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Abstract: Hypertension due to primary aldosteronism poses a risk of severe cardiovascular com-
plications compared to essential hypertension. The discovery of the KCNJ5 somatic mutation in
aldosteroene producing adenoma (APA) in 2011 and the development of specific CYP11B2 antibodies
in 2012 have greatly advanced our understanding of the pathophysiology of primary aldosteronism.
In particular, the presence of CYP11B2-positive aldosterone-producing micronodules (APMs) in
the adrenal glands of normotensive individuals and the presence of renin-independent aldosterone
excess in normotensive subjects demonstrated the continuum of the pathogenesis of PA. Furthermore,
among the aldosterone driver mutations which incur excessive aldosterone secretion, KCNJ5 was
a major somatic mutation in APA, while CACNA1D is a leading somatic mutation in APMs and
idiopathic hyperaldosteronism (IHA), suggesting a distinctive pathogenesis between APA and IHA.
Although the functional detail of APMs has not been still uncovered, its impact on the pathogenesis
of PA is gradually being revealed. In this review, we summarize the integrated findings regarding
APA, APM or diffuse hyperplasia defined by novel CYP11B2, and aldosterone driver mutations. Fol-
lowing this, we discuss the clinical implications of KCNJ5 mutations to support better cardiovascular
outcomes of primary aldosteronism.
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1. Introduction

Hypertension is the leading risk factor for death and disability in the global pop-
ulation [1–4]. The treatment goal of hypertensive patients is to maintain a healthy life
expectancy comparable to that of healthy individuals. To achieve it, we need to cure the
disease and reduce the risk of cardiovascular complications as much as possible. In this
regard, an appropriate classification of hypertension is necessary. Secondary hypertension
should be screened for the patients showing following characteristics [5–7]: (1) onset of
hypertension (<30 years), (2) abrupt onset of hypertension, (3) drug-resistant hyperten-
sion, (4) exacerbation of previously controlled hypertension, (5) suspicion of endocrine
causes of hypertension or CKD, (6) clinical features suggestive of obstructive sleep apnoea,
(7) unprovoked or excessive hypokalemia, (8) disproportionate targeted organ damage
for degree of hypertension, (9) onset of diastolic hypertension in older adults (≥65 years).
Primary aldosteronism (PA) is found in 5–7% of all hypertensive patients [8–13] and even
explains 20% of patients with third-degree hypertension [14]. Despite its frequency, less
than 1% of patients with PA undergo screening and progress to treatment throughout their
lifetime [15–20]. One reason for the underdiagnosis may be that health care providers are
not fully aware of the high frequency of PA in hypertensive patients. In addition, there
is not sufficient consensus on the targets and methods of screening tests. In most of the
institutions, patients to be screened are those with severe hypertension [21–23], i.e., in
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addition to the characteristics indicating secondary hypertension, (1) hypertension and
spontaneous or diuretic-induced hypokalemia, (2) hypertension and adrenal incidentaloma,
(3) atrial fibrillation in the absence of structural heart disease, (4) a family history of early
onset hypertension or stroke at a young age (<40 years), (5) all hypertensive first-degree
relatives of patients with PA. Others recommend screening for all hypertensive patients [24]
from a cost-effectiveness perspective based on its high frequency [25,26] and the need
for lifelong antihypertensive medication. With suspicions of PA at the first screening
test evaluating plasma aldosterone levels and plasma renin activity, we should move to
definitive diagnosis of PA, performing confirmatory tests (Figure 1). If the patient desires
surgical treatment, subtype diagnosis should be considered, which requires adrenal venous
sampling (AVS). However, AVS is available at limited institutions, therefore, efforts have
been made to identify cases in which AVS can be bypassed and to determine the indications
for surgery by CT scan [27–30]. It should be noted, however, that the results of CT imaging
and AVS differ in 28–38% of cases [31,32]. Thus, AVS has been recommended for precise
subtype diagnosis to date. In this review, we summarize integrated findings regarding
new insight of pathophysiology of PA and discuss clinical transferability of the findings,
particularly focusing on somatic KCNJ5 mutation. We searched MEDLINE for articles
published 1 January 1955 to 1 June 2022, using the search terms “primary aldosteronism”,
“Conn’s syndrome”, “hyperaldosteronism”, “adrenal vein sampling”, and “genetics”. We
mainly focused on the publications in the past 5 years (1 June 2017, to 1 June 2022) in the
English language, and selected relevant and highly referenced publications before this time.
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Figure 1. Overview of case detection and treatment strategy of primary aldosteronism. Most guidelines
recommend to use plasma aldosterone-renin ratio (PAC/PRA) for screening test [21–24,33]. * Confirmatory
tests included captopril challenge test, saline infusion test, and oral sodium loading test. ** Bilateral
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APAs can be diagnosed by segment selective adrenal venous sampling [34,35]. Partial adrenalectomy
to spare normal adrenal tissue should be considered for the dominant side of APA if attempting
surgical treatment. This would be helpful when the residual APA may cause MRA-resistant PA in
the future. PAC, plasma aldosterone concentration; PRA, plasma renin activity; PA, primary aldos-
teronism; MRA, mineral corticoid receptor antagonist; CT, computed tomography; IHA, idiopathic
hyperaldosteronism; APA, aldosterone producing adenoma.

