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Abstract

Machine-assisted treatment selection commonly follows one of two paradigms: a fully per-

sonalized paradigm which ignores any possible clustering of patients; or a sub-grouping par-

adigm which ignores personal differences within the identified groups. While both

paradigms have shown promising results, each of them suffers from important limitations. In

this article, we propose a novel deep learning-based treatment selection approach that is

shown to strike a balance between the two paradigms using latent-space prototyping. Our

approach is specifically tailored for domains in which effective prototypes and sub-groups of

patients are assumed to exist, but groupings relevant to the training objective are not

observable in the non-latent space. In an extensive evaluation, using both synthetic and

Major Depressive Disorder (MDD) real-world clinical data describing 4754 MDD patients

from clinical trials for depression treatment, we show that our approach favorably compares

with state-of-the-art approaches. Specifically, the model produced an 8% absolute and 23%

relative improvement over random treatment allocation. This is potentially clinically signifi-

cant, given the large number of patients with MDD. Therefore, the model can bring about a

much desired leap forward in the way depression is treated today.

1 Introduction

Precision Medicine (often referred to as Personalised Medicine, or PM for short) seeks to cus-

tomize healthcare, with medical diagnosis, prognosis, treatment and other practices being tai-

lored to the individual patient. This is juxtaposed with the traditional “one-drug-fits-all”

model [1]. At the heart of much of PM research and practice stands the challenge of effective

personalization, such as selecting an optimal treatment for each individual patient. The basic

premise of PM is that patients may vary in their responses to different courses of treatments

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0258400 November 12, 2021 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kleinerman A, Rosenfeld A, Benrimoh D,

Fratila R, Armstrong C, Mehltretter J, et al. (2021)

Treatment selection using prototyping in latent-

space with application to depression treatment.

PLoS ONE 16(11): e0258400. https://doi.org/

10.1371/journal.pone.0258400

Editor: Luca Citi, University of Essex, UNITED

KINGDOM

Received: June 9, 2021

Accepted: September 26, 2021

Published: November 12, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0258400

Copyright: © 2021 Kleinerman et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The synthetic data,

described in experiment 1 is public and so is the

script used for generating the data: https://github.

com/Aifred-Health/DPNN_Experiment. This is

https://orcid.org/0000-0003-2056-9694
https://orcid.org/0000-0002-3292-6233
https://orcid.org/0000-0001-5985-6792
https://doi.org/10.1371/journal.pone.0258400
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0258400&domain=pdf&date_stamp=2021-11-12
https://doi.org/10.1371/journal.pone.0258400
https://doi.org/10.1371/journal.pone.0258400
https://doi.org/10.1371/journal.pone.0258400
http://creativecommons.org/licenses/by/4.0/
https://github.com/Aifred-Health/DPNN_Experiment
https://github.com/Aifred-Health/DPNN_Experiment


and, as such, may benefit more from different courses of treatment. Recently, this has been

increasingly achieved with the use of machine learning models.

Within the PM realm, machine-assisted treatment selection approaches can be largely clas-

sified into one of two paradigms. The first is the Fully personalized paradigm, where historical

data is used to identify the relationships between patients’ characteristics, treatments, and

medical outcomes in order to determine the optimal course of treatment of new patients.

Using this paradigm, a model is commonly trained to approximate the individual treatment

effects of the available treatments and an optimal treatment for each patient is derived from

this model [2, 3]; The second is the Sub-grouping paradigm, where groups of “similar” patients

are identified and then associated with an optimal treatment at the group level. Using this par-

adigm, some clustering algorithm is used in order to identify the clusters and then each cluster

is associated with an optimal treatment [4, 5]. Sub-grouping is often referred to as prototyping
since each group of patients is commonly represented by one or more (real or virtual) “proto-

typical patients” which are in turn associated with an optimal treatment.

