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Introduction
Cellular potassium homeostasis is governed by a combi-
nation of K+ transport proteins and ion channels, whose 
activity is linked to cellular metabolism and signal trans-
duction (Hille, 2001; Kuo et al., 2005). In prokaryotes, 
constitutive K+ uptake is controlled in part by the protein 
complexes Trk or Ktr, which consist of “dual-pore” trans-
membrane and separate cytosolic regulatory domains 
(Albright et al., 2006, 2007; Cao et al., 2011, 2013; Viei-
ra-Pires et al., 2013; Levin and Zhou, 2014). In contrast, 
K+ efflux is governed in part by so-called Kef proteins, 
which typically consist of channel-like transmembrane 
pores that are tethered to cytosolic regulatory domains 
(Jiang et al., 2002a; Roosild et al., 2004, 2009; Kuo et al., 
2005; Parfenova et al., 2007; Kong et al., 2012). In each 
case, the cytosolic regulatory domain that controls trans-
porter activity is a highly conserved modular domain 
known as the regulator of conduction of K+ (RCK) do-
main. RCK domains have also been identified in eukary-
otic K+ channels and show a high degree of sequence 
conservation across phyla and kingdoms (Jiang et al., 
2001, 2002a; Yuan et al., 2010, 2011; Leonetti et al., 2012; 
Hite et al., 2015).

In addition to Kef-like prokaryotic channels that in-
clude MthK and GsuK, RCK domains are found in eu-
karyotic channels of the Slo gene family, which includes 
the BK channel (Slo1, KCa1.1, and KCN MA1), Na+-acti-
vated K+ channels (Slo2.1-2.2, KCa4.1-4.2, and KCNT1-
2), and a H+-inhibited K+ channel found in mammalian 
sperm cells (Slo3, KCa5.1, and KCN MC1; Albright et 
al., 2006; Ye et al., 2006; Wu et al., 2010; Yuan et al., 
2011; Kong et al., 2012; Leonetti et al., 2012; Smith et 
al., 2012; Cao et al., 2013; Hite et al., 2015).

The molecular architecture common to prokaryotic 
and eukaryotic RCK-containing K+ channels is illus-
trated in Fig. 1. A Kef-like channel subunit consists of a 
transmembrane pore module that is tethered to an 
RCK domain; a second RCK domain is docked onto the 
tethered RCK domain to form an RCK dimer (Fig. 1 A). 
Four of these subunit assemblies constitute a channel, 
with the K+ permeation pathway formed at the conflu-
ence of the pore modules and with a modulatory unit, 
comprised of the RCK domains, assembled at the cyto-
solic side of the pore. Thus, this modulatory unit con-
sists of a ring of eight RCK domains (shown in a 
bird’s-eye view in Fig. 1 B). Because of its role in gating 
of channel and transporter activity, this unit has been 
called the gating ring (Ye et al., 2006; Wu et al., 2010; 
Yuan et al., 2011; Smith et al., 2012). Eukaryotic (Slo) 
channels exhibit a similar overall architecture, except 
for the addition of transmembrane voltage-sensing do-
mains on each subunit and two RCK domains tethered 
to each subunit in tandem (Fig. 1 C). Each of these fea-
tures (voltage-sensing domains and tandem RCK do-
mains) has been observed in some prokaryotic channels 
as well (Wu et al., 2010; Yuan et al., 2010, 2011; Kong et 
al., 2012; Leonetti et al., 2012). Importantly, however, 
these tandem-linked RCK domains form gating rings 
similar to those seen in Kef-like channels (Fig. 1 D).

Each single RCK domain consists of a well-conserved 
N-terminal “Rossmann-fold” subdomain linked to a less 
well-conserved C-terminal subdomain via a helix- 
turn-helix segment (Fig. 2 A; Jiang et al., 2001, 2002a; 
Dong et al., 2005). In turn, RCK domains are paired to 
form a dimeric unit that is assembled in an “arm-in-
arm” architecture (Fig.  2  B). In this architecture, the 
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“turn” in each of the intertwined helix-turn-helix seg-
ments forms an “elbow,” although this has been ob-
served to be a static elbow and not a flexing one among 
RCK domains observed in different conformations (Ye 
et al., 2006; Yuan et al., 2011; Smith et al., 2012, 2013). 
This arm-in-arm architecture is conserved among eu-
karyotic tandem RCK domains (Fig. 2 C).

