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Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypo-
thalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors
(Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions,
including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone
concentrations in human beings and mice are leptin functions. It has been suggested
that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothy-
roidism compromises the intracellular integration of leptin signaling specifically in the
arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with
TRa being the predominant one that is present in all stages of development. The effects
ofTH involve the proliferation and differentiation of Sertoli and Leydig cells during develop-
ment, spermatogenesis, and steroidogenesis. In this context,TH disorders are associated
with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads
inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the
effects of both hormones in the testis during hypothyroidism. The goal of this review is to
highlight the current knowledge regarding leptin and TH in the testis.
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INTRODUCTION
The role of thyroid hormones (TH) and leptin in testicular phys-
iology is not fully understood. Receptors for both hormones are
present in the testis (1, 2), and some reproductive functions have
been described as being a result of TH or leptin actions in the testis,
although the interaction between these two hormones should be
further investigated.

Leptin plays a key role in body weight homeostasis and has
recently emerged as a relevant neuroendocrine mediator in dif-
ferent cell types, including testicular cells (3). This hormone
appears to act by inhibiting testicular steroidogenesis, leading to
reduced levels of testosterone and modulation of gene expression
(Figure 1).

The involvement of TH in the modulation of male reproductive
system development and function has been neglected for several
years, because of the demonstration that the adult male gonad was
metabolically unresponsive to these hormones in the 1950s (4). In
addition, although hyper- and hypothyroidism have no apparent
clinical relevance regarding signs and symptoms related to male
gonadal function, compared with the systemic effects induced by
these diseases, it has been demonstrated that thyroid dysfunc-
tion might affect biochemical, morphological, and physiological
aspects of testicular development (4–8). In recent decades, sev-
eral studies have reported important roles for TH in modulating
testicular development (2, 9–11).

The TH effects involve the proliferation and differentiation of
Sertoli and Leydig cells during development, spermatogenesis, and
steroidogenesis, and its disorders are correlated with sexual dys-
function. An endocrine and/or direct paracrine effect of leptin
on the gonads inhibits testosterone production in Leydig cells.

Although further studies are necessary to clarify the effects of these
hormones in the testis during hypothyroidism, the goal of this
review is to highlight the current knowledge regarding leptin and
TH in the testis.

LEPTIN
SYNTHESIS AND SECRETION
Adipose tissue is recognized as an endocrine organ that secretes
steroid hormones, including glucocorticoids, growth factors,
enzymes,and pro- and anti-inflammatory adipocytokines (12,13).
Leptin is the prototype adipokine that was identified as the prod-
uct of the ob gene by its action in reducing appetite, increasing
energy expenditure through action in the brain and then decreas-
ing body weight and fat mass (14). Although anthropometric and
clinical features (e.g., gender, fat mass/fat distribution, hormones,
and cytokines) might influence the secretion pattern of leptin, the
crucial factors that regulate serum leptin levels appear to be caloric
intake and the amount of energy stored in adipocytes (15).

Leptin acts by activating leptin receptors (Ob-Rs). Several Ob-
R isoforms, resulting from alternative splicing, convey differing
biological activities and are involved in mediating the actions of
leptin in the brain and peripheral organs. The long isoform (Ob-
Rb) is expressed abundantly in the hypothalamic arcuate nucleus
(ARH), ventromedial (VMN), and dorsomedial nuclei (DMN),
and is the predominant signaling form of the receptor (16). Ob-Rb
has the longest cytoplasmatic domain, which contains the Janus
Kinase (JAK) binding domain, box 1 and 2, and the consensus
sequence for the signal transducers and activators of transcription
(STAT) binding. Other forms have no (Ob-Re) or short (Ob-Ra,
Ob-Rc–Ob-Rf) cytoplasmatic domains, which contain only box 1
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FIGURE 1 |The major pathways by which leptin andTH interact with the
hypothalamic–pituitary axis to regulate testis function. The
hypothalamic–pituitary–gonadal axis controls reproduction. GnRH is secreted
from the hypothalamus by GnRH expressing neurons, stimulating the anterior
portion of the pituitary gland to produce and secrete LH and FSH, whose
function is to stimulate the gonads to produce estrogen and testosterone.
Leptin plays a role in reproduction by stimulating GnRH secretion. Stimulatory
and inhibitory effects of leptin on sperm were described. Additionally, leptin
has an inhibitory effect on the gonads, inhibiting steroidogenesis and
decreasing serum levels of testosterone and estradiol. These hormones could

