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Abstract. Cancer is a leading cause of cases of mortality 
worldwide. The most effective method to cure solid tumors is 
surgery. Every year, >50% of cancer patients receive surgery 
to remove solid tumors. Surgery may increase the cure rate of 
most solid tumors by 4-11 fold. Surgery has many challenges, 
including identifying small lesions, locating metastases and 
confirming complete tumor removal. Fluorescence guidance 
describes a new approach to improve surgical accuracy. 
Near‑infrared fluorescence imaging allows for real‑time 
early diagnosis and intraoperative imaging of lesion tissue. 
The results of previous preclinical studies in the field of 
near‑infrared fluorescence imaging are promising. This 
review provides examples introducing the three kinds of 
fluorescent dyes: The passive fluorescent dye indocyanine 
green, which has been approved by the Food and Drug 
Administration for clinical use in the USA, the fluorescent 
prodrug 5‑aminolevulinic acid, a porphyrin precursor in the 
heme synthesis, and biomarker‑targeted fluorescent dyes, 
which allow conjugation to different target sites.
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1. Introduction

Cancer is a leading cause of cases of mortality worldwide (1). 
Surgery is an effective method used to remove solid tumors, 
with >50% of cancer patients undergoing surgery each year (2). 
As a matter of fact, surgical removal of the tumor may increase 
the cure rate of most solid tumor types by 4‑11 fold (3).

Failure to obtain complete disease clearance due to 
incomplete resection, including positive tumor margins or 
metastatic cancer cells in lymph nodes, is a major challenge in 
tumor surgery and occurs in 20‑60% of operations (2). Tumor 
cells may spread to distant host tissues, leading to metastatic 
disease, a well‑known cause of mortality in patients with 
cancer (4). Following treatment, high levels of metastasis and 
the recurrence of cancer may be observed due to incomplete 
removal of the edges of the primary tumor (4). Surgery holds 
different challenges, including identifying small lesions, 
locating metastases, as well as confirming complete tumor 
removal (5‑9).

To improve surgical accuracy, fluorescence guidance is 
an advisable approach. Near‑infrared fluorescence (NIRF) 
imaging displays promising results in preclinical studies, 
allowing for real‑time early diagnosis and intraoperative 
imaging lesion tissue (10‑12). It describes the non‑invasive use 
of near‑infrared light to excite the contrast agent, after which 
the intensity of contrast agent fluorescence can be detected. 
Thus, the fluorescence represents the transformation of the 
molecular structure of the contrast agent, which is tissues 
in different diseases (4). NIRF guidance was introduced to 
improve the identification of lesions and guide the removal of 
these lesions (13). Compared with the more traditional approach 
of molecular imaging, which involves a radioactive tracer 
at cm resolution, NIRF provides higher resolution, allowing 
the identification of numerous details on the surface of the 
tissue (14). The fluorescence guidance technology is limited 
by the strong attenuation of the signal, meaning the tech-
nology would lose be less accurate with increasing depth (15). 
Intraoperative fluorescent molecular imaging agents have 
emerged as an innovative approach to guide surgical resection. 
There are three types of fluorescent molecular imaging agents, 
which include passive fluorescent dyes, ‘pro‑dye’ fluorescent 
agents and biomarker‑targeted fluorescent dyes. The current 
review introduces these types kinds of fluorescent contrast 
agents by using examples of each.
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2. Passive fluorescent dye indocyanine green (ICG)

ICG (Fig. 1) is a near‑infrared (NIR) contrast dye, which has 
been approved by the Food and Drug Administration (FDA) 
for clinical use in the USA (3). ICG is a tricarbocyanine dye 
and a water‑soluble organic compound synthesized in the 
Kodak Research laboratories in 1955, it has been used to aid 
in medical diagnoses and to evaluate blood flow (16‑18). ICG 
is able to easily penetrate tissues and cells, with an adverse 
reaction rate of <0.1%. In the past, several studies have demon-
strated that ICG may be accumulating in metastatic tumors in 
the liver (19‑23). As ICG is associated with biliary excretion, 
accumulation of ICG in cancerous tissue has been demon-
strated to provide excellent contrast of intrahepatic nodules 
during surgery (24).