RCK domains are known to bind a diverse range of 
biological ligands, including nicotinamide adenine di-
nucleotide, ATP, and metal cations such as Na+ or Ca2+, 
and to modulate transporter or channel activity 
(Schlösser et al., 1993; Jiang et al., 2002a; Kröning et al., 
2007; Yuan et al., 2010; Kong et al., 2012; Levin and 
Zhou, 2014). The efforts of several laboratories have 
contributed to an increasingly detailed understanding 
of the conformational changes that lead to ligand-de-
pendent activation of RCK domains and their energetic 
contribution to K+ flux.

In this review, we focus on two exemplary ion chan-
nels, the prokaryotic MthK and eukaryotic BK channel, 
as excellent reviews of what RCK-regulated transporters 

are available (Levin and Zhou, 2014). We first describe 
the conformational repertoire of RCK gating rings in 
bacterial MthK channels. They have constituted a key 
model to understand the structural basis of BK channel 
gating by Ca2+ and other cations, which is presented in 
the second part of the review. Additionally, we discuss 
the relevance of this knowledge in the context of BK 
channels as potential therapeutic targets.

Insights from a channel found in sludge
Initial insights toward the physical structure of the RCK 
gating apparatus came from the crystal structure of a 
prokaryotic K+ channel, MthK, 15 years ago. The MthK 
channel was cloned from Methanobacterium thermo-
autotrophicum, an anaerobe that thrives in raw sewage 
at temperatures ranging from 40 to 70°C (Smith et al., 
1997). Despite its humble origins, the MthK channel 
bears sequence similarity to the eukaryotic BK channel 
(Jiang et al., 2002a). Owing to this similarity, crystal 
structures from the MthK channel initially served as im-
portant guides for understanding the relation between 

Figure 1. Molecular architecture of RCK domain–containing channels. (A) Schematic diagram of Kef-like channel subunits. Two 
of the four subunits are shown side by side to illustrate the K+ permeation pathway (arrow). The pore module (red) is tethered to 
an RCK domain (cyan). A second, identical RCK domain (yellow) associates tightly with the tethered domain. These paired RCK 
domains from the four subunits form a gating ring, as shown in B. (B) Crystal structure of the gating ring from the MthK channel 
(PDB accession no. 3RBZ), shown as a bird’s-eye view from above the membrane, with the transmembrane pore removed for clarity. 
Positions of Ca2+ ions are represented by green spheres. (C) Schematic diagram of a BK channel subunit. Each subunit contains a 
transmembrane voltage-sensing domain (S0–S4 helices, white), pore module (red), and two tandem RCK domains that make up 
the Ca2+ sensor (RCK1, magenta; RCK2, dark purple), with an architecture analogous to the one shown in A. (D) Crystal structure 
of the BK gating ring (PDB accession no. 3U6N) shown as a bird’s-eye view (as in B). Positions of Ca2+ ions in the Ca2+ bowl site are 
represented by green spheres.

3RBZ
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RCK domain activation and gating of BK channels and 
continue to provide new insight toward mechanisms of 
channel activation (Jiang et al., 2002a,b; Bao et al., 
2004; Yang et al., 2007, 2008; Hou et al., 2008; Pau et al., 
2011; Smith et al., 2012, 2013; Liu et al., 2013).

Each of the MthK channel’s four primary subunits 
contains pore-lining helices that are tethered to a pair 
of RCK domains at the cytoplasmic side of the channel, 
as illustrated in Fig. 1 A (Jiang et al., 2002a). Using sin-
gle-channel recordings, several laboratories contrib-
uted to development of an allosteric gating scheme that 
accounts for the major features of both Ca2+-dependent 
activation of the channel and inhibition of the channel 
by protonation (Zadek and Nimigean, 2006; Pau et al., 
2010). Through this work and complementary struc-
tural studies by x-ray crystallography, it was deduced 
that the RCK domains bind at least eight Ca2+ ions to 
stabilize the open/conducting state of the channel’s 
transmembrane pore, whereas binding of at least eight 
protons contributes to inhibition of Ca2+-dependent 
gating, consistent with the idea that each of the eight 
RCK domains in a gating ring contributes one Ca2+ site 
and one H+ site that control gating (Dong et al., 2005; 
Ye et al., 2006; Pau et al., 2010; Smith et al., 2012, 2013).