2. Cardiovascular Outcome of Primary Aldosteronism

PA leads to abnormalities in the renin-angiotensin-aldosterone system and is known
to increase the incidence of atrial fibrillation, heart failure, and stroke by 3.52, 2.05, and
2.58 times compared to hypertension due to essential hypertension [36–39]. Appropriate
treatment for PA can greatly improve the prognosis of cardiovascular complications [38],
and thus early diagnosis of PA and specific treatment for the condition are important. The
etiology of PA is caused by two broad categories: aldosterone-producing adenomas (APA)
and idiopathic hyper aldosteronism (IHA). In the former, the pathogenetic localization is
clear, and surgical resection can be expected to cure the disease [40]. The frequency of APA
and IHA has been reported to vary between primary care and referral centers [11,12,41], but
it is difficult to determine the exact frequency. APA should be pathologically diagnosed by
morphology and staining for CYP11B2 [42], an aldosterone-producing rate-limiting enzyme.
However, surgical resection is only performed in cases who want to receive surgery and
have been pre-surgically diagnosed with APA by adrenal venous sampling (AVS). IHA, on
the other hand, is diagnosed by AVS and is usually treated with medication. We, therefore,
cannot rule out the possibility of mixed misdiagnosis of APA in most cases. The frequency
of APA and IHA diagnoses depends largely on the availability, procedure (e.g., usage
of ACTH stimulation) and diagnostic criteria of AVS. Recently, tributary adrenal vein in
addition to central adrenal vein sampling (a.k.a., segment selective AVS) has revealed that
more than 10% of patients were elucidated as having APA, which could not be diagnosed
by classic AVS evaluation of left-right difference [34]. Therefore, it is important to identify
the localization of increased aldosterone synthesis within the adrenal gland to accurately
diagnose APA, rather than simply looking at the right or left side of the adrenal gland.
However, as a practical matter, the number of facilities where AVS is available is still far
less than the expected number of patients with PA, and it is difficult to perform AVS on all
patients with PA. Furthermore, publications reporting use of segment selective AVS are
mostly from Japan [34,35,43,44]. Standardization and cost reduction of the AVS technique
would give us precise etiology of APA and IHA. The data would help us to develop the
diagnostic algorithm to predict the cases who require AVS.

3. Great Progress in Our Pathophysiological Understanding of PA

Along with the improvement of diagnostic techniques for PA, there have been remark-
able advances in pathophysiological understanding of PA. One is the development of the
specific CYP11B2 antibody, and the other is the findings of somatic mutations in APAs.