The mechanism of ICG accumulation in a tumor remains 
elusive. Previous studies have demonstrated that ICG 
undergoes hepatobiliary excretion  (25‑28). The excretion 
of ICG into the liver then bile may impact its clearance in 
different types of tumors. For hepatic tumors, it is assumed 
that organic‑anion transporting polypeptides expressed on 
liver cells, transporter proteins and intracellular transporter 
proteins give rise to the tumor contrast (24,29). For non‑liver 
tumors, the enhanced permeability and retention (EPR) effect 
is the primary mechanism for the accumulation of ICG in 
solid carcinomas  (30‑33). The EPR mechanism has been 
associated with tumor environments, such as blood pressure, 
pH, vascular endothelial cell separation, differences in local 
prostaglandins and bradykinin levels and the lack of angio-
genesis in lymphatic vessels (24,34).

Described by Matsumura and Maeda  (35) for the first 
time in 1986, the EPR effect described defects in endothelial 
cells lead to the systematic and passive accumulation of small 
molecules, such as ICG, into the walls of tumor blood vessels. 
Once in the tumor microenvironment, the dye molecules are 
retained due to global properties, including shape, size, charge 
and polarity, rather than the tumor‑specific ligand‑receptor 
interaction mechanism (36).

The molecular structure of ICG comprises hydrophilic 
and hydrophobic moieties  (37). Driven by its inherent 
chemical structure, ICG interacts with lipoprotein (LP) and 
phospholipids (38). ICG combines with LP in human blood 
circulation (39‑41). LP interacts with the hydrophilic end of 
ICG and forms a complex (ICG‑LP) with improved affinity 
for hydrophobic groups. During necrosis, the hydrophobic tails 
of phospholipids are exposed and changes in the affinity of 
ICG‑LP to the ruptured lipid layer are observed (Fig. 2) (37). 
In addition, certain diseases, including malignant tumors, 
inflammation or trauma, may increase vascular permeability, 
allowing ICG‑LP complexes to penetrate the walls of healthy 
blood vessels (39,42).

Onda et al (43) revealed that 30 min after administration, 
ICG was internalized into tumor cells, where it remained 
for at least 24 h. In normal tissue rapid clearance occurred. 
In the vicinity of 2‑(N‑(7‑nitrobenz‑2‑oxa‑1,3‑diazol‑4‑yl)
amino)‑2‑deoxyglucose, ICG exhibited rapid non‑tissue 
specific extravasation, perhaps due to reversible non‑covalent 
interactions with serum proteins, like albumin, displaying 
EPR effects contributing to ICG accumulation within the 
tumor tissue (30‑33).

It was further indicated that the intracellular accumulation 
of ICG may increase as the temperature increases; also, the 
authors suggested that ICG may be absorbed into the cells by 
binding to the cell membrane (43). Two molecules may influence 
the process of ICG uptake: Phospholipids and Pitstop2. The 
ability of ICG to interact with phospholipids allows it to bind 
to the cell membrane, the cells then uptake ICG; Pitstop2, 
the grid protein‑dependent endocytosis inhibitor, is activated 
through the binding of extracellular molecules to the cell 
membrane and inhibits the uptake of ICG (44). Furthermore, 
the authors recommended that ICG may be absorbed into the 
cells by binding to the cell membrane (43).

The conflicting results of the fluorescence imaging often 
depend on tumor type, staging and microenvironment. The 
fluorescence emitted by ICG only penetrates 5‑10 mm into 
the tissue, so the depth of the tumor influences the imaging 
result  (45). Hill  et  al  (46) stated that human leukocyte 
antigen (HLA) is a natural, biodegradable substance; ICG 
(0.0026‑0.0052 mmol, 2.0‑4.0 mg) loaded into HLA may 
become a nanoparticle. Hill et al (46) also indicated that tumor 
contrast with ICG nanoparticles was significantly improved 
compared with the use of regular ICG. This indicates that the 
size of ICG may influence the fluorescence image results.

A PubMed analysis of papers published over the last five 
years using ICG in surgery by tissue or cell type is given in 
Fig. 3. Liver cancer exhibits the highest publication numbers 
describing the use of ICG in surgery, followed by breast and 
cervical cancer. Publications describing the use of ICG in surgery 
have increased between 2011 and 2016, as Fig. 4 indicates.