Whereas initial structural studies identified a single 
Ca2+-binding site within the N-terminal subdomain, de-
termined by acidic side chains of aspartate and gluta-
mate residues (D184, E210, and E212), two experimental 
observations suggested that this initial view was too sim-

ple. First, MthK channels consistently display a very 
steep relation between open probability (Po) and 
[Ca2+], with Hill coefficients of nine or greater (Zadek 
and Nimigean, 2006; Pau et al., 2010); this relation is 
much steeper than one predicted from a model with 
only eight Ca2+-binding sites per channel. Second, mu-
tation of the key Ca2+-binding residues D184 and E210 
reduced, but did not eliminate, Ca2+-dependent activa-
tion of MthK, suggesting that there must be additional 
Ca2+-binding sites (Pau et al., 2011).

It was later discovered that each MthK RCK domain 
contributed two additional Ca2+-binding sites, for a total 
of three sites per RCK domain, each of which contrib-
utes energetically to activation of the channel (Pau et 
al., 2011; Smith et al., 2012, 2013). Each binding site 
was identified from a combination of electrophysiologi-
cal and crystallographic data such that Ca2+-dependent 
activation of the channel can be eliminated only with 
combined mutations at all three binding sites.

Further analysis in which the MthK RCK domain 
was crystallized with one, two, or all three of the 
Ca2+-binding sites occupied yielded further insight to-
ward the contributions of individual sites to stabiliza-
tion of domain conformations, as well as allosteric 
coupling between the sites (Smith et al., 2012, 2013). 
This work demonstrated that conformational changes 
at both N-terminal and C-terminal subdomains con-
tribute to RCK domain activation and subsequent 
channel opening and that these different Ca2+-bind-

Figure 2. Structures of prokaryotic 
and eukaryotic RCK domains. (A) 
Crystal structure of an RCK domain 
homodimer from the MthK channel 
(PDB accession no. 4L73). Positions of 
Ca2+ ions are represented by enlarged 
green spheres. (B) Cartoon illustrating 
the arm-in-arm architecture of the RCK 
dimer with subdomain anatomy as indi-
cated. (C) Crystal structure of the tan-
dem RCK pseudodimer from the BK 
channel (PDB accession no. 3U6N). The 
position of the Ca2+ ion in the Ca2+ bowl 
site is represented by a green sphere.

4L73
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ing sites can interact energetically to affect channel 
gating. Interestingly, in the absence of ligand, the 
MthK gating ring can contain RCK dimers in multiple 
conformations, yielding gating rings that do not ex-
hibit fourfold symmetry (Fig.  3  A; Ye et al., 2006). 
Binding of the divalent cations Ca2+ or Ba2+ within the 
N-terminal subdomain appears to affect interactions 
between neighboring RCK dimers in a gating ring to 
stabilize a fourfold symmetric conformation and facil-
itate channel opening (Smith et al., 2012). Binding of 
Ca2+ ions at additional sites in the C-terminal subdo-
main result in formation of intersubunit Ca2+ bridges 
between RCK domains within each dimer, resulting in 
a conformational change and further facilitation of 
channel opening (Dong et al., 2005; Ye et al., 2006; 
Pau et al., 2011; Smith et al., 2012, 2013).

Together, these structural analyses are consistent with 
the idea that ligand binding can stabilize activated con-
formations of the gating ring that in turn can stabilize 
the open pore, whereas in the absence of ligand, these 
activated conformations are much less stable. Similar 
interactions among multiple ligands may be at play in 
other RCK domain–containing K+ channels, and it will 
be important to further understand their mechanisms 

in both functional and structural terms (Qian et al., 
2006; Sweet and Cox, 2008; Kong et al., 2012).