regulate leptin secretion in a feedback mechanism; however, estradiol
stimulates and testosterone inhibits leptin secretion. LH and FSH are other
hormones that stimulate leptin secretion. Leptin is capable of autoregulating
its own secretion. The role of the thyroid hormones, T4 and T3, at the
hypothalamic and pituitary levels remain controversial. However, in the testes,
these hormones stimulate steroidogenesis. The arrays indicate solid
(stimulatory), dashed (inhibitory), and dotted (uncertain) signals. GnRH,
gonadotropin-releasing hormone; LH, luteinizing hormone; FSH,
follicle-stimulating hormone; T3, 3,5,3′-triiodo-L-thyronine; T4, thyroxine; Ob-R,
leptin receptors; TR, thyroid receptor.

(17). These short isoforms of the leptin receptor are distributed in
almost all the peripheral tissues, including ovary (18, 19), prostate
(20–22), and testis (23) tissues, suggesting the direct effects of
leptin on these organs. In addition to JAK/STAT, other path-
ways are involved in leptin signaling, such as mitogen-activated
protein kinase (MAPK), including extracellular factor-regulated
kinases 1 and 2 [ERK1 and ERK (2)] and 5′-AMP-activated pro-
tein kinase (AMPK). Additionally, leptin presents cross talk with
insulin-induced pathways by stimulating insulin receptor sub-
strates (IRS) and then initiating phosphoinositide 3-kinase activity
(PI3K) (17, 24, 25). Leptin has been reported to induce suppressors
of cytokine-signaling 3 (SOCS) expression, which are capable of
inhibiting the JAK/STAT pathway via a feedback mechanism (26).
During prolonged receptor stimulation by leptin, the inhibition of
JAK phosphorylation is mediated by SOCS3, and leptin can act as
a negative regulator of its own signaling.

Leptin secretion could be regulated by different mechanisms
(Figure 2). In adipocyte tissue, leptin secretion could be stimulated
by insulin, glucocorticoids, and cytokines (i.e., tumor necrosis fac-
tor a), whereas leptin release is inhibited by catecholamines, free
fatty acids, cold exposure, and TH (27, 28). Estrogens induce lep-
tin production, whereas androgens suppress it (Figure 1), thus
explaining the sexual dimorphism in serum leptin levels (29, 30).
A negative correlation between leptin and testosterone levels has
been described in men and boys (31, 32). It has been demon-
strated that leptin could control its own synthesis in adipose tissues
by a negative feedback mechanism between the hormone and its
receptor (Figure 1) (33). This autoregulatory mechanism was also
shown in the prostate (34), however, there is no report of this
mechanism in relation to the testis.

LEPTIN AND THE HYPOTHALAMIC–PITUITARY–GONADAL AXIS
Leptin inhibits appetite and weight gain by its action in the hypo-
thalamus by activating proopiomelanocortin (POMC)/cocaine-
and amphetamine-related peptide (CART) while inhibiting the
neuropeptide Y (NPY)/agouti-related protein (AgRP) neurons
(35–38). In addition to this central action, leptin has been impli-
cated in other roles, including reproductive ones where leptin
stimulates gonadotropin-releasing hormone (GnRH) secretion
(Figure 1). However, if leptin role is direct or not is still contro-
verse. Some studies suggest a direct role of leptin based on the fact
that the neurons secreting GnRH express Ob-R (39, 40). Watanobe
(41) showed that leptin acts directly at the median eminence (ME),
the anatomical structure where the axonal fibers of GnRH neurons
are terminated before the neurohormone is released into the portal
circulation (42); however, little or no co-expression of the leptin
receptor is demonstrated at the medial preoptic area (MPOA) of
the hypothalamus, which is the site where the majority of the
GnRH neuronal cell bodies exist (42). This result, among oth-
ers (43–45), suggests that leptin might influence GnRH secretion
indirectly through interneurons and other pathways.

In the rat testis, leptin, at doses ranging from 2 to 500 ng/mL,
exerted dose-dependent inhibitory effects on human chorionic
gonadotropin (hCG)-stimulated testosterone production (46).
Therefore, in addition to having a stimulatory effect at the
hypothalamic–pituitary level, leptin appears to have an inhibitory
effect at the gonadal level.