Figure 2. Normal lipid bilayer vs. necrotic lipid bilayer. Necrosis exposes 
the hydrophobic tails of the phospholipids. Indocyanine green‑lipoprotein 
exhibits a distinct affinity for the phospholipids from the ruptured lipid 
bilayer.

Figure 1. Structure of indocyanine green.
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3. ‘Pro‑dye’ fluorescent agent 5‑ALA

5‑aminolevulinic acid (5‑ALA; Fig.  5) is a non‑protein 
amino acid, which is a precursor in the porphyrin biosyn-
thesis (47,48). The ability of 5‑ALA to act as a fluorescent 
agent originates from the accumulation of the light‑sensitive 
protoporphyrin‑IX (PpIX), which exhibits a distinct fluores-
cence spectrum when exposed to a certain wavelength (49). 
Through the insertion of a ferrous iron (Fe2+), PpIX (Fig. 6) 
forms heme B, the prosthetic group of hemoglobin, myoglobin, 
cytochromes, catalases and peroxidases (47). PpIX is photo-
sensitive, absorbing blue light (375‑440 nm) and emitting red 
to pink fluorescence (~635 nm) (48‑50). Exogenous 5‑ALA 
is the most commonly used molecule as a photosensitizing 
agent in intra‑operative photodynamic detection of tumor 
tissue (51), and may become a ‘pro‑dye’ fluorescence agent in 
fluorescence‑guided surgery (FGS)  (52‑54).

Improved PpIX fluorescence following 5‑ALA treatment is 
observed in different types of tumor cells and tissues (Fig. 7), 
validated through a comparison with a control group (55). 
Extensive research has demonstrated that increased PpIX 
fluorescence in tumor cells may be the result of influencing 
various tumor‑associated properties, including heme biosyn-
thesis, mitochondrial function and changes in porphyrin 
transporters (56).

The activity and expression profile of enzymes partici-
pating in heme biosynthesis differ between tumor and healthy 
cells or tissues. Eight enzymes were included in the heme 
biosynthesis pathway (57). Comparing the expression level of 
genes or activity of enzymes involved in heme biosynthesis 
between tumor, normal cells and tissues from studies indicated 
that the following enzymes exhibited significant differences in 
activity (21,58‑72). The first enzyme in the heme biosynthesis is 
called ALA synthase, which catalyzes the formation of 5‑ALA 
from glycine and succinyl‑coenzyme A (CoA). Following the 
migration of 5‑ALA from the mitochondrial matrix to the 
cytoplasm, ALA dehydratase, also referred to as porphobi-
linogen synthase, catalyzes the formation of porphobilinogen 
(PBG), by combining two molecules of 5‑ALA. The connec-
tion of four PBG molecules yielding in hydroxymethyl bilane 
is catalyzed by the porphobilinogen deaminase (also known 
as hydroxylmethylbilane synthase). Uroporphyrinogen  III 
decarboxylase (UROD) is involved in the fifth enzymatic step 

Figure 6. Structure of protoporphyrin‑IX.

Figure 5. Structure of 5‑aminolevulinic acid.

Figure 4. Number of papers published between 2011 and 2016, according to 
PubMed, describing the use of indocyanine green for surgery guidance over 
time.

Figure 3. Number of papers published between 2011 and 2016, according to 
PubMed, describing the use of indocyanine green for surgery guidance for 
different types of tumor.

Figure 7. Number of papers published between 2011 and 2016, according to 
PubMed, describing the use of 5‑aminolevulinic acid for surgery guidance 
for different types of tumor.
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of the heme biosynthesis pathway, where uroporphyrinogen III 
is decarboxylated by UROD giving proporphyrinogen III. 
Ferrochelatase (FECH) catalyzes the conversion of PpIX 
to heme b, making it the last enzyme utilized in the heme 
biosynthesis.

In order to make it clear that these enzymes are differen-
tially expressed in the tumors, Table I (21,58‑72) illustrates 
the changes observed in gene expression and enzyme activity 
linked to the heme biosynthesis pathway of various tumor 
tissues compared to normal tissue. The data provided may 
further be used a guide aiding the decision as to which tumor 
types may exhibit improved surgical results through the use of 
5‑ALA‑mediated PpIX florescence.