The eukaryotic BK channel
Similar to the MthK channel, an intracellular gating ring 
formed by eight RCK domains is present in the eukary-
otic BK channel (Fig. 1 D). However, whereas in MthK 
(and other prokaryotes), the RCK domains forming the 
gating ring are identical to one another, each BK chan-
nel subunit contains two nonidentical RCK domains 
(namely RCK1 and RCK2) that are linked in tandem 
(Fig. 1 C; Yuan et al., 2010). Thus, in the BK channel, 
four RCK1–RCK2 tandems form an intracellular gating 
ring that is nonetheless remarkably similar in overall 
structure to the gating ring of MthK (Fig. 1). In addi-
tion, BK channel gating is regulated by voltage, which is 
sensed by charged amino acids in transmembrane seg-
ments S2, S3, and S4 (Stefani et al., 1997; Díaz et al., 
1998; Horrigan and Aldrich, 1999; Horrigan et al., 1999; 
Ma et al., 2006; Lee and Cui, 2010; Pantazis et al., 2010). 
The mechanism by which BK functionally integrates 
these two stimuli has been described by allosteric models 
(McManus and Magleby, 1991; Cox et al., 1997; Roth-
berg and Magleby, 1998, 1999; Horrigan and Aldrich, 

Figure 3. Ca2+-dependent conformations of MthK and BK gating rings. (A) Conformations of the MthK gating ring in (left to 
right) unliganded, singly liganded, and fully liganded states. N termini, which are tethered to pore-lining helices of the channel, are 
represented by black spheres; purple spheres represent Ba2+ ions in the singly liganded ring, and green spheres represent Ca2+ 
ions. RCK dimers comprising the unliganded gating ring can assume two different conformations, thus breaking fourfold symmetry. 
The singly liganded (Ba2+ bound) state stabilizes a single, symmetric conformation that facilitates channel opening, and opening is 
further facilitated by additional liganding. In the fully liganded state, distances between all N termini are uniformly greater than in 
the unliganded or singly liganded states, consistent with movements that could open the transmembrane pore. (B) Conformations 
of the BK gating ring in (left to right) the unliganded and Ca2+-bound states, in which Ca2+ (green spheres) is bound at the Ca2+ 
bowl. As with the MthK gating ring, binding of Ca2+ increases distances between the RCK domain N termini, which in turn underlies 
channel opening.
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2002). The common feature of these models is that the 
individual structural modules sensing Ca2+ (gating ring) 
and voltage (transmembrane voltage-sensing domain) 
undergo structural rearrangements between resting and 
activated conformations, leading to channel opening. 
Either the Ca2+ or voltage sensors can open the channel 
independently as well as synergistically as a result of al-
losteric interactions between them (Horrigan and Al-
drich, 2002; Latorre et al., 2017). The ability of BK 
channels to be regulated by Ca2+ and voltage turns these 
channels into essential physiological couplers of Ca2+ 
and membrane voltage signaling, providing a negative 
feedback mechanism controlling Ca2+ influx to the cell. 
Consequently, BK channels are key regulators of neuro-
nal action potential firing, neurotransmitter release, or 
smooth muscle contractile tone. Inherited defects in BK 
channel function lead to disease, including high blood 
pressure, seizure and epilepsy, or urinary incontinence 
(Latorre et al., 2017). The gating ring constitutes an es-
sential structure involved in the coupling between Ca2+ 
ligation and channel activation.

Structures of gating rings isolated from eukaryotic 
BK channels were first solved in unliganded and Ca2+-
bound forms, corresponding to two gating ring confor-
mations (Fig. 3 B; Wu et al., 2010; Yuan et al., 2011). 
Remarkably, Ca2+ binding to the BK channel underlies 
a similar “expansion” of the gating ring seen in activa-
tion of the MthK gating ring (Fig. 3), although this is 
achieved by ligand binding at completely different loci. 
Specifically, the BK channel gating ring contains a key 
Ca2+-binding site (the “Ca2+ bowl”) at the interface be-
tween adjacent RCK dimers (discussed below); thus, 
Ca2+ binding at this site has a fundamentally distinct 
impact on BK gating ring structure from that seen in 
the MthK gating ring. In addition, the BK gating ring 
has additional Ca2+-binding sites aside from the Ca2+ 
bowl (Schreiber and Salkoff, 1997; Bao et al., 2002; Xia 
et al., 2002; Sweet and Cox, 2008; Zhang et al., 2010). 
The structural impact of these sites has been recently 
revealed in the published structure of the full-length 
BK channel from Aplysia californica (Hite et al., 2017; 
Tao et al., 2017) as described below. This review com-
pares RCK domains in three different organisms: 
mouse (m), A. californica (a), and human (h), which 
often have different residue numbers for the same 
functional amino acids or for amino acids in the same 
key structural locations, so the species will be indicated 
for every residue mentioned.