OTHER SITES THAT MEDIATE LEPTIN ACTION ON REPRODUCTION
Gonadotropin-releasing hormone is also regulated by adiponectin,
which is an adipocytokine produced by adipose tissue and
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FIGURE 2 |The major pathways by which leptin interacts with the
hypothalamic–pituitary–thyroid axis. The hypophysiotropic TRH neurons
are metabolic integrators that are regulated by leptin and the thyroid
hormones. TRH is secreted from the PVN of the hypothalamus and
stimulates the anterior portion of the pituitary gland to produce and
secrete TSH, whose function is to stimulate the thyroid gland to produce
the thyroid hormones, T4 and T3. These hormones regulate the activity of
TRH neurons in the hypothalamus by a classical negative feedback
pathway. Leptin stimulates TRH secretion in the hypothalamus. Leptin

produced in the pituitary is capable of inhibiting TSH secretion. Leptin
secretion from adipose tissues is regulated by stimulatory factors such as
TSH, glucocorticoids, T4 and T3 and insulin as well as inhibitory factors such
as, cold and free fatty acids. Leptin and the thyroid hormones, T4 and T3,
have a role in puberty; however, whereas the leptin role is permissive, the
T4 and T3 role remains uncertain. The arrays indicate: solid (stimulatory),
dashed (inhibitory), dotted (uncertain) signals. TRH, thyreotrophin release
hormone; TSH, pituitary tireotropin; T3, 3,5,3′-triiodo-L-thyronine; T4,
thyroxine. See text for details.

regulates metabolic function, as does leptin; the amount of GnRH
in the circulation is inversely proportional to body fat (47). It has
been demonstrated that adiponectin might provide a link between
obesity and abnormal reproductive functioning by decreasing
luteinizing hormone (LH) secretion and inhibiting GnRH recep-
tor (GnRHR) mRNA expression in the pituitary (48, 49). At the
level of the hypothalamus, adiponectin reduces GnRH expression
and secretion (50), whereas GnRH decreases adiponectin expres-
sion in the pituitary (51). Additionally, adiponectin appears to
mediate basal and hCG-stimulated testosterone secretion by the
testis (52, 53) in a rat model.

Ghrelin is another orexigenic factor that acts with NPY and
AgRP to influence feeding and reproduction. Whereas leptin stim-
ulates GnRH secretion, ghrelin exerts a negative effect on this hor-
mone secretion and on GnRH-induced gonadotropin secretion;
however, it appears that at basal conditions, ghrelin presents stim-
ulatory actions on LH and follicle-stimulating hormone (FSH)
secretion (54). Relative to NPY, both stimulatory and inhibitory
effects on GnRH have been observed (55–57). AgRP is expressed
in leptin responsive neurons of the ARH and the ablation of such
neurons in leptin or Ob-R deficient mice restores fertility (58–60).

Among the anorexigenic factors that affect the reproductive
system, the α-melanocyte-stimulating hormone (α-MSH) from
POMC neurons and CART from interneurons of the ARH medi-
ate the leptin influence on GnRH secretion (61, 62). Additionally,
nitric oxide (NO) released from adrenergic interneurons is capable
of inducing GnRH release from GnRH neurons (23).

Another site that mediates leptin action on reproduction is
the kisspeptin neurons in the ARH. Although a small amount of
kisspeptin might be sufficient to trigger puberty (63), deletion of
Ob-R from kisspeptin neurons (64) or ablation of more than 95%
of kisspeptin neurons prior to puberty resulted in normal puberty

and fertility (65). It appears that leptin signaling in these neurons
arise only after completion of sexual maturation (66). Kisspeptin
neurons connect to NPY and POMC neurons (67) are another link
to the integration of leptin effects on nutrition and reproduction.
Kisspeptin neurons have insulin receptors that could be interesting
for their effect on reproduction. Deletion of the insulin receptor
from kisspeptin neurons showed a puberty delay; however, fertility
was normal (68), suggesting that insulin is the potential mediator
of reproduction from kisspeptin neurons.