Succinyl‑CoA, one of the two starting materials of 
the PpIX/heme biosynthesis, is a metabolite produced in 
the tricarboxylic acid (TCA) cycle. In order to prevent the 
accumulation of metabolites from the TCA cycle, as well 
as mitochondrial NADH, a connection between the glucose 
metabolism, TCA cycle and the heme biosynthesis has been 
established (73). That is to say, Succinyl‑CoA, a metabolite 
produced in the TCA cycle, participated in the first step of 
PpIX/heme biosynthesis.

In cancer cells, metabolic reprogramming from the TCA 
cycle into aerobic glycolysis, generating glutamine for energy, 
may lead to the accumulation of TCA cycle metabolites 
and the activation of the heme biosynthesis to remove those 
metabolites (74). Activation of heme biosynthesis may lead 
to PpIX accumulation due to FECH saturation (56). Effective 
5‑ALA absorption and the transport of different porphyrin 
metabolites may further affect the PpIX accumulation in cells. 
In theory, the improved 5‑ALA‑PpIX in tumor cells may be 
triggered by certain processes, including elevated ALA uptake, 
improved porphyrin activity and reduced PpIX activity. An 
increase in 5‑ALA uptake has been identified through elevated 
levels of PpIX in tumor cells (75). Furthermore, studies have 
indicated that high and low PpIX 5‑ALA absorption were 
not significantly different between cell lines  (64,76,77). 
Nakanishi et al (78) demonstrated that there was no correlation 
between 5‑ALA‑induced PpIX accumulation and the uptake 
clearance of 5‑ALA. The aforementioned study also revealed 
that ALA uptake rates were far greater than maximum 
conversion rates of ALA to PpIX in LS‑180, T24, A2780, DU145 
and MCF‑7 cell lines. ALA uptake is not the only decisive 
factor to enhance ALA‑PpIX fluorescence in tumor cells. A 

Table I. Changes in enzymatic activity and gene expression of enzymes participating in the heme biosynthesis pathway in various 
tumor tissues. 

Enzyme	 Cancer type	 Effects

ALAS	 Colorectal cancer (58)	 Gene expression significantly lower
	 HCC4017 non‑small‑cell lung cancer (59)	 Gene expression and protein level increased
	 Lung cancer xenograft tumor (59)	 Protein level increased
PBGD	 Cervical cancer (60)	 Gene expression and enzymatic activity increased
	 Prostate cancer (61)	
	 Breast cancer (62)	
	 Meningioma (21)	
	 Bladder cancer (63)	 Enzymatic activity increased
	 Colon cancer (64)	
	 Barrett's esophagus (65,66)	
	 Esophageal cancer (55,65)	
UROD	 Friend virus‑induced erythroleukemia	 Gene expression or enzyme activity increased in
	 (mice) (67)	 initiation an progress
	 Breast tumor (62)	 Enzyme activity increased
	 Head and neck cancer (68)	 Gene expression increased
FECH	 Liver cancer (69)	 Enzyme activity decreased
	 Bladder cancer (63)	 Enzyme activity decreased
	 Colorectal cancer (58,64)	 Gene expression decreased
	 Esophageal cancer (58)	 Gene expression decreased
	 Gastric cancer (58)	 Gene expression decreased
	 Rectal cancer (58)	 Gene expression decreased
	 Colon cancer (58)	 Gene expression decreased
	 Urothelial cancer (70)	
	 Glioma cancer (71)	
	 Breast cancer (72)	