Algorithms from both treatment selection paradigms have demonstrated significant bene-

fits across a wide range of medical applications. However, in some medical settings, both para-

digms suffer from important limitations: For example, the fully personalized paradigm is

commonly focused on minimizing the prediction error over the individual treatment effects

[2, 4]. However, in practice, one is commonly more interested in identifying the “best” course

(s) of treatment. These two objectives do not necessarily coincide when the probability estima-

tions are inherently inaccurate. Specifically, we are generally more interested in the induced

ranking over the possible treatments rather than the accuracy of the probability estimations

themselves, as the objective of treatment selection is to choose the best possible treatment from

a given set (i.e., the set of possible treatments). This concern is mitigated in some domains by

adopting a sub-grouping paradigm (e.g., [4]). Introducing subgroups makes it easier to iden-

tify which patient groups may benefit the most from different treatments. However, the sub-

group paradigm introduces new shortcomings: first, defining “good” sub-grouping criteria is

challenging, especially when the pathophysiology of the disease and their relation to treatment

outcomes are unknown, as is the case in many psychiatric disorders [6]. Second, group-level

treatment selection naturally translates into some loss in accuracy when the groups are not

entirely cohesive (e.g., [7]).

In this article, we propose a novel deep learning-based approach that strikes a balance

between the two treatment selection paradigms by simultaneously identifying prototypes (sub-

groups) of patients as well as approximating outcome prediction in a personalized manner.

More specifically, our approach aims at finding “actionable” prototypes, meaning that they dif-

fer not only in their characteristics but, importantly, in their expected responses to the avail-

able courses of treatment. Our approach uses a novel deep-learning architecture and a

multifaceted loss function which balances between the accuracy of the prediction on the indi-

vidual level and the cohesiveness of the identified prototypes in terms of predicted treatment

outcomes. Importantly, the model outputs not only group membership for a given patient, but

also personalized probabilities of treatment success for each possible treatment.

Our approach performs the prototyping identification in the latent space and, as such, it is

specifically suited for domains where a useful sub-grouping of patients is assumed to exist, but

is not observable in the non-latent space. Note that in some medical domains this assumption

may prove irrelevant as patients can be divided into cohesive sub-groups in terms of treatment

responses by observed features alone. For example, the optimal course of treatment for leuke-

mia (and several other forms of cancer) is commonly determined by age group and other

known factors [8]. Nonetheless, in several other medical domains such as psychiatry, such

sub-grouping in the non-latent space is found to be only weakly connected with treatment
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response (see [9, 10] for a discussion). As such, sub-grouping in observable space may not be

optimal in mental health.

1.1 Treating major depressive disorder

For evaluating our proposed approach, we focus on the personalization of treatment for Major

Depressive Disorder (MDD). MDD is highly prevalent in the general population and is associ-

ated with grave consequences, including excessive mortality, disability and secondary morbid-

ity. According to the World Health Organization (WHO), more than 300 million people were

affected by depression worldwide in 2017 [11]. In the United States, MDD was a leading cause

of disability in all ages in year 2018, substantially more than most other physical and mental

conditions [12]. Consequently, the economic burden of MDD on society is very high [12, 13].

MDD is diagnosed based on a heterogeneous group of symptoms, and two patients with

depression can have very different clinical phenomenology. The DSM-5 criteria for depression

include loss of interest or pleasure in usual activities, depressed mood, increased or decreased

appetite or weight, increased or decreased psychomotor activity, increased or decreased sleep,

fatigue, poor concentration, feelings of guilt or worthlessness, and suicidality; a patient must

have at least five of these symptoms and at least one of these must be depressed mood or

reduced interest or pleasure [14]. The precise pathophysiology of MDD has yet to be fully elu-

cidated [15].

Antidepressants are the most common treatment for MDD and are among the most pre-

scribed medications [16]. While they have demonstrated effectiveness, MDD patients vary sig-

nificantly in their response to the various treatments. The current status quo for MDD

treatment is an educated trial-and-error approach in which patients typically undergo several

rounds of different antidepressants [17]. In clinical practice, a single treatment course typically

lasts six months or more and roughly one third of patients do not respond to treatment follow-

ing an adequate trial. This means that they can be forced to go through several unsuccessful

rounds of drug treatments, with this effort at times extending over several years [18]. This pro-

cess has severe psychological, economic and social consequences for both patients and their

families [19, 20]. It is commonly assumed that MDD patients can be categorized into useful

sub-groups on the basis of presenting symptoms that may be associated with differential treat-

ment response (e.g., [4, 21–23]). Unfortunately, commonly used clinical sub-groups of depres-

sion that are defined in the non-latent space (i.e., atypical, melancholic or anxious prototypes)

have failed to predict any significant difference among currently available antidepressant med-

ications [9].