EXPRESSION OF LEPTIN AND Ob-R IN TESTIS
In 1997, the first demonstration of Ob-R expression in the murine
testis was published. The authors showed the messenger RNA
(mRNA) for the common extracellular domain of Ob-R in sper-
matic and Leydig cells by in situ hybridization (1). Later, several
studies showed that it is ubiquitous among species. Ob-R specific
immunostaining was observed in the testicular interstitium of rats
at an embryonic age of 19.5 days and not at an embryonic age of
14.5 days, whereas in postnatal life, it was evident only after sexual
maturation (35, 60, 90 days old) and was confined to Leydig cells.
No immunoreaction was observed in the seminiferous tubules.
Ob-R mRNA expression was present at all ages. Ob-Ra and Ob-
Rb mRNA presented a similar expression pattern, increasing from
younger to older ages. The authors demonstrated that the Ob-R
mRNA levels were higher in late versus early embryonic testes,
as well as in adult versus immature rat testes (69). Other studies
have shown a developmental Ob-R mRNA expression from 15- to
75-day old rats in constant relative levels; however, if only Ob-Rb
is considered, its expression was higher near puberty, at 30 days,
declining after that period (70).

Leptin expression has been detected by immunohistochemistry
techniques in mouse germ cells that are cell-type and stage specific
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and it was undetected in mouse Leydig cells. The authors suggest
that leptin produced in testicular stem cells during the develop-
mental stage might act on these cells in an autocrine manner to
mediate their renewal (71). The developmental expression profiles
of Ob-Ra, Ob-Rb, and Ob-Re show constant mRNA expression in
5-, 10-, 20-, 30-, and 60-day-old mice testis. However, in puri-
fied mouse Leydig cells, in which mRNA for leptin and Ob-Rb
are not present in 14-and 60-day old mice, Ob-Ra and Ob-Re are
expressed at both ages (71). Recently, mRNA for different Ob-R
isoforms was detected in the adult rat testis (21).

Leptin caused STAT 3 phosphorylation after in vitro incuba-
tion of isolated seminiferous tubules, demonstrating that Ob-R is
functional and an activator of signal transduction mechanisms in
germ cells (72). Corroborating this result, recently it was shown
that leptin activates STAT3 signaling in the testis and that SOCS3
expression is regulated by leptin in this tissue (73).

LEPTIN ACTIONS
Considering that impaired reproductive function in the genetically
obese (ob/ob) mouse was previously demonstrated (74, 75), lep-
tin might be one of the hormones involved in the pathogenesis of
infertility. Corroborating this hypothesis, the exogenous intraperi-
toneal administration of leptin in sterile ob/ob mice eliminated the
sterility defect (76).

In the testis, it has been demonstrated that leptin might pass the
blood–testis barrier by a passive, non-saturable process (77, 78). In
this tissue, leptin acts as an inhibitory signal for testicular steroido-
genesis (Figure 1), which might partially explain the link between
decreased testosterone secretion and hyperleptinemia in obese
men (79, 80). Decreased gene expression of some upstream factors
in the steroidogenic pathway, such as steroidogenic factor-1 (SF-
1), steroidogenic acute regulatory protein (StAR), and cytochrome
P450, has been demonstrated to be involved in the molecular
mechanism responsible for leptin-induced inhibition of testos-
terone secretion (81). Moreover, the inhibitory effects of leptin
on steroidogenesis have been observed in the adrenal gland and
ovaries, which are steroidogenic tissues as well (82–84).

Besides testosterone synthesis, leptin can also regulate estrogen
synthesis by regulating aromatase enzyme in other tissues of the
reproductive system such as prostate and mammary gland (20, 34,
85, 86). We were unable to find studies showing the effects of leptin
upon aromatase in the testis.

Some other effects of leptin that can affect fertility have been
already demonstrated. Leptin can alter the weight and volume
of the testicles, the diameter of the seminiferous tubules, and
the numbers of spermatogonia, spermatocytes, sperm, and Ley-
dig cells (73). Also the fact that leptin is present in the human
seminal plasma (87–89) and Ob-R is present at the tail region of
ejaculated spermatozoa (89) as well as the relationship between
leptin and sexual hormones suggests that leptin could directly or
indirectly regulate sperm function.

OBESITY AND TESTIS
The effects of obesity on testis and male reproduction have been
demonstrated in recent years (90). The decrease in testosterone
levels as a consequence of the high leptin levels present in obese
patients (91) might cause sexual dysfunction (92). However, the

mechanisms involved in the association between obesity and
a decrease in male fertility are complex and not completely
understood on the basis of the current literature.