ALAS, 5‑aminolevulinic acid synthase; PBGD, porphobilinogen deaminase; UROD, uroporphyrinogen III decarboxylase; FECH, ferrochela-
tase.
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porphyrin transporter that is postulated to be linked to the 
porphyrin synthesis is the adenosine 5'‑triphosphate‑binding 
cassette subgroup B member 6 (ABCB6), which was originally 
described as a transporter protein on the outer mitochondrial 
outer membrane (79). ABCB6 interacts with various porphyrins, 
including coproporphyrinogen III, PpIX and hemoglobin, with 
the highest affinity recorded for coproporphyrinogen III (46). 
Therefore, ABCB6 was thought to be primarily involved in 
the transporting coproporphyrin III into the mitochondria for 
PpIX/heme b synthesis (79). Increased ABCB6 expression has 
been linked to an increase in fluorescence in human glioma 
tissues allowing for better contrast in fluorescence‑guided 
surgery, via more sufficient PpIX accumulation (80). ABCB6 
is located in the cell membrane and Golgi apparatus, and 
transports coproporphyrinogen  III between the cellular 
departments  (81‑83). An enhanced ABCB6 function 
may be observed at increased coproporphyrinogen  III 
concentration, reducing the intracellular concentration of 
PpIX/hemoglobin  (46). The net influence of ABCB6 on 
5‑ALA‑PpIX levels in the cells may depend on the relative 
ABCB6 activity in the mitochondria and cell membranes (56).

In the plasma membrane, ATP‑binding cassette 
sub‑family G member 2 (ABCG2), a transporter, serves the 
most important role in transporting PpIX. Studies have 
demonstrated that increased ABCG2 activity reduces the 
intracellular PpIX level following 5‑ALA stimulation, and the 
cell lines with high ABCG2 expression or activity often exhibit 
decreased 5‑ALA‑PpIX fluorescence (84,85). Robey et al (84) 
indicated that the use of ABCG2 transport inhibitors would 
enhance 5‑ALA‑PpIX fluorescence.

4. Biomarker‑targeted fluorescent dyes

Several NIR fluorescent dyes have been developed and 
incorporated, for example with antibodies (86,87), nanopar-
ticles (88) or encapsulated within nanomaterials (89,90), to 
be used as contrast agents for molecular imaging of different 
tumors (4). Researchers have identified that elevated levels 
of fibroblast activation protein (FAP) in stromal fibroblasts 
are associated with aggressive cancer types  (91‑95). FAP 
is a type II salivary glycoprotein with the ability to cleave 
biological peptides, including collagen and proteolytic 
enzymes, and serve a central role in the aggressiveness of 
the solid tumors. FAP is expressed in stromal fibroblasts of 
several types of cancer, but not in healthy tissue; it is used as 
a tumor marker that has drawn increasing attention (91,96). 
Rüger et al (90) linked anti‑single‑chain variable fragment 

directed against FAP antibody fragments to quenched lipo-
somes, which became a novel fluorescence diagnostic contrast 
dye termed anti‑FAP‑IL. Anti‑FAP‑IL antibodies were used 
to ensure the specificity and fluorescence imaging of FAP 
expression cells and tumor muscle fibroblasts in mice xeno-
transplantation (96).

Carbohydrate antigen 19.9 (CA19.9) is a ligand of epithelial 
leukocyte adhesion molecules and its overexpression has been 
found in some malignancies as well as in some non‑malignant 
conditions (97‑101). CA19.9 is an attractive target for 
pancreatic ductal adenocarcinoma (PDAC) imaging, due to its 
high expression on tumors, compared with healthy pancreatic 
tissue (102,103). The usage of CA19.9 as biomarkers for PDAC 
led to the identification of several antibodies, including the 
characterization of the fully human monoclonal antibody 5B1, 
which binds to extracellular epitopes of CA19.9 with low 
nanomolar affinity (104‑106). So Houghton et al (107) generated 
three modular tools, including 89Zr‑ssDFO‑5B1, ssFL‑5B1 and 
89Zr‑ssdual‑5B1. These modular tools can target CA19.9, which 
is an important molecule in invasion and metastasis of many 
cancers, including PDAC (103). The results revealed that the 
three modular tools evaluated displayed excellent uptake in 
the CA19.9 positive xenograph model of PDAC, indicating that 
each of them is likely to improve the detection rates of tumor 
of patients with PDAC (107).

The f luorescent gold nanoparticles synthesized by 
Li et al (108) bind to diatrizoic acid and the nucleolin‑targeted 
AS1411 aptamer. This is a type of f luorescence‑guided 
aptamer‑targeted probe. Apart from providing visible 
fluorescence for detecting, the probe also exhibited high 
water‑solubility, good biocompatibility and strong X‑ray 
attenuation used in computed tomography (CT) contrast 
enhancement. The probes were intravenously injected into 
CL1‑5 tumor‑bearing mice and detection experiments, 
which included CT imaging and fluorescence detection 
30 min post injection, were performed. The results demon-
strated that fluorescence nanoparticle conjugates, used as 
molecular imaging agents to indicate the tumor location by 
CT imaging, may be easily observed on CT images with the 
naked eye (108).