Role of the Ca2+ bowl
The high calcium sensitivity of BK channels has been 
attributed to a binding site known as the Ca2+ bowl, 
which contains a stretch of aspartate residues within 
RCK2 (Wei et al., 1994; Schreiber and Salkoff, 1997; 
Schreiber et al., 1999). Two of these aspartates (hD895 
and hD897 and mD898 and mD900; Table 1) are each 

critical for both Ca2+-dependent activation through this 
site as well as direct coordination of Ca2+, whereas other 
aspartate residues in this segment appear to provide 
structural stability through interactions with surround-
ing side chains (Bao et al., 2004; Yuan et al., 2010). 
These interactions may depend on occupancy of the 
Ca2+ bowl; for example, the hD892 side chain (mD895) 
appears to form a hydrogen bond with the side chain of 
hQ907 when the bowl is unoccupied, whereas hD894 
(mD897) appears to form salt bridges with hR1018 and 
hK1030 when Ca2+ is bound (Wu et al., 2010; Yuan et al., 
2010). These localized Ca2+-dependent changes at the 
Ca2+ bowl may contribute to Ca2+-dependent structural 
rearrangements that underlie gating, as suggested by 
moderately reduced BK Ca2+ sensitivity in the mD895A 
and mD897A mutants (Bao et al., 2004). The structure 
of the complete Slo1 channel from A. californica, in 
which the Ca2+ ion is coordinated by residues aD905, 
aD907, aQ899, and aD902 of the RCK2 subunit, is con-
sistent with previous work performed with channels 
from higher organisms (Hite et al., 2017; Tao 
et al., 2017).

The Ca2+ bowl is located very close to the intersubunit 
interface in the gating ring structure, in a different loca-
tion than that of any of the Ca2+-binding sites of MthK. 
In the context of the gating ring, the Ca2+ ion within the 
Ca2+ bowl appears to be additionally coordinated by the 
side chain of hN449 in the RCK1 region of the adjacent 
subunit (aN438; Yuan et al., 2011; Hite et al., 2017; Tao 
et al., 2017). Based on the observation that the overall 
Ca2+-dependent conformational change in the gating 
ring involves relative movements of the subunits at the 
RCK1–Ca2+ bowl interface, the nexus formed by the 
hN449 side chain may be an important component of 
the gating machinery (Hite et al., 2017). Consistent 
with this idea, mutations at hN449 diminish Ca2+-depen-
dent intersubunit interactions and Ca2+ sensitivity of the 
channel (Vouga et al., 2016). It will be important to de-
termine the energetic contributions of other compo-
nents of this interface.

Other binding sites outside the Ca2+ bowl
Two additional independent sites have been proposed 
to bind Ca2+ within the RCK1 domain. In the isolated 
gating ring structures obtained in high Ca2+ concentra-
tions, no electron density attributable to Ca2+ was found 
at either of these sites, and a model was proposed to 
accommodate a high-affinity binding site at the RCK1 
domain (Zhang et al., 2010). In the full channel A. cali-
fornica Slo1 structure, strong density is detected consis-
tent with a Ca2+ ion coordinated by side chains contributed 
by aD356 and aE525 and main-chain oxygens from 
aR503, aG523, and aE591 (Tao et al., 2017). Among 
these, residues aD356, aE525, and aR503 (mD367, 
mE535, and mR514) are highly conserved among BK 
channels and were previously identified from rigorous 
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functional studies as being important for Ca2+ sensing 
(Xia et al., 2002; Zhang et al., 2010). Additionally, the A. 
californica Slo1 structure reveals that the conserved 
aR503 side chain forms key interactions with highly con-
served residues in the Ca2+ bowl site (mE905 and mY907; 
Table 1), providing a structural basis for cooperative in-
teractions between the two Ca2+ sites, as noted below 
(Rothberg and Magleby, 1998, 1999; Qian et al., 2006).