The corner stone of the specific monoclonal antibody against CYP11B2 was reported
in 2014 [45,46]. CYP11B2 is the rate-limiting enzyme for aldosterone synthesis and the
antibody was recently used for standardization for the nomenclature and criteria of the
pathological diagnosis of surgical specimens of PA patients (HISTALDO) [42]. Classically,
the diagnosis of aldosterone-producing adenoma and nodule was made morphologically by
HE staining of the resected specimen (classic form). On the other hand, CYP11B2 staining
has made it possible to diagnose multiple aldosterone-producing nodules or, less frequently,
aldosterone-producing diffuse hyperplasia. In addition, this pathological diagnosis was
reproducible among different pathologists (non-classic form). This standardization of
the pathological diagnosis was built up by the incorporation of a functional aspect using
CYP11B2 into the diagnosis, in parallel with the conventional morphological criteria. A
prospective cohort study using these diagnostic concepts showed that non-classical mul-
tiple nodules were associated with more postoperative biochemical failures compared
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to patients diagnosed with a single macro lesion in its classic form represented by APA
(33.3 vs. 2.4 (%)) [47]. The possibility that lesions with multiple nodules may be more prone
to bilateral disease should be considered, although this is a matter of speculation due to the
lack of pathological findings in the residual adrenal gland. Efforts should be made to make
the preoperative diagnosis closer to the pathological diagnosis in order to take advantage
of the finding that the two forms of classification would have different surgical implications
for PA patients. The recently published segment selective AVS (sAVS) allows us to plot
the distribution of the aldosterone secretory response within the adrenal gland [34]. In
particular, when partial resection was performed for the cases that showed the local distri-
bution of aldosterone in the adrenal gland coincided with the tumor, biochemical remission
was achieved in all postoperative patients, and 97% of the cases showed the pathological
diagnosis of APA. In the future, these improvements in AVS diagnostic techniques, coupled
with standardization of pathology diagnosis, will provide useful insights to build appro-
priate treatment strategies for individual patients. To this end, prospective cohort studies
with uniform diagnostic criteria, pathological evaluation, and posttreatment assessment
are needed to establish the frequency of APA and multiple nodules, as well as appropriate
diagnostic procedures.

In parallel with these findings, the discovery of the aldosterone driver mutation has
greatly advanced our understanding of the pathogenesis of PA patients. The first step in
this sequence was the memorable report published in 2011, describing a somatic mutation
in the KCNJ5 gene encoding G protein-activated inward rectifier potassium channel 4
(GIRK-4) [48]. KCNJ5 mutation was identified in 36% of APA [48–50]. Following this
discovery, somatic mutations in ATP2B3, ATP1A1 [51], and CACNA1D [52] were identified
in 2013; although the frequency of KCNJ5 mutations in APA is higher in Eastern countries
(59.5–76.8%) [53–56] than in Western countries (34–45%) [49,50,57–59], KCNJ5 mutations
are similarly the most common mutation across the world. All of these mutations increase
intracellular calcium concentrations, followed by activating CYP11B2 enzyme expression
and increasing excess aldosterone biosynthesis. However, whether these mutations enhance
cell proliferation has not been determined. Particularly, the proliferative effect seen in
KCNJ5 was different due to KCNJ5 expression levels in the study using HAC15 [60], while
another report using APAs did not show any evidence of proliferative effect of KCNJ5
mutation [61]. However, the evidence from germline KCNJ5 mutations suggested that
KCNJ5 mutations promote proliferation to form hyperplasia in vivo [62,63]. A recent study
using CYP11B2 immunohistochemistry-guided high-throughput sequencing rather than
Sanger sequencing identified 95% of APAs as showing one of these somatic mutations,
and more APAs with CACNA1D mutations among KCNJ5 wild-type APAs [64]. These
mutations would play a crucial role in the pathogenesis of PA.