This need for improved treatment selection in depression, combined with the possibility

that useful sub-groups for treatment selection may exist in the latent space, make MDD an

excellent candidate disorder to test our approach. To do so, we will use both synthetic data and

clinical data. Our clinical dataset combines data from several clinical trials, and describes 4754

MDD patients who were treated as part of clinical trials of antidepressant treatment. Each

patient in these datasets is described by sociodemographic information and clinical symptom-

atology at baseline, the treatment they received, and the outcome of the treatment after 12

weeks. Below, we describe the datasets in further detail (Subsection 5.4.1 and Appendix B).

The synthetic data, described below, has similar characteristics to the clinical dataset. Using

both of these datasets, we demonstrate our approach’s added value compared to state-of-the-

art methods aimed at improving treatment selection for MDD. Given that the current standard

of treatment for many psychiatric disorders, including MDD, is an educated “trial-and-error”

approach [24], our approach could help bring about a much desired leap forward in treatment

effectiveness in terms of increased remission rates and reduced length of the process of finding
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optimal treatments at the individual patient level. In turn, this can translate to a reduced social

and economical burden from MDD in the population level.

2 Related work in machine-assisted treatment selection

Automated treatment selection is an evolving field which has recently garnered increased

interest from researchers [2] and by the media [25]. As discussed above, AI-based treatment

selection in healthcare is commonly addressed through two different computational para-

digms: the fully personalized and sub-grouping approaches. Both approaches have had success.

For example, for eradicating brain tumors, a fully-personalized approach has been shown to

effectively maximize the expected clinical benefits while minimizing side effects [26]. With

respect to subgrouping approaches, in [27], the authors suggested clusters based on non-

adherence for psychosis treatment. More recently, researchers have shown that these clusters

demonstrate significant differences in terms of re-hospitalisation rates and maintenance of the

original medication [28]. However, as described above, both approaches have significant limi-

tations. Fully personalized approaches can focus too much on maximizing accuracy when the

desired output is differential treatment benefit and they do not utilize potentially useful infor-

mation related to patient subgroups; and, by design, the sub-grouping paradigm does not

explicitly capture the possibly complex links between individual patients’ features, treatment

and possible outcomes, and it does not provide explicit predictions for expected outcome on

an individual level. In addition, in many cases, the sub-groups can overlap such that a single

patient may be associated with more than one cluster. Therefore, a simple mapping from clus-

ters to treatments may not suffice.

In order to mitigate these limitations we propose a novel model, which we will call Differen-

tial Prototypes Neural Network (DPNN for short). DPNN is proposed as a middle-ground

solution between the two existing paradigms discussed above. Similar to the fully-personalized

paradigm, during training the DPNN considers the outcome prediction accuracy on an indi-

vidual level. At the same time, it takes inspiration from the sub-grouping paradigm by per-

forming prototyping which directly feeds into the individual level prediction. Unique to our

approach is simultaneous optimization of both the sub-groupings and the individual

predictions.

Unlike traditional unsupervised clustering methods, the prototypes are constantly tuned

during the training process in order to guarantee that the prototypes will approximate an opti-

mal treatment selection policy. To the best of our knowledge, this is the first work that applies

such an approach in the field of PM. We will now discuss similar approaches in previous

studies.

A Similar approache to DPNN is the work described by Ross et al. [7], that addresses effec-

tive pediatric asthma treatment. This approach also combines both the fully personalized and

sub-grouping paradigms. However, unlike DPNN, which simultaneously considers sub-

grouping and personalized outcome prediction accuracy, Ross et al. perform these tasks

sequentially. Specifically, their approach divides the patients into clusters and later assigns dif-

ferent outcome prediction models for each possible sub-group. The process is then continued

until there are no prediction performance improvements that can lead to further changes in

clusters. Another difference between the approaches is that DPNN is also suited for treating

patients who can be associated with more than one cluster, as is the case in many medical set-

tings including depression treatment [9].