Another site at the RCK1 exhibits millimolar affinity 
for divalent cations and is thought to underlie activa-
tion of the channel by Mg2+ (Oberhauser et al., 1988). 
This site has been proposed to be formed at the inter-
face between the gating ring and the transmembrane 
domains (mD99 and mN172 from the transmembrane 
region and mE374 and mE399 at the RCK1 region), 

constituting an interacting site between the voltage-sens-
ing domain and the gating ring (Yang et al., 2007, 2008; 
Zhang et al., 2010). Consistent with the functional stud-
ies, the structure of the full-length Slo1 channel from A. 
californica shows a density peak at the interface be-
tween the gating ring and the transmembrane domain, 
most likely corresponding to a Mg2+ ion coordinated by 
residues aE363, aE388, aT385, and aN161 and a water 
molecule. Interestingly, the residue equivalent to mD99 
(aD86 in A. californica Slo1) seems not to participate in 
direct coordination of the divalent cation, although it 
may be involved in maintaining the site stability (Tao et 
al., 2017). Interestingly, Mg2+ has been also proposed to 
interact with the gating ring through the Ca2+ bowl site 
(Javaherian et al., 2011; Miranda et al., 2016).

Table 1. Residues relevant to gating ring function reported in the literature

Equivalent amino acid numbers are shown for A. californica (Aplysia Slo1), mouse (mBK), and human BK (hBK). Table rows are color coded according to residue 
location: S6 (red), Mg2+-binding site (orange), RCK1 Ca2+-binding site (gray), and Ca2+ bowl (blue). Sequence alignment was performed using the Clustal Omega tool 
from EMBL-EBI and the following protein sequences: A. californica high conductance calcium-activated potassium channel (GenBank accession no. AAR27959.1), 
Mus musculus mbr5 mslo (GenBank accession no. AAA39746.1), and Homo sapiens calcium-activated potassium channel subunit α-1 isoform b (GenBank accession 
no. NP_002238.2).
aConserved residue.
bNonconserved residue.

AAR27959
.1
AAA39746
.1
NP_002238
.2
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Ca2+-binding sites in the gating ring are not equiva-
lent. In addition to different binding affinities for Ca2+, 
the structural differences among these sites are made 
evident by differential interactions with other chemi-
cally distinct divalent cations. For example, Ba2+ selec-
tively interacts with the Ca2+ bowl (Zeng et al., 2005), 
whereas Cd2+ appears to act through the RCK1 domain–
binding site (Zeng et al., 2005; but see Zhang et al., 
2010). Other divalent cations of smaller ionic radius, 
such as Mn2+, Co2+, Mg2+, and Ni2+, bind uniquely to the 
low-affinity binding RCK1 site (Zhou et al., 2012). Al-
though these cations may not have physiological rele-
vance to BK channel function, they are useful tools to 
assess the properties of different cation binding sites as 
well as their independent role in the conformational 
rearrangements of the gating ring (see below).

RCK movements in functional BK channels
How is Ca2+ binding mechanically transduced into pore 
opening? Comparison of isolated gating ring x-ray 
structures obtained in the absence and presence of 
high Ca2+ shows little change in the layer formed by the 
RCK2 domains, whereas that formed by the four RCK1 
domains seems to be expanded by >10 Å (Yuan et al., 
2011). Large conformational changes induced by Ca2+ 
have also been measured in isolated tetrameric gating 
rings in solution (Javaherian et al., 2011). Because this 
region of the gating ring is directly linked to the chan-
nel’s pore-forming helices, this expansion could repre-
sent the direct link between Ca2+ binding and the 
opening of the pore in BK channels (Savalli et al., 2006; 
Yusifov et al., 2008, 2010; Lee and Cui, 2010). However, 
the physiological relevance of these crystal structures 
and biochemical studies was limited by the fact that only 
part of such a complex channel was studied. Cryo–elec-
tron microscopy structures of the full-length Slo1 chan-
nel from A. californica have been recently obtained 
both in an EDTA-treated, ligand-free conformation and 
in a Ca2+- and Mg2+-bound conformation, leading the 
authors to propose a structure-based mechanism of 
channel activation involving Ca2+ binding–induced tilt-
ing of the RCK1 N lobe regions (also known as the AC 
regions, βA-αC; Hite et al., 2017). Interestingly, this 
mechanism entails two pathways, one through direct 
pulling of the S6 helices via the RCK1-S6 polypeptide 
linkers and the other via noncovalent protein–protein 
interfaces between the gating ring and the transmem-
brane domains as well as the S4–S5 linker. This is an in-
teresting finding because the existence of a covalent 
linkage between membrane domains and the RCK do-
mains forming the gating ring had led to the idea that 
variations in the tension of such linkers may be the 
major mechanism transducing ligand-induced rear-
rangements of the gating ring into pore opening. Al-
though some experimental work supported this notion 
(Niu et al., 2004), the lack of mechanical linkages be-