A high-fat diet leads to increased leptin levels, decreased plasma
testosterone level, a decline in sperm motility, Leydig cell damage,
and oxidative stress, as well as a decreased testis and epididymis
relative coefficient in mice. The reproductive hormone imbalance
observed in obesity might affect the antioxidant status in testes.
The authors suggest that the excessive oxidative stress induced
by obesity affects the normal histological structures and function
of testicular tissue (93). In addition, the association of testicular
oxidative stress and alterations in male reproduction and fertil-
ity has been demonstrated in other conditions such as thyroid
dysfunctions (94–97).

Although consensus on the effects of obesity on fertility exists,
particularly in relation to sperm count, concentration and motil-
ity, there is not a complete overall agreement (98). The lack of
consensus is possibly because the majority of studies involve men
presenting to fertility clinics, which could clearly bias toward
subfertile men, and many might have other lifestyle related co-
morbidities affecting spermatogenesis. Different methodologies
applied in various studies could contribute to the variability of
the results. Some of the fertility alterations could occur because of
the effects of leptin on other tissues of the reproductive systems
that express Ob-R as well, such as the epididymis (99), prostate
(20–22), and seminal vesicles (22).

Testosterone is a very important hormone for maintaining
reproductive function and fertility. All the reproductive tissues and
spermatogenesis are testosterone-dependent. Although androgen
could regulate leptin synthesis and secretion in adipose tissues
(29, 30) and leptin could regulate the expression of androgen
receptors in others tissues, such as the prostate (20, 34), we were
unable to find studies showing any interaction between leptin and
testosterone or androgen receptors in the testis.

These findings clearly demonstrate that leptin functionally reg-
ulates the male gonadal axis by acting at different levels of the
hypothalamic–pituitary–testicular system.

THYROID HORMONE
THYROID HORMONE REGULATION
As major regulators of serum TH levels, the hypophysiotropic
thyreotrophin release hormone (TRH) neurons of the paraven-
tricular nuclei (PVN) play important roles in the control of
energy homeostasis (100). These neurons regulate TH production
through the release of TRH at the ME, which stimulates pitu-
itary tireotropin (TSH) release (Figure 2). TSH then stimulates
the thyroid gland to produce TH. These hormones regulate the
activity of TRH neurons in the hypothalamus by a classical nega-
tive feedback pathway (Figure 2) (101–103). TRH neurons receive
neuronal projections from POMC and NPY containing hypothal-
amic neurons (104–108), brainstem catecholaminergic neurons
(103, 109, 110), and neurochemically uncharacterized neurons in
the DMN (111).

Thyroid hormones play critical roles in normal pre- and post-
natal growth and development. These hormones are essential for
the regulation of metabolism in nearly all mammalian tissues,
including the testis (112, 113).
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DEIODINATION
Proper intracellular TH concentrations are required for most hor-
monal actions and for cellular metabolism. Thyroxine (T4) is the
major TH secreted from the thyroid gland; however, in target tis-
sues other hormones could be produced. In peripheral tissues,
there are important seleno enzymes known as deiodinases (D1, D2,
and D3) that metabolize TH, regulating local TH availability (114).
D1 and D2 catalyze the removal of the iodine atom in the outer ring
position, generating 3,5,3′-triiodo-l-thyronine (T3). D3 catalyzes
the removal of iodine from the inner ring position, generating an
inactive hormone, as reverse T3 (3,3′,5′-triiodothyronine or rT3).

These three deiodinases, D1, D2, and D3, are expressed in the
testis at different levels, from weanling to adult life (115). D3 activ-
ity predominates in the developmental period and then declines in
adult life. Although D1 and D2 are present in the testis, their rela-
tive levels of activity indicate that D2 is the predominant activating
enzyme in the testis (115, 116).

Thyroid hormone transport across the plasma membrane is
a crucial step in TH signaling. Several TH transporter families
have been identified; however, only specific TH cell-membrane
transporter (MCT) 8 and 10 and organic anion-transporting
polypeptide 1c1 (Oatp1c1) have been shown to be specific TH
transporters (117). Inside the cell, T3 binds to nuclear THs, which
are ligand-regulated transcription factors that bind THs and DNA
enhancer sequences in the promoter region of target genes and
interact with co-repressor and co-activator complexes (118, 119).