Our approach draws inspiration from the models proposed in [29, 30] for promoting

interpretability in classification tasks. In these works, neural network architectures are utilized

for partitioning samples into sub-groups in various classification tasks. Unlike in our
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approach, these prototypes have not been linked, explicitly or implicitly, to optimal interven-

tions or treatments. Our task, is to improve decision-making, which requires the linkage of

subgroups to outcomes (given treatments). As such, our task leads to fundamental differences

in network architecture from previous work and the development of a suitable loss function as

discussed in Section 4.1.

In order to better situate our proposed approach in the field and evaluate its potential bene-

fits over the standard “fully personalized” and “sub-grouping” paradigms, we adopt a few key

representatives of each approach for comparison and discuss them next. These representatives

are also used in our experimental evaluation in Section 5.

Starting with the fully personalized paradigm, we use three representatives: 1) A state-of-

the-art method for estimating Individualized Treatment Effects (ITE) called CFRnet [31]; 2) A

state-of-the-art deep-learning model explicitly designed for depression treatment selection

called Vulcan [32]; and 3) A classic Case Based Reasoning (CBR) approach [33]. We discuss

these representatives next and contrast them with our approach.

Methods for estimating ITE, and specifically CFRNet, focus on leveraging available clinical

data for predicting outcomes of treatments [34, 35]. This line of research mainly addresses the

lack of counterfactual data in clinical results, meaning that the available data consists of only

the outcome of a single administered treatment for each patient. Recent advances in this line

of work have investigated methods that focus on balancing the distributions of control and

treated groups (e.g., [36]). It is important to note that our task is slightly different for two main

reasons: 1) We assume minimal selection bias in the data, given that the data was collected

from clinical trials in which the patients were assigned randomly to the different treatment

conditions or were all assigned to the same treatment for each patient; and 2) Our main objec-

tive is not (solely) to accurately predict or quantify the effects of possible treatments, but rather

to find the best treatment(s). In other words, the correct ranking of the treatments is the main

objective, as opposed to solely maximizing prediction accuracy. The CFRnet method [31], is a

prime example of this approach which uses a deep learning framework for counterfactual

regression, that simultaneously fits a balanced representation of the data and an hypothesis for

the outcome of counterfactuals.

Vulcan is a deep-learning based treatment selection component of the Aifred system [37]

and is considered to be the state-of-the-art representative of the fully personalized paradigm

for MDD treatment selection. Vulcan is explicitly designed for depression treatment selection

and was recently evaluated on a subset of the MDD data set used in this study as well (see Sec-

tion 5.4.1). This evaluation revealed that it is superior to other machine learning based

approaches such as random forests [32]. Similar to the CFRNet method, Vulcan uses a neural

network based model that is fed with the features of a patient and a specific treatment and out-

puts the remission probability associated with that treatment.

Case-based recommender systems (CBR) is a private case of the Recommender Systems

[38] approach which seeks to select the best item(s) from a set of possible items for a given

user, according to his or her estimated preferences. In analogy to our task, a patient can be

viewed as a “user”, the treatments can be viewed as “items” and the “preferences” in our con-

text would be the suitability of the treatment to the patient. However, most common

approaches for RS (e.g. collaborative filtering, content based) require many interactions

between users and items [39], while in clinical data each patient is often administered only a

single treatment and experiences only a single outcome. Nevertheless, several researchers have

investigated RS that utilize the CBR approach for treatment selection (e.g. [33]) which relies

on the idea of detecting similarities between patients. These have also been applied for mental

health treatment selection [40].
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For the subgrouping paradigm, we use two representatives: 1) A standard K-means cluster-

ing algorithm [41]; and 2) A state-of-the-art depression sub-grouping approach based on

latent profile analysis [4]. We discuss these representatives next and contrast them with our

approach.

The most straight-forward method to perform sub-grouping is to implement one of the

classic clustering algorithms available today [42]. In this work, we chose the popular K-Means

algorithm in order to cluster the patients. We represented each patient with the relation to the

K-Means clusters’ centroids and fed each patient to a separately trained fully-connected classi-

fication neural network in order to predict the outcome of the treatment. We term this method

as KMNN.

