
, (2)

where X contains the sine and cosine pairs with the SSVEP
harmonic frequencies. The test statistic, which is an average
of the power over all Ns spatially filtered components and all
Nh SSVEP harmonic frequencies, for testing the presence of
an SSVEP response can be calculated by

T = 1
NsNh

Ns∑

l=1

Nh∑

k=1

P̂k,l . (3)

This procedure concludes in receiving one single value every
125 ms, implying that the system calculates one absolute
value for every examined frequency. The last step of signal
processing is the normalization for converting absolute
values into relative values in order to yield comparability.

2.5. Statistical Analyses. A review of the empirical distribu-
tion of our data basis consulting the Kolmogorov-Smirnov
test revealed that the behavioral data set (accuracy rates) is
not well modeled by a normal distribution. Beyond, a Levene
test revealed that the degree of variance homogeneity is not
consistently adequate. Since the various sample sizes do not
meet the requirements to still conduct a parametric test, we
used separate the Kruskal-Wallis one-way analysis of variance
followed by the Games-Howell post hoc tests to examine
the effect of age on the induced driving responses within
all three experimental conditions. To determine distinctions
regarding the physiological data (DRF) we consulted a
two-way analysis of variance (ANOVA) with the repeated-
measures factor electrode position and a between-subjects
factor age group. The Greenhouse-Geisser procedure for
violations of the sphericity assumption was applied. Paired
t-tests were conducted to isolate considerable differences;
the significance levels were adjusted using the Bonferroni
correction.
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3. Results

3.1. Behavioral Data. Figure 2 depicts the mean accuracy
rates of all consulted age groups during the varying kinds
of stimulation. The parameter “accuracy” is defined as the
correct-to-complete commands ratio within a single run.
To ensure a comprehensive data record we also consulted
aborted attempts (unfinished words) since the number
of completed tasks was especially in the younger groups
considerably small. More precisely, the total number of
cancelled tasks (independent from the applied frequency set)
steadily decreases with age: while the youngest participants
(group 1: ∅ 6.73 yrs) broke off 79% of all attempts (group 2:
71%; group 3: 41%), the adult subjects (group 4: 22.36 yrs)
cancelled only 38% trials. Arranged according to frequency
sets we ascertain the slightest group differences in the high
frequency spectrum. In this experimental condition all age
groups exhibit comparable high drop-out rates. In contrast,
working with low frequencies leads to considerable effects
in terms of continuously declining drop-outs rates with age
(χ2(3) = 9.011; P < .05). However, the post hoc analysis
specified no significant group differences.

Analyzing the individual accuracy rates yielded stable age
effects, obviously determined by the respective set of fre-
quencies (Figure 2). We observe a significant age group effect
within the low frequency stimulation condition (Figure 2(a))
(χ2(3) = 19.034; P < .001). The adults obtain consistently
higher accuracy rates compared to all three children samples
(versus group 1: mean difference MD = 33.05; P < .001;
versus group 2: MD = 27.39; P < .01; versus group 3:
MD = 24.40; P < .01). In contrast, working with the
medium frequency range based system leads to considerable
differences only between the adults and the youngest sample
(Figure 2(b)) (MD = 19.65; P < .05). Finally, we discover
no significant age group distinctions on the basis of high
frequency stimulation (Figure 2(c)). A comparison of the
various stimulation frequencies within the “low” frequency
range (7, 8, 9, 10, and 11 Hz) revealed a distinct effect
for the adult sample: working on the basis of 10 or 11 Hz
stimulation is accompanied by consistently higher accuracy
rates compared to the results of 7 Hz (χ2(4) = 22.454;P <
.001) (versus 10 Hz: MD = 39.55; P < .001; versus 11 Hz:
MD = 40, 13; P < .001). Due to the smaller number of given
commands within the younger groups, a similar subdivision
of accuracy rates for every frequency is possible only to a
limited extent. Nevertheless, on average all children samples
also achieve higher accuracy rates on the basis of 10 and
11 Hz stimulation compared to their performance with 7,
8, or 9 Hz. However, there has as yet been no statistical
confirmation.