SIGNALING
Thyroid hormone nuclear effects are mediated by TRa and TRb,
which are members of the steroid/thyroid hormone receptor
superfamily (120). The activation of these receptors modulates
gene transcription and signal transduction to initiate intra-nuclear
changes in cell metabolism (121, 122). Because the genomic
actions of TH on gene regulation require many steps, TH-induced
changes in gene expression are generally long lasting (113, 120).

The TR are encoded by two different genes, TRa and TRb.
Alternative splicing leads to the production of several peptide iso-
forms, five of which have been described: TRa1, TRa2, TRa3, TRb1,
and TRb2. TRa2 and TRa3 lack a hormone-binding domain and
are hypothesized to function as TH inhibitors by competing for
binding at the thyroid response elements (TREs), resulting in the
suppression of transcription (123–128). Within the seminiferous
epithelium, the expression of TRs is developmentally regulated,
and Sertoli cells express the TRa1 and TRa2 isoforms (85).

The active TRa1 isoform is expressed in human and rat testic-
ular Sertoli cells, with maximal expression in late fetal and early
neonatal life. TRb1 is found in interstitial and germ cells during
neonatal development as well as in the adult testis, although at a
much lower level (129–132). The fetal and prepubertal ages are
periods of maximal expression of TRa1 and TRa2 in Sertoli cells,
demonstrating a critical window for TH action in the testis, in
rats (2) and in human beings (133). The immature stage of sexual
development coincides with the maximal TRa1 activity in response
to T3 (2). The TRa2 isoform does not bind to T3, and it has been
suggested that TRa2 most likely exerts a dominant negative effect
on the actions of other TR isoforms (134). Considering the devel-
opmental regulation of TR expression in the Sertoli cells, it was

shown that the ratio of TRa2/TRa1 increases progressively from
the fetal period to adulthood. This increase reinforces the partic-
ipation of TRa1 during the prepubertal period and, consequently,
its involvement in testis differentiation and development (133). It
could be proposed that TH play pivotal roles in testicular differ-
entiation with maximal effects during the prepubertal period.

Although the classical mechanism of action for TH involves
the modulation of gene transcription (genomic action), it has
been frequently proposed that the membrane-initiated effects
(non-genomic actions) of these hormones might be mediated by
plasma membrane receptors. The effects triggered by cell-surface
receptors are typically independent of protein synthesis (112).
Although T3, T4, and rT3 might trigger non-genomic effects, T4

and rT3 are more potent than T3 in testicular cells (135–138),
reinforcing a role for these hormones as physiological signals
controlling reproductive functions through cell surface-initiated
mechanisms.

THYROID HORMONE FUNCTION IN TESTIS
T3 regulates the maturation and growth of the testis, control-
ling Sertoli and Leydig cell proliferation and differentiation dur-
ing testicular development in rats and other mammalian species
(5, 139). Possible mechanisms underlying the effects of TH on
Sertoli cell proliferation have been recently proposed. The authors
demonstrated that TH limits postnatal Sertoli cell proliferation by
activation of the TRa1 present in these cells. They provided evi-
dence that the regulation of the Cdk4/JunD/c-myc pathway might
be involved in this negative control in mice (140). The testis size
and sperm production are directly associated with the total Ser-
toli cell number during adulthood (141). The hormonal factors
controlling the duration of Sertoli cell proliferation are critical
determinants of male fertility (4). Although an adequate number
of these cells is crucial for future male fertility, the factors con-
trolling Sertoli cell survival, proliferation, and maturation require
further investigation.

The effects of TH on Sertoli cells occurs through different and
perhaps interconnected mechanisms (142) including the follow-
ing: the expression of cell cycle regulators p27 and p21 (143); the
inhibition of aromatase at the basal conditions and after FSH stim-
ulus (144, 145) as well as the aromatase gene transcription (146);
the increase in the levels of androgen-binding proteins (ABP)
(129), which increases the availability of this steroid hormone
(147, 148); the increase in the androgen receptor (AR) expression
(129); the increase in the LH receptor (LHR) protein expression,
although the mRNA is reduced (149); and the increase in the lev-
els of the gap junction protein connexin 43 in the testis (150). For
revision, see Tarulli et al. (142).