4. Pathological Insights into PA

CYP11B1 and CYCP11B2 play pivotal roles in the synthesis of adrenal corticosteroids,
the former responsible for the synthesis of cortisol and corticosterone, and the latter for
the synthesis of aldosterone [65]. The advent of CYP11B2 novel monoclonal antibodies
has clarified the zonation of these synthesis enzymes in the normal adrenal gland [45,46].
Classically, the adrenal cortex is composed of three main zones, i.e., from the outermost
layer, zona glomerulosa (ZG), to the zona fasciculata (ZF) and zona reticularis. Aldosterone
and cortisol are produced by ZG and ZF cells, which have been shown by HE staining
to be morphologically distinct: ZG cells are smaller, more compact, and have a smaller
cytoplasm/nucleus ratio; ZF cells have a larger cytoplasm/nucleus ratio, with more fatty
material and transparent appearance. Evaluation of the distribution of each synthase in
the normal adrenal gland using specific CYP11B2 and B1 antibodies has shown that the
distribution is different in young and elderly individuals [66–68]. In younger individuals,
CYP11B2-positive cells are present throughout the ZG [67]; CYP11B1 was detected in both
the ZF and zona reticularis. An unstained region is identified between the CYP11B2- and
CYP11B1-positive cells that is not detected by either antibody. It is not clear whether this re-
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gion comprises undifferentiated progenitor-like cells [69]. On the other hand, in the elderly,
CYP11B2-positive cells are adjacent to the membrane and form a pattern of CYP11B2-
immunopositive cell clusters with no CYP11B2 staining around them. Approximately half
of the adrenals of normotensive individuals contain these regions, which have been desig-
nated as Aldosterone Producing Cell Clusters (APCCs) [66–68,70,71]. The nomenclature
of APCC was changed to Aldosterone Producing Micronodules (APM) in the HISTALDO
study [42]. The question of whether APMs have an autonomous aldosterone secretory
capacity has been arisen. This is linked to the fact that the incidence of APMs correlates
with the frequency of aldosterone-related hypertension [68,72]. Subsequent studies have
shown that these APMs when found in adult human adrenal tissue with normal adrenal
function also contain somatic mutations of the aldosterne driver mutation; mutations were
identified in over 30% of APMs, most frequently in the CACNA1D mutation [64,66,71]. This
was followed by ATP2B3, ATP1A1, and few KCNJ5 mutations. Interestingly, in case reports
suggesting APM to APA transition, APM and micro APA were adjacent, with ATP1A1
and ATP2B3 mutations from the former and KCNJ5 mutations from the latter [73,74]. The
research efforts have also extended to IHA cases. The study showed somatic mutations
in CACNA1D are the cause of most IHA [75]. This is consistent with previous reports of
image-negative PAs [76]. Interpretation is limited due to the small sample of surgically
resected IHAs. However, their findings were much appreciated as supporting the concept
of a continuum of pathophysiology from normotensive to hypertensive patients [77]. The
different distribution of somatic mutations, with KCNJ5 mutations found specifically in
APA and CACNA1D mutations in IHA, may contribute to the difference in clinical features
between APA and IHA [41].

What is the pathological characteristics of APA harboring KCNJ5, and are they defined
by the expression profile of steroidogenic enzymes? (See Figure 2a.) KCNJ5 mutated APAs
are larger than other APAs; 60% are composed of lipid-laden clear ZF like cells and 40% are
composed of compact ZG like cells [78]. Immunohistological studies on steroid synthase
have shown that KCNJ5 mutated APAs are positive for CYP11B2 alone, co-expressing
CYP11B2 and CYP17, and in a few cases, cells co-expressing CYP11B2, CYP11B1 and
CYP17 [46,78,79]. On the other hand, APA with ATPA2B3 mutations tended to be domi-
nated by compact ZG like cells, while APA with ATP1A1 and CACNA1D mutations showed
heterogeneity from tumor to tumor with no clear advantage [55,78]. Very interestingly, the
expression of CYP11B2 and CYP17A1, which are involved in aldosterone and cortisol syn-
thesis, correlated positively in KCNJ5 mutant APAs, but negatively in ATP2B3 mutants [78].
The correlation between the two is not clear for ATP1A1 or CACNA1D. Inconsistent with
this profile of steroidogenic enzymes, the normally negligible hybrid steroid, 18 oxocortisol
(see the section “Development of prediction model for somatic KCNJ5 mutation in PA patinets”),
is markedly increased in patients with APAs harboring KCNJ5 mutations. This increase
has not been observed in patients with APAs harboring ATPase and CACNA1D muta-
tions [64,80] (Figure 2a). This series of results has suggested that KCNJ5 mutations are
associated with the formation of APA and that the pathogenetic process differs from that
of ATPase and CACNA1D mutations. APAs harboring KCNJ5 mutations may have a more
disorganized process of tumor cell differentiation and formation than APAs with ATPase or
CACNA1D mutations. It has not been clear how the KCNJ5 mutation occurred in APAs.
Considering the high prevalence of the KCNJ5 mutation in Asian populations, variant
SNPs specific to Asian races or epigenetic changes might be derived from environmental
situations, such as high salt intake, which might affect mutation frequency. An aldosterone
synthesis pathway of the latter deviates from the zonation-based steroid synthesis. This
may be reflected in the specific clinical features.
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Figure 2. Distinctive characteristics of APA patients harboring KCNJ5 mutations, and CACNA1D
or ATPase mutations. Distinctive characteristics of aldosterone producing adenoma (APA) patients
harboring KCNJ5 mutation and CACNA1D or ATPase mutations. (a) KCNJ5 mutated APAs showed
larger tumor and heterogenous composition of CYP11B2, CYP11B1, and/or CYP17 positive cells,
while CACNA1D and ATPase mutated APAs showed smaller tumor and homogeneous composition
of CYP11B2 positive cells. 18 oxocortisol is elevated in KCNJ5 mutated APAs, while not in CACNA1D
and ATPase mutated APAs. KCNJ5 mutations have been detected mostly in APAs, while CACNA1D
and ATPase mutations have been dominantly identified in aldosterone producing micronodules
(APMs) and idiopathic hyperaldosteronism (IHA) as well as APAs. We assume distinctive activated
pathways of aldosterone synthesis between KCNJ5 mutated and CACNA1D or ATPase mutated APAs,
such as the ACTH-cAMP and Ca2+ signaling pathways. (b) Conceptual scheme of responsiveness of
aldosterone secretion to ACTH between APAs harboring KCNJ5 and CACNA1D or ATPase mutations
is shown. Basal aldosterone secretion is higher and its responsiveness to ACTH stimulation is
lower in KCNJ5 mutated APAs than CACNA1D and ATPase mutated APAs. ACTH depletion via
dexamethasone (Dex) suppression decreased plasma aldosterone levels from KCNJ5 mutated APAs
to that from KCNJ5 wild APAs [55,81,82]. Thus we assume ACTH-cAMP signaling in KCNJ5 mutated
APAs is activated to increase basal aldosterone secretion and to lessen response to extra ACTH
stimulation. Figure was created with BioRender.com.