A more advanced implementation of the subgrouping paradigm is introduced by Saunders

et al. [4, 23], who have shown that using Latent Profile Analysis (LPA) [43], MDD patients can

be divided into eight sub-groups that differ significantly in their reaction to treatments and

specifically in the most effective treatment. This method, which we will refer to as LPAD

(Latent Profile Analysis for Depression treatment), is considered the state-of-the-art represen-

tative of the sub-grouping paradigm.

3 Problem definition

Let us define our treatment selection problem setting more formally.

We are given a data set of N samples D = {(x1, t1, y1). . ., (xN, tN, yN)}, where xi describes a

patient sampled from a given distribution χ and represented as a d dimensional feature vector

xi 2 Rd, ti 2 T indicates the treatment received by patient xi from a finite set of k> 1 treatment

options, and yi 2 Y indicates the observed outcome of the treatment. Importantly, we assume

D resulted from an unbiased treatment selection, such as a controlled clinical trail. Namely, the

assignment of each patient xi to ti was independent of xi. Formally, for any t 2 T, p(t|xi) = p(t).
We assume that Y is binary and consists of only a desired outcome and a non-desired out-

come. Adopting the terminology of our application domain (i.e., MDD treatment), we refer to

the desired outcome as remission, denoted as r, and a non-desired outcome as non-remission,

denoted r�. It is important to note that our formulation and approach can be readily adapted to

any outcome space of choice and the above restriction is for presentation and evaluation pur-

poses only.

Assuming there are k potential treatments, for a given patient xi, there are k corresponding

potential binary outcomes: yð0Þi ; y
ð1Þ

i ; . . . ; yðk� 1Þ

i , where yðjÞi 2 f0; 1g. However, our data consists

of only a single observed outcome for xi who received ti, namely yðtiÞi . In other words, D does

not include the counterfactuals—namely, the outcomes of non-received treatments t 6¼ ti.
The optimal treatment selection policy, π�, assigns t�i for each patient xi such that it maxi-

mizes the desired outcome probability (i.e., remission). Formally, for a patient x,

p�ðxÞ ¼ argmax
t2T

Prðrjx; tÞ ð1Þ

where Pr(r|x, t) is the probability of remission for patient x given treatment t. Naturally, the

true probability is unknown.

4 Approach

Since Pr(r|x, t) is unknown, deriving an optimal treatment selection policy as defined in Sec-

tion 3 is very complex. Similar to other treatment selection techniques proposed in the litera-

ture (see Section 2), we tackle this challenge by approximating Pr(r|x, t) such that

bPrðrjx; tÞ � Prðrjx; tÞ. However, our true objective is to “approximate” the optimal policy π�
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by deriving a treatment selection policy as follows:

pðxÞ ¼ argmax
t2T

bPrðrjx; tÞ ð2Þ

By approximating the optimal policy we mean that we seek to minimize the following loss

function:

LossðpÞ ¼ E
x�w
½Prðrjx; pðxÞÞ � Prðrjx; p�ðxÞÞ� ð3Þ

However Pr(r|x, t) is unknown. As such, any approximation thereof need not necessarily

minimize the above loss. To overcome this hurdle, we propose to approximate Pr(r|x, t) in an

unorthodox way such that it would potentially prove more useful for minimizing the above

loss indirectly compared to standard approximations to Pr(r|x, t). Our method leverages the

assumption that patients may be divided into sub-groups which vary significantly in their reac-

tions to treatments as discussed in Section 2. In this work, we implement our approximation

approach with a neural network based architecture, that: 1) identifies prototypes of patients;

and 2) predicts the remission probability for each patient-treatment pair based on the their

resemblances to identified prototypes. We discuss our proposed neural architecture and loss

functions in following subsections.

4.1 Model architecture

Our proposed neural network architecture consists of the following three main components

(which will be explained thereafter):

1. A symmetrical autoencoder, including an encoder—e: Rm! Rq, and a decoder—d: Rq!
Rm.

2. A prototype layer, g.

3. A classification network h: Rq! RK.

The architecture uses an autoencoder in order to produce features in the latent-space, Rq.
We denote the dimension of the original data as m and the dimension of encoded data as q.