The Sertoli cells provide physical support to germ cells and are
essential for the creation of an adequate and protected microen-
vironment for germ cell development. These cells are responsible
for the secretion of a Cl– and K+-rich fluid into the seminifer-
ous tubule lumen (151, 152). The Ca2+-dependent Cl− secretion
by Sertoli cells into the extracellular fluid is under the control of
extracellular nucleotide levels (153); extracellular ATP has been
shown to induce intracellular Ca2+uptake in Sertoli cells (154).
Our group previously demonstrated that T3 and T4 could inhibit
NTPDase activity, with a consequent decrease in extracellular ATP
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hydrolysis; this reduction in hydrolysis leads to increased levels
of ATP in the extracellular medium (10). It has been demon-
strated that TH induces Ca2+-dependent signaling pathways in
testicular cells (11, 112, 136, 155). It is possible to suggest that
TH action might increase the extracellular ATP levels, leading to
a Ca2+ influx and consequent chloride-rich fluid secretion by the
Sertoli cells.

The expression of specific TRs in prepubertal Sertoli cells
implies the existence of an early and critical influence of TH on tes-
ticular development and function (2). Although hypothyroidism
leads to a marked delay in sexual maturation and development
(5, 9, 96), hyperthyroidism accelerates the appearance of the sem-
iniferous tubule lumen (97), which marks the maturation of the
Sertoli cells (156). Delayed testicular cell maturation provoked by
neonatal hypothyroidism (96) is associated with reduced serum
levels of the gonadotropins, FSH and LH (6).

Modifications in Sertoli cell maturation could be associated
with alterations in androgen metabolism. The androgen/estrogen
balance is crucial for testis development and male reproduction.
The maximal expression and activity of aromatase is observed in
Sertoli cells during the prepubertal period (157, 158), the period
coincident with the maximal response of these cells to TH (4).
Alterations in aromatase activity and expression, as well as in
estrogen receptor levels, were demonstrated to be under TH con-
trol (145, 159, 160). These estrogen-mediated events might affect
androgen metabolism.

Thyroidectomy in adult rats led to decreased secretion of testos-
terone and 17b-hydroxy steroid dehydrogenase (HSD) activity
(161). Leydig cells cultured from adult rats show an increase in
testosterone and estrogen secretion after treatment with T3, under
basal conditions and in response to LH (148). When Leydig cells
are chronically stimulated with T3, there is an increase in the
mRNA levels of the cytochrome P450 side-chain cleavage enzyme
and a decrease in the cytochrome P450 17a-hydroxylase and 3b-
HSD (162). An increase in the StAR mRNA and protein is observed
after treatment of Leydig cells with T3, which contributes to steroid
production (162, 163) (Figure 2).

Despite the important roles that THs play in the reproduction
by acting in the testis, there is no consensus about how TH con-
trols GnRH and gonandotropin synthesis and secretion. No pat-
tern in the circulating gonadotropin hormones has been reported
in hypothyroid conditions. These hormones could be unaltered,
reduced, increased or LH reduced with unaltered FSH; and FSH
could be increased with normal LH (147). In a recent study (149),
the authors showed that rats submitted to hypothyroidism showed
a reduction of the pituitary content of LH, although they pre-
sented a high level of LH in serum. They attributed this divergent
result to impaired LH renal clearance, because hypothyroidism
could alter clearance (164) of adrenal drug excretion (165). There
was a marked decrease of total testosterone serum concentration
and a reduction in the amount of testicular LHR, although the
LH mRNA receptor expression was shown to be increased. Expo-
sure of testicular cells to a high concentration of LH reduces
LHR mRNA and protein (166), which could explain the results
observed by Romano et al. (149). Another possibility would be
the reduction of the testosterone negative feedback regulating LH
and FSH.

INTERACTION BETWEEN LEPTIN AND THYROID HORMONES
The hypophysiotropic TRH neurons are metabolic integrators,
fixing the set point of the hypothalamic–pituitary–thyroid axis.
Several studies have demonstrated that leptin modulates thy-
roid function, acting in the hypothalamus, pituitary and thyroid.
Additionally, leptin modulates the activity of deiodinase enzymes
(167–171). This hormone stimulates the hypothalamic production
of TRH directly at the PVN (106, 172–174) and indirectly via the
ARH, which act as energy sensors. At the ARH, leptin upregulates
the activity of the α-MSH neurons and down-regulates the activity
of the NPY/AgRP neurons. The α-MSH neurons and NPY/AgRP
neurons have stimulatory and inhibitory projections, respectively,
to the TRH neurons (100, 106, 174–178).