3.2. Physiological Data. The DRF peak in the alpha range
could easily be determined in all test groups as exemplarily
diagrammed in Figure 3 for group 1 (A) and 4 (B).
The spectrograms depict the overlapping signal curves of
representative subjects, indicating an age-specific shift in the
peak synchronisation frequency. Table 1 encloses a listing of
mean values of the DRFs at selected occipital locations for
all age-groups (except sample 2). It becomes apparent that

the DRF increases from about 8-9 Hz (group 1: ∅ 6.73 yrs)
to 9-10 Hz (group 3: ∅ 9.86 yrs) and reaches a plateau in
adulthood between 10 and 11 Hz (group 4: ∅ 22.36 yrs).
Consequently, we observe a significant age group effect with
regard to the DRF on every selected cerebral region between
the adult group and the children samples (F(2, 28) = 13.287;
P < .001). However, the various children samples do not
differ significantly from each other.

4. Discussion

Our results demonstrate pronounced driving responses in all
subjects involved in the present study. Since the consulted
parameter “accuracy rates” depicts the ratio between correct
and incorrect commands, it constitutes an indirect measure
of evoked neuronal activity. However, though we do not
observe physiologic activity in detail, the course of SSVEP
classifications enables to infer the underlying resonance
dynamics from the behavioural performance. In the present
investigation a fictional longitudinal study of four groups
ranging from 7 to about 22 years allows us to reconstruct
the functional interplay between development-specific char-
acteristics of the background EEG and varying kinds of
evoked SSVEP responses. Thereby we observe differences in
the driving profiles apparently in close communication with
the specific type of intermittent stimulation. In particular,
considerably low classification accuracies within all young
samples (7 to 10 years) on the basis of stimulation between
7 and 11 Hz. This supports the assumption that age groups
up to (at least) ten years have difficulties to generate phase-
locked driving responses coupled to a triggering event in this
particular bandwidth; a finding similarly observed in [34] for
comparable samples and frequency ranges but on different
sensor modalities. The authors emphasize that children up
to six years are not yet capable of synchronizing evoked alpha
oscillations on adult level. Birca et al. [13] showed that phase
alignment serves as a good indicator for SSVEP maturation,
especially at occipital areas in children between 7 and 10
years and propose that this phenomenon reflects structural
and functional maturation of the involved cerebral regions.
These findings may play an important role in the present
deficits of younger children to synchronize low frequency
steady-state evoked oscillations and thus finds expression
in the significant lower classification accuracies. Thereby
the deficits are mainly reflected in the range of 10 and
11 Hz. In the adult sample the two of them are accountable
for the highest classification rates compared to all other
low stimulation frequencies, indicating excellent resonance
properties of the underlying neuronal oscillators. As a
consequence, the above-average performance of the adult
group is determined to a great extent by elaborated driving
responses at 10 and 11 Hz, matching exactly the DRF in the
spontaneous EEG of the corresponding sample. Accordingly,
and as depicted in previous studies in [12, 13] the induced
driving seems to be closely tied to the characteristics of
the background activity, meaning positively correlated with
evolved mechanisms of endogenous frequency synchroniza-
tion. The younger participants also seem to achieve higher
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Figure 2: Mean accuracy rates during various frequency stimulations for all consulted age groups (light grey bar: group 1 (∅ 6.73 yrs); left
hatched bar: group 2 (∅ 8.08 yrs); right hatched bar: group 3 (∅ 9.86 yrs); dark grey bar: group 4 (∅ 22.36 yrs)). The star depicts significant
group differences.
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Figure 3: Spectrogram of eyes-closed occipital alpha synchronisation depicting representative subjects of age group 1 (a) and 4 (b).
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accuracy rates on the basis of 10 and 11 Hz compared to their
performance with 7, 8, or 9 Hz stimulation. Though these
observations are not yet statistically verified, it suggests that
the proposed oscillator rudimentarily exhibits its resonance
properties already at an early stage.