5. Clinical Implication of KCNJ5 Somatic Mutation in APA

The intriguing question regarding the discovery of the KCNJ5 mutation is whether it
could change our treatment strategy. To begin with, when a definite diagnosis of APA is
made, more than 95% of these patients are in biological remission [40]. Thus, resection of
APA with or without mutation has been shown to improve patient prognosis. However,
the clinical prognosis of patients with resection of unilateral lesions has been shown to
vary widely, with 33–77% of hypertensive cases in remission [83–86]. Therefore, research
is underway to determine which patients will achieve remission. Common predictors
of hypertensive remission after surgery for unilateral PA patients [83–86] have included
gender, body mass index (BMI), duration of hypertension, and number of antihypertensive
drugs. When PA patients are treated appropriately with MRA, i.e., to a PRA > 1.0, their
risk can be improved to that of patients with essential hypertension [38]. Thus, when
PA is biochemically in remission after surgery without remission of hypertension, most
patients are considered to have essential hypertension; the risk of cardiovascular events
may only be reduced to the same level as that of PA cases whose plasma renin suppression
is appropriately treated. Therefore, surgery should be performed as early as possible in
patients who are difficult to manage with MRA, as well as in those who are supposed to
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be in remission (Figure 3). Clinical features of patients with KCNJ5 mutated APA have in-
cluded younger age, higher plasma aldosterone levels, lower potassium, and having larger
tumors than those with KCNJ5 wild APAs [48–50,57,59,87,88] (Figure 2a). In a retrospective
cohort study scrutinizing more than 100 patients, cardiac hypertrophy, frequently seen
in PA cases, was shown to improve significantly in those who harbored KCNJ5 mutated
APAs after unilateral adrenalectomy compared to those with KCNJ5 wild APAs [89,90]. In
addition, the KCNJ5 mutation was found as an independent remission factor. A subsequent
large prospective cohort study using propensity score matching showed that surgery in
the cases with APA harboring KCNJ5 mutation group significantly improved left ventric-
ular hypertrophy compared to the KCNJ5 wild group [91]. Interestingly, in this study,
when the outcome was left ventricular diastolic function, measured through a functional
assessment of left ventricular hypertrophy, the benefit of adrenalectomy was seen only in
the KCNJ5 mutant group and not in the KCNJ5 wild type group. Analysis has also been
conducted using a retrospective cohort to evaluate the impact of the KCNJ5 mutation on
the remission of hypertension. In each case, possession of the KCNJ5 mutation was found
to be an independent factor for remission of postoperative hypertension [90,92]. Recently,
however, a prospective cohort study analyzing 45 patients was reported, in which there
was no difference in hypertension remission rate according to the presence or absence
of KCNJ5 mutation [47]. This point should be tested in future prospective cohorts with
sample sizes that allow propensity score matching for age, gender, body mass index, blood
pressure, duration of hypertension, and number of hypertension medications. Long-term
data that clarify the incidence of cardiovascular complications and risk of mortality are
particularly desirable.
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CT detectable tumors. CVD risk indicates (1) current cardiovascular complications and (2) future risk
of CVD events. To achieve well controlled blood pressure (BP) and PRA, BP should be controlled
to the same level as essential hypertensives, and PRA should be elevated more than 1.0 ng/mL/h
with MRA. * Adrenal venous sampling should be performed for the cases with KCNJ5-wild APAs
who can receive surgical benefits, such as MRA-resistant primary aldosteronism of uncontrollable
blood pressure and plasma renin. Debulking of APA for bilateral APA cases and adrenalectomy for
unilateral APA cases should alleviate the hormonal abnormality in this population. Otherwise, the
prognosis should be similar with appropriate treatment with MRA to essential hypertensive patients
due to a lower outcome of complete clinical success in KCNJ5 wild-type APA cases than in KCNJ5
mutated APA cases. PA, primary aldosteronism; CT, computed tomography; CVD, cardiovascular
disease; BP, blood pressure; PRA, plasma renin activity.