The encoded data is used for both finding prototypes and to calculate the outcome prediction

for each patient separately. Specifically, for each patient xi, the network first encodes the m fea-

tures of xi into an encoded representation denoted as e(xi). e(xi) is used in two ways: 1) It is

used together with the decoder d in order to complete the auto-encoding process and; 2) It is

fed into the prototype layer.

The prototype layer g consists of ℓ randomly initiated prototypes P = {p1, p2, . . .pℓ} each of

q dimensions. In this layer, the architecture calculates the distance between the encoded sam-

ple e(xi) and each of the prototype vectors using some distance measure. These distances,

denoted as di ¼ fd1
i ; d

2
i . . . ; d‘ig, have practically reduced each patient’s representation to an ℓ-

dimensional encoding. Finally, the resulting encoding is fed together with the treatment repre-

sentation (t 2 T) into a standard classification network, h.

The classification network h is a standard fully connected neural network, used for obtain-

ing a probability distribution over the possible outcomes. During the training process, after

obtaining these probabilities, the network calculates the loss, as described below (Section 4.2),

and then back-propagates the loss value in order to tune all the components of the network,

including the prototypes. By doing so, the prototypes are tuned in order capture differences in

the treatment effect. A visualization of the entire architecture is given in Fig 1.
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Note that the prototype vectors are randomly initialized and their values are tuned during

the training process with an appropriate loss functions which will be discussed next. The num-

ber of prototypes, ℓ, is predefined prior to the training process similar to other standard clus-

tering-based approaches [41].

4.2 Objectives and loss functions

Recall that our main objective is to determine the most appropriate treatment(s) for each

patient. Our proposed approach seeks to accomplish that by approximating the probability

distribution of each patient-treatment pair in a way which will indirectly pursue this main goal.

As discussed before, we propose to accomplish this by leveraging the assumption that patients

may be divided into “actionable” subgroups which differ in their responses to different

treatments.

With the above motivation in mind, in addition to the standard accuracy objective, we

incorporate an additional objective which is to increase the discordance between the proto-

types in respect to their expected outcomes across the possible treatments. Thus, our approach

could potentially reveal prototypes that will prove more useful for treatment selection.

These two objectives are optimized using a complex loss function that consists of the fol-

lowing three components:

Fig 1. Visualisation of the DPNN architecture.

https://doi.org/10.1371/journal.pone.0258400.g001
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1. L1: The accuracy loss evaluates the binary cross-entropy loss in predicting the outcome for

the training set. Formally, for a training set D,

L1ðh � g � e;DÞ ¼
XjDj

i¼1

1½yi¼r�logðh � g � eðxiÞÞ þ 1½yi¼�r �logð1 � h � g � eðxiÞÞ ð4Þ

where h � g � e(xi) is the output of the network for xi and 1½yi¼r� ð1½yi¼�r �Þ is an indicator func-

tion for the event that the outcome of sample xi is r (r�).

2. L2: The auto-encoder loss which measures the Euclidean distance between the original sam-

ples and the decoded samples as obtained through e and d. L2 is defined as

L2ðd � e;DÞ ¼
XjDj

i¼1

k xi � d � eðxiÞ k ð5Þ

By minimizing this loss the model ensures that the encoded data contains meaningful latent

features, meaning features that are rich enough to reconstruct the encoded sample as close

as possible to the original.

3. L3: Prototype variance loss. This novel component measures the variance in the expected

treatments outcomes across all prototypes. L3 is calculated as follows: Each of the ℓ encoded

prototypes is matched with each of the k possible treatments, and fed through the classifica-

tion network. As a result, our network produces a matrix, denoted YP, of size ℓ × k, where

each cell contains the prediction for one possible combination of prototype and treatment.

We will denote the remission probability of prototype i with treatment κ as yki . L3 is defined

as follows:

L3 ¼ � ððaÞintravarðYPÞ þ ð1 � aÞintervarðYPÞÞ ð6Þ

where intravar quantifies the variance in predictions within the prototypes (across the possi-

ble treatments), intervar quantifies the variance in prediction between the different proto-

types, and α 2 (0, 1) is a hyper-parameter that balances between the two types of variance.