It is generally accepted that the occipital alpha rhythm
increases in frequency from about 8 to 11 Hz between
infancy and adolescence [4, 35]. Nuñez et al. [36] propose
that this increase is related to corticocortical myelination
during brain maturation. Our present findings also show a
developmental increase of the DRF from just over 8 Hz (7
years) to little more than 9 Hz (10 years), finally leveling out
between 10 and 11 Hz (adults). It remains unclear whether
the same neuronal components are responsible for both, the
generation of spontaneous and evoked activity (as proposed
by [12]); still, we state a parallel evolution between the
ability to synchronize spontaneous and steady-state evoked
oscillations in the frequency range of 10 and 11 Hz. Birca et
al. [15] add for consideration that a similar developmental
course of two cerebral rhythms not necessarily point to
common operating principles; however, in the case at hand
it may be accepted that evoked oscillations presupposes
adequate endogenous synchronization mechanisms. Conse-
quently, the achievements of the younger samples should
approximate progressively to the adult performance as soon
as the DRF reaches the plateau among 10 and 11 Hz. Hence,
the ability to synchronize alpha activity at this very frequency
range seems to precede the ability to control a frequency-
based BCI system in the form of a predictor of performance.

Moreover, several studies [2, 15] show that intermittent
photic stimulation influences spontaneous activity by selec-
tively suppressing the DRF. Besides the limited capacity of
the children sample to synchronize evoked activity in the
upper alpha range, a not yet fully developed mechanism
of suppression may as well contribute to the poor results
by increasing the risk of misclassifications through adjacent
frequencies. Anyway, this must remain a hypothesis since our
data does not allow a verification of this assumption.

It is reasonable to assume that the observed age-group
differences may also arise from development-specific deficits
in dealing with visual search tasks, as reported (among
others) in [37] for children under ten years. Though the
ability to proper handling of the spelling field and the
corresponding command prompts certainly makes up an
influencing variable, the age disparities become apparent as
much more as the amount of slow stimulation frequencies
increases. This indicates that neuronal oscillators that are
subject to considerable age-specific changes are to be found
first and foremost in upper parts of the alpha range. As
a consequence thereof we do observe only slight group
differences upon high frequency stimulation. Although in
accordance with parts of the literature available [15] this
contradicts the accepted opinion of an increased occurrence
of high frequency photic driving with age as an indicator
of brain maturation [38]. Yet, in the current investigation
we notice that the factor age has a comparatively little
effect on the driving responses between 30 and 40 Hz. The
comparison of the behavioural performance (accuracy rates)
reveals no significant group differences. Recent studies of

our team identified a neural oscillator in adults at 32 Hz
(unpublished data) with pronounced cortical reactions to
flickering stimuli compared to adjacent frequencies. Similar
results are reported in [3] with regard to induced driving
at 40 Hz. Against the background of the current findings
it is indicated that the 32 Hz oscillator is not subject to
developmental changes as observed in the lower frequency
ranges. However, the present frequency spectrum extends
only to 38 Hz; age-specific changes within a 40 Hz oscillator
remain unclear.

As to be expected, the amount of aborted attempts
(unfinished words) increases as the accuracy level decreases.
This is particularly evident in the high drop-out rates of
the youngest age group under low frequency stimulation
and constitutes a direct reaction to the complete inability
to control a BCI adequate to requirements. Therefore it
can be emphasized that the factor age gains influence with
decreasing stimulation frequency. As a consequence, a child-
oriented framework obviously has to go without stimulation
close to the alpha range as long as the endogenous syn-
chronization mechanisms prevent induced driving responses
on adult level. In contrast, visual stimulation between 13
and 17 Hz (medium frequency condition) in children among
eight and nine years already leads to classification accuracies
comparable to our findings in grownups. According to
[3] frequencies among 15 Hz elicit steady-state oscillations
with largest amplitudes. Due to the fact that this frequency
range is most effective in eliciting generalized photoparox-
ysmal responses it can be adopted that visual neuronal
networks have a disposition to resonate at this particular
frequency [39]. We observe group-specific distinctions in
this range only between adults and seven-year-old subjects.
This points to age-differentiated mechanisms for neuronal
oscillators; however, the resonance properties obviously
achieve matured skills much earlier compared to the upper
alpha range.

All in all, the medium frequency condition seems to
constitute the most suitable SSVEP framework for children
of eight years and older with regard to a reliable BCI
operation. However, visual annoyance and user fatigue still
pose a problem, especially in this specific frequency region.
Reports of our youngest subjects subsequent to a session
attest this issue (as previously reported in [20] for adult
subjects). Therefore and against the background of the
observed problems with low and high frequency stimulation,
the question of an appropriate SSVEP based BCI system
for children remains, similar to the circumstances in adults,
purely academic.
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