6. Development of Prediction Model for Somatic KCNJ5 Mutation in PA Patinets

While the clinical importance of KCNJ5 mutations is being revealed, the findings of
aldosterone driver mutations have been still far from clinical application, as they can cur-
rently be diagnosed only with surgical specimens. Is it possible to predict KCNJ5 mutations
preoperatively? Prediction strategies should include: (1) direct detection of tissue DNA of
KCNJ5 mutant APAs that may be leaked into the blood (a.k.a., liquid biopsy), (2) search for
new biomarkers characteristic of KCNJ5 mutant APAs, and (3) pattern recognition using
known clinical features (e.g., machine learning method). Unfortunately, there have been no
reports of successful liquid biopsy to detect KCNJ5 mutation in APA to date. As an example
of a new biomarker discovery, steroid profiling has shown very promising potential for pre-
operative diagnosis [80,93–95]. Cortisol is synthesized by conversion of pregnenolone and
progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone by the CYP11B1 en-
zyme expressed in ZF. The 11-Deoxycortisol and cortisol produced by this pathway are then
synthesized into the hybrid steroid 18-Oxocortisol and 18-hydroxycortisol by CYP11B2,
which is normally expressed in ZG. These hybrid steroids are detected only in trace amounts
in normal adrenal glands, where zonation is clearly distinguished. However, their blood
levels are elevated in APA, especially in the presence of KCNJ5 mutations [80,93]. As
mentioned earlier, in APA with KCNJ5 mutation, the expression of CYP11B2 and CYP17A1
is positively correlated, and although rare, cells co-expressing CYP11B1 have also been
identified. The results may support these pathological features. Although there was wide
variation, APAs with KCNJ5 mutations had up to 18-fold higher levels of aldosterone, 18-
oxocortisol, 18-hydroxycortisol, and 11-deoxycorticosterone in the adrenal veins compared
to APAs of the other genotypes [93]. In peripheral blood, 18-oxocortisol was elevated up to
18-fold. Using these characteristic results, the predictive model that was built allowed us to
fractionate each mutation with 95% accuracy using adrenal venous blood, with KCNJ5 and
CACNA1D being 100% accurate. Furthermore, combining this mass spectrometry-based
plasma steroid profiling with machine learning enabled the diagnosis of the presence of
primary aldosteronism and APA with KCNJ5 mutations with sensitivity of 69% and 85%,
and specificity of 85% and 97%, respectively [95]. Steroid profiling may be useful for
screening PA and detecting the cases with APA, especially harboring KCNJ5 mutations.