Cysteine protease is another biomarker that is highly 
upregulated in the tumor cells and the surrounding matrix 
of tumor support cells in multiple types of cancers  (109). 
Fluorescent contrast agents that may be helpful for dynamic 
monitoring in vivo and used as imaging contrast agents for 
FGS may improve the detection rates for tumors  (110). 
Researchers designed and synthesized a series of NIR fluores-
cent probes, using the latent lysosomotropic effect to promote 
the cell retention of protease activation. These probes exhibit 
tumor‑specific retention, rapid activation kinetics and rapid 
system distribution. Furthermore, they may be used to detect 
multiple types of cancer, including breast, colon and lung 
cancer (110).

The most common biomarker used for targeted fluorescence 
is folate, a B vitamin involved in metabolic processes, 
including DNA and RNA synthesis, epigenetic processes, cell 
proliferation and lung adenocarcinoma survival  (111). The 
folate receptor (FR) family consists of four members, with 
only FR‑α and FR‑β displaying high affinities for folic acid. 
When expressed in the cavity surface of polarized epithelial 

Table II. Comparison of three different fluorescence‑based 
dyes.

Dye	 Targeted	 Administration

ICG	 No	 Injection
5‑ALA	 No	 Injection or oral
Biomarker	 Yes	 Depends on the dye

ICG, indocyanine green; 5‑ALA, 5‑aminolevulinic acid.
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cells, FR‑α is able to prevent binding of the serum folate 
salt (111‑114). The FR‑α expression in lung adenocarcinoma 
(1‑3,000,000 receptor/cancer cells) appears more connected 
with serum folic acid than in normal pulmonary epithelial 
cells (115‑118). For the purpose of diagnosis, FR‑α provides 
a reasonable molecular target for lung adenocarcinoma. Two 
contrast agents, EC17 and OTL38, have been proposed to image 
ovarian and lung adenocarcinomas during surgery (12,119). 
These agents are similar in that they target FR‑α via a folate 
ligand. Although EC17 and OTL38 use the same ligand, they 
have two different fluorochromes: EC17 contains a fluorescein 
dye and OTL38 contains a cyanine dye (118). Fluorescein is 
in the visible wavelength and the cyanine is in the NIR range. 
De Jesus et al (118) revealed that OTL38 appears to have superior 
sensitivity and brightness compared to EC17 in a preclinical 
testing. This conclusion is consistent with the accepted belief 
that NIR dyes exhibit less auto fluorescence and scattering 
compared with visible wavelength fluorochromes (118).

5. Conclusions

Fluorescent contrast agents may guide surgeons in making 
real‑time decisions during surgery. ICG is an NIR contrast dye, 
which was approved by the FDA for clinical use in the USA. It 
is a water‑soluble organic compound, which may easily pene-
trate tissues and cells with an adverse reaction rate of <0.1%. 
The EPR influence is the major mechanism by which ICG 
accumulates in solid cancer. ICG is processed by the excretory 
pathways of the biliary system and may offer superiority in some 
tumor nodules during surgery. 5‑ALA is a natural amino acid 
and a natural prodrug that metabolizes to the heme precursor 
PpIX. 5‑ALA, through oral administration, increases the PpIX 
accumulation in the tumor tissue and subsequent photosensi-
tizing may guide tumor resection. Fluorescent dyes have been 
developed and combined with antibodies or nanoparticles to 
function as contrast agents for molecular imaging by increasing 
the binding to the target site and providing more accurate 
information during tumor resection. Increasing studies focus 
on combining these different advantages into one dye, which it 
is believed will further the development of fluorescent contrast 
agents. Table II provides a brief summary of targeting abilities 
and methods of administration of the three types fluorescent 
contrast agents discussed in the current review. Combining 
these imaging agents for clinical use may provide more options 
in tumor surgeries. The application of contrast agents may 
significantly improve the surgery outcome.
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