tween the gating ring and membrane domains in some 
bacterial transporters (i.e., KtrAB) suggested that other 
interactions between the RCK domains and the gating 
pore may be relevant for function (Lingle, 2007).

Conformational changes between subunits at the 
level of the gating ring during activation of functional 
BK channels have been studied experimentally using 
patch-clamp fluorometry on membrane patches con-
taining fluorescently labeled BK channels (Giraldez et 
al., 2005; Miranda et al., 2013, 2016). Large changes in 
fluorescence resonance energy transfer (FRET) were 
observed upon Ca2+ binding and channel activation. Si-
multaneous FRET and electrophysiological recordings 
using two different locations of the fluorescent probes 
showed that the linkers between RCK1 and RCK2 do-
mains (around hH667 sites) from adjacent subunits get 
closer upon Ca2+ binding, whereas the regions close to 
the Ca2+ bowl (hN860) are relatively moved apart. This 
movement is dependent on Ca2+ binding to the specific 
sites, as mutation of the Ca2+ bowl and/or the lower af-
finity Ca2+-binding sites gradually impairs state-depen-
dent FRET changes. Surprisingly, the FRET changes 
detected by Miranda et al. (2013) do not directly track 
with open probability. The electrophysiological data 
were well described by the standard allosteric model 
(Sweet and Cox, 2008); however, this model could not 
describe the electrophysiological and fluorescence data 
simultaneously, even after adding a large number of 
modifications to it (Miranda et al., 2013). With the 
available data, the authors concluded that, to explain 
simultaneously the movement of the gating ring and 
the channel gating, the standard model would need to 
be extended, implying that the conformational change 
in the gating ring has a more complex relation to pore 
opening than previously thought (Miranda et al., 2013). 
These observations cannot be fully correlated with the 
recently available full-length structures, which have 
been obtained only in extreme conditions of low and 
high Ca2+ and Mg2+ (Hite et al., 2017; Tao et al., 2017). 
These structures provide the framework to design new 
experiments toward full understanding of the dynamic 
structural rearrangements occurring in the gating ring 
of intact BK channels.

Interaction of the gating ring with the voltage sensors
Fluorescence-based studies indicate that the structural 
rearrangements of the gating ring show voltage depen-
dence, but not in all regions (Miranda et al., 2013, 
2015, 2016). Specifically, Ca2+-dependent FRET signals 
from the RCK1–RCK2 linkers region (hH667) have 
voltage dependence, whereas those of hN860 sites at 
the RCK2 do not. These differences in voltage depen-
dence may reflect distinct interactions of different re-
gions of the gating ring with the voltage-sensing 
domain during channel activation (Yang et al., 2007, 
2008; Sweet and Cox, 2008; Savalli et al., 2012; Miranda 
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et al., 2015). Consistently, with this hypothesis, the 
structure from A. californica Slo1 shows a large specific 
protein–protein interface between the gating ring and 
the transmembrane region containing the voltage sen-
sors and S4–S5 linkers connecting the sensors to the 
pore. Together with other structural observations, this 
has lead Hite et al. (2017) to highlight the relevance 
of this interface in the channel activation mechanism 
by Ca2+. The structures suggest that Ca2+-induced rear-
rangements of the RCK1 N lobe directly produce a 
displacement of the voltage sensors away from the pore 
axis, which in turn induces an equivalent displacement 
of the S5 helices near the plasma surface, favoring pore 
opening (Hite et al., 2017).