The development of mutant KCNJ5 channel blockers also has potential diagnostic
tools as well as therapeutic utility. A reduction in aldosterone secretory responsiveness to
therapy may predict KCNJ5 mutations when obtained. Candidate drugs include calcium
antagonists and macrolide compounds that specifically inhibit mutant KCNJ5 channels
and blockers of Na+-Ca++ transport proteins, such as the calcium blockers verapamil and
amiloride [96–100]. Drug screening has also confirmed that macrolide compounds reduced
aldosterone secretion from KCNJ5 mutant APA cells in vitro and ex vivo. However, results
regarding the diagnostic application of PA in patients are pending [101].

Finally, as for establishing a prediction method based on pattern recognition using a
clinical values commonly used in the PA diagnostic steps, although papers using machine
learning for APA are beginning to be seen [30,102,103], there have been currently no
significant results on the detection of KCNJ5-mutated APAs. However, several other
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clinical characteristics of APA patients with KCNJ5 mutations have been reported: younger
age, female dominant, lower potassium level, higher aldosterone value, and large tumor
size compared to KCNJ5 wild APA cases [48–50,57–59,87,88]. Compared to cases with
APA harboring ATPase or CACNA1D mutation, KCNJ5 mutated APA cases showed less
responsiveness to ACTH stimulation with higher basal value of plasma aldosterone [81].
This finding is consistent with the result of ex vivo study [55]. Conversely, when ACTH is
suppressed by Dexamethazone, aldosterone secretions are found to be more suppressed
in KCNJ5 mutated APA cases than in KCNJ5 wild type cases, resulting in no statistical
difference in plasma aldosterone value between them [82]. These results suggest that
APAs with KCNJ5 mutations have an increased sensitivity to ACTH signaling, which is
constantly stimulated and raises basal aldosterone secretion (Figure 2b). On the other
hand, responsiveness to the ATII system is not clear. In addition to basic clinical data, the
combination of tests that manipulate the ATII system, such as the saline infusion or captopril
challenge tests, and tests that stimulate ACTH signaling, such as the ACTH infusion or
Dexamethazone suppression tests, may improve the predictive power of KCNJ5 mutations.

If these findings allow us presurgical diagnosis of KCNJ5 mutations in APA by pattern
recognition of machine learning using new biomarkers or widely available clinical infor-
mation, the treatment strategy for PA will change dramatically. Since KCNJ5 mutations
are often identified in APA and we need to recognize APA location for surgical treatment,
it is important to determine whether CT-recognizable tumors carry KCNJ5 mutations. If
a visible tumor is predicted to have KCNJ5 mutation, adrenalectomy is recommended
without AVS for the prevention of cardiovascular complications and better prognosis. If
the tumor does not carry the KCNJ5 mutation, AVS should be recommended to those who
receive surgical benefit. The surgical indication should be considered based on the patient’s
current cardiovascular complications, risk of future cardiovascular disease, and response
to MRA to manage blood pressure of PA. Otherwise, we can manage PA cases with MRA
without further testing (Figure 3).

7. Conclusions

Elucidation of detailed pathophysiology and appropriate classification of PA are the
fundamental to achieve individualized medicine for PA patients. In the past decade,
the development of specific CYP11B2 antibodies and the discovery of the aldosterone
driver mutations have largely progressed our understanding of primary aldosteronism.
The pathological significance of KCNJ5 somatic mutation is also of great importance for
understanding the origin of APA: the most frequent aldosterone driver mutation in APA
is very rare in AMN, while CACNA1D is most common in AMN and diffuse hyperplasia.
These results suggest the possibility that they may have different pathogenesis. A further
question to be answered clinically is whether APAs with KCNJ5 mutations lead to more
severe cardiovascular complications and shorter healthy life expectancy compared to those
with KCNJ5 wild type. The answer would determine if it is worthwhile making predictions
before surgery to provide individualized treatment. The studies obtained to date have
indicated a more effective surgical approach for KCNJ5 mutated APA patients, but the long-
term therapeutic benefit is not clear. Prospective cohort or randomized control studies are
expected to provide evidence for targeted treatment of APAs harboring KCNJ5 mutations.
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