Systemic administration of leptin increased the serum TSH
concentration in rats, potentially because of the leptin action at
the hypothalamus (Figure 2). Because the direct pituitary effect
of leptin on TSH release was inhibitory, this TSH release might
result from an autocrine–paracrine effect exerted by locally pro-
duced leptin (Figure 2) (170, 171). TSH significantly stimulated
the leptin secretion by human adipose tissue in vitro, suggesting a
new mechanism in the inter-relationship between adipose tissue
and the thyroid axis (Figure 2) (179). It has been demonstrated
that food deprivation, associated with low leptin levels, leads to
decreased TSH synthesis in the pituitary and TRH in the hypo-
thalamus (171, 180). The mechanisms underlying the secretion of
tropic hormones from pituitary cells might involve the modulation
of NO levels. Coiro and colleagues suggested that TRH stimu-
lates TSH release via NO in humans (181). Corroborating these
findings, Radwanska and Kosior-Korzecka (182) recently demon-
strated that leptin-stimulated TSH secretion is dependent on NO
release from the anterior pituitary cells of ewe lambs. In this con-
text, the effect of leptin on the thyroid axis might modulate the
effects of THs on the male reproductive system.

It has been proposed that leptin might be a trigger for the
onset of puberty in children, because leptin levels increase in both
girls and boys prior to pubertal gonadal activation (183). In girls,
however, leptin concentrations continue to rise, likely due to stim-
ulatory the effects of estrogen, while leptin concentrations decrease
in boys, due to the inhibitory effects of testosterone (29, 30, 183,
184). However, data of Mann and colleagues (185) do not sup-
port the concept that a transient rise in leptin triggers the onset of
puberty. They demonstrated that circulating leptin levels decline
throughout puberty, and there is no transient rise of leptin prior
or in association with the onset of puberty in male monkeys. Lep-
tin, however, is currently thought to have a more permissive role
in pubertal maturation, as the administration of exogenous leptin
alone could not trigger early puberty in patients with congenital
leptin deficiency (186). Although leptin probably is not the pri-
mary factor for puberty initiation, lower levels of this hormone
could be associated with a delay in the onset of puberty (187).
It has been shown that some developmental changes in the T4

levels parallel those of leptin. Whether the peripubertal changes
observed in T4 levels suggest thyroid involvement in initiating
pubertal events remains to be elucidated.

The relationship between TH and leptin serum levels is not
completely understood; however, it has been demonstrated that
leptin levels might be increased in the hyperthyroid state in
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humans (188). In addition, Asami and coworkers (189) have
demonstrated a relationship between the serum levels of leptin
and TH in children. A direct effect of leptin stimulating hepatic TH
activation by modulation of deiodinase activity and expression was
shown in chicken embryo hepatocytes (190). The authors demon-
strated that the expression and activity of D1 were increased,
whereas those of D3 were decreased, in leptin-treated cells. A D1-
increased gene expression and activity in the adipose tissues of
obese humans was doccumented, suggesting a role for T3, formed
from T4 by D1 activation in response to leptin, in the modulation
of adipose tissue metabolism (191). These studies support that TH
and leptin might act in conjuction in the modulation of several
cell functions.

Corroborating the relationship between TH and leptin, it has
been shown that hypothyroidism reduces the expression of mem-
bers of the Ob-Rb–STAT3 signaling pathway in the basomedial
hypothalamus and pituitary of rats; in addition, hypothyroid rats
are resistant to the acute anorectic action of leptin (192). Addition-
ally, hypothyroid mice exhibited decreased circulating leptin levels
because of a decrease in the fat mass and reduced leptin expres-
sion in white adipose tissue. In neurons of the ARH, hypothy-
roid mice showed increased leptin receptor Ob-R expression
and decreased suppression of the cytokine-signaling 3 transcript
levels (193).

The main pathways by which leptin and TH interact with the
hypothalamic–pituitary axis to regulate testis function are sum-
marized in Figures 1 and 2. This review is a first demonstration
proposing explanations for the possible relationship between TH
and leptin activity in the testis. Further studies are needed to
clarify how these two important hormones might act together
in modulating male reproduction.
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