Cooperativity between Ca2+-binding sites
Functional studies have demonstrated the existence of 
cooperative interactions between the Ca2+-binding sites 
(Rothberg and Magleby, 1999; Qian et al., 2006; Sweet 
and Cox, 2008; Savalli et al., 2012). The cryo–electron 
microscopy structure of the open A. californica Slo1 
channel shows that the Ca2+ ion within the Ca2+ bowl is 
additionally coordinated by the side chain of aN438 
(m449; Table 1) from the RCK1 N lobe region of the 
adjacent subunit. At the RCK1 site, the Ca2+ ion coordi-
nation is made complete by interaction with the aD356 
from the RCK1 N lobe. Thus, the tilting on the RCK1 N 
lobe would simultaneously complete coordination of 
the cations at both the RCK1 site and the Ca2+ bowl, 
providing a structural basis for Ca2+-binding coopera-
tivity. Additionally, intrasubunit cooperativity may also 
arise from the observed interaction of the aR503 resi-
due from the RCK1 site with amino acids aE912 and 
aY914 from the Ca2+ bowl within the same subunit 
(Tao et al., 2017).

By taking advantage of the specific effects of different 
divalent cations, fluorescence studies have recently 
shown that activation of single high-affinity binding 
sites (either the Ca2+ bowl or the RCK1 site) by cations 
other than Ca2+ (i.e., Mg2+, Cd2+, and Ba2+) evoked sig-
nificantly smaller conformational changes than those 
observed when both sites are occupied with Ca2+ (Mi-
randa et al., 2016). This result indicates that both RCK 
domains can move independently when their specific 
binding sites are occupied by cations. Simultaneous oc-
cupation of both RCK1 and RCK2 sites by distinct cat-
ions is additive, emulating the effect of fully occupied 
Ca2+-binding sites (Miranda et al., 2016). It is tempting 
to speculate that binding of cations different from Ca2+ 
may not attain a complete coordination in the specific 
sites, thus yielding different levels of cooperativity be-
tween sites or no cooperativity at all.

Other players controlling the gating ring
The tissue-specific functional diversity of BK channels 
arises in part from the association of the pore-forming α 

subunits with any of four β and four γ regulatory sub-
units (Brenner et al., 2000a,b, 2005; Rothberg, 2012; 
Yan and Aldrich, 2012; Gonzalez-Perez et al., 2015), as 
well as the potential for multiple RCK domain struc-
tures and gating phenotypes through alternative splic-
ing (Tseng-Crank et al., 1994; Glauser et al., 2011; 
Johnson et al., 2011; Shelley et al., 2013) or posttransla-
tional modifications, such as palmytoylation (Shipston 
and Tian, 2016). Additionally, another regulatory mech-
anism may occur in macrocomplexes formed by BK and 
other ion channels, such as voltage-gated Ca2+ channels 
(Berkefeld and Fakler, 2013; Singh et al., 2016; Latorre 
et al., 2017). Much remains to be known about the mo-
lecular mechanisms underlying the effect of regulatory 
subunits on BK channel gating, some of which may in-
clude a direct interaction with the gating ring (Qian et 
al., 2002; Lee et al., 2010).

Conclusions and future perspectives
Our understanding of the structural basis of gating by 
RCK domains is rapidly evolving to the point where we 
can begin to tease apart the roles of chemical interac-
tions between amino acids within the domains with 
great precision. We now have access to gating ring struc-
tures in the context of full-length channels, bringing 
the research field to a new knowledge level and setting 
the stage for new functional studies, having supported 
or confirmed much of the electrophysiological work 
performed over the past 30 years.

Untangling gating ring function may provide a start-
ing point for computational drug design studies or ge-
netic approaches to understand and treat BK 
channelopathies including epilepsy, ischemic heart dis-
ease, pulmonary disease, erectile dysfunction, and blad-
der instability. The search for drugs that activate BK 
channels has constituted an important goal for many 
years, although with only moderate clinical success. 
This could be attributed to many potential factors, such 
as low selectivity of compounds in vivo, because of the 
ubiquitous nature and functional diversity of BK chan-
nels (Bentzen et al., 2014). It will thus become import-
ant to study gating ring function in conjunction with 
regulatory subunits and other important players to bet-
ter understand the impacts of these components on 
channel function and pharmacology.
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