Formally,

intravar
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where μℓ is the mean probability of remission for prototype l across all treatments.

Similarly,

intervar
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where μκ is the mean prediction of remission for treatment k across all prototypes.

Notice that the summation of the variance terms is negated in L3 since we are interested in

increasing the variance combination.

Below we present the motivation for this type of loss and illustrate the difference between

both types of variance.
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In order to motivate and clearly illustrate L3, we provide two examples. Say our network is

configured to find three prototypes (ℓ = 3), and the dataset includes three possible treatments

(k = 3). In order to calculate L3, our network will first produce 9 different remission probabili-

ties: 3 for each of the 3 prototypes. Now, say that the network produced the probabilities pre-

sented in Table 1.

We can observe that prototypes P1 and P2 are expected to react similarly to the possible

treatments, while they both differ significantly from P3. As our goal is to find meaningful pro-

totypes with respect to the treatment outcome, we would like to improve the selection of pro-

totypes by increasing the difference between P1 and P2 while keeping the clear difference

between them and P3. We obtain this goal by increasing the variance across the prototype

dimension: for each treatment, we measure the variance across all prototypes and calculate the

summation of all variances, as defined in Eq 8.

Now say the probabilities for remission were as given in Table 2.

In this example, the prototypes are clearly differentiated with respect to remission rates, but

the differences within each prototype across different treatments are minimal. These proto-

types are associated with overall chances of remission. As such, they are not particularly helpful

for improving treatment selection. Therefore, we would like to make sure that the differences

between the treatments expected outcomes, within each prototype, would become more signif-

icant. Therefore, we would like to increase the variance in the expected outcomes for treatment

within each prototype. We denote this type variance as intravar as defined in Eq 7.

As can be seen from the above two examples, both types of variance are essential, yet they

are partially conflicting. The more the variance across the prototypes is increased, the more

chances are that the differences within prototypes decrease, since high variance between proto-

types naturally leaves less space for variance within the prototypes and vice-versa. Therefore,

these variance components are combined through a weighted summation that allows for a cus-

tomised configuration between these loss components. This controls the prototypes’ training

with the objective being that they are sufficiently spread out across the latent space so as to

potentially capture the nuances and characteristics of the patient population. A visualization of

the computation of L3 is presented in Fig 2.

We linearly combine the three loss components as:

L ¼ L1 þ l1L2 þ l2L3 ð9Þ

where λ1 and λ2 are hyper-parameters that balance between the different objectives of the

network.

Table 1. High variance across prototypes.

Prototype

Treatment T1 T2 T3

P1 0.3 0.25 0.7

P2 0.35 0.2 0.65

P3 0.8 0.02 0.03

https://doi.org/10.1371/journal.pone.0258400.t001

Table 2. Low variance within prototypes.

Prototype

Treatment T1 T2 T3

P1 0.81 0.8 0.83

P2 0.45 0.44 0.47

P3 0.19 0.2 0.18

https://doi.org/10.1371/journal.pone.0258400.t002
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All of the components described above (the autoencoder, prototypes and classification lay-

ers) are trained simultaneously, meaning that after every single feed-forward, the combined

loss is back propagated and tunes all the components accordingly.

5 Evaluation

In order to evaluate our approach, we performed two experiments: First, we used synthetic

data which was created to follow our two central assumptions: 1) Patients can be divided into

sub-groups that differ in their reactions to different treatments; and 2) These sub-groups are

defined in the latent space. This experiment, which we will refer to as Experiment 1, is used for

demonstrating the potential benefits of our approach when our assumptions are fully met and

counterfactual data exists for evaluation purposes. Second, we use an extensive secondary real-

world clinical dataset for MDD treatment selection that combines three major clinical trials

(N = 4, 754). In this experiment, which we will refer to as Experiment 2, we demonstrate the

potential benefits of our approach in a real-world, high stakes medical domain in which no

counterfactual data exists and our assumptions cannot be definitively confirmed.

In order to properly compare the proposed DPNN approach to the five benchmark

approaches discussed in Section 2, several technical amendments were needed. Next, we dis-

cuss this slight modifications followed by the results of the two experiments described above.

5.1 Benchmarks

We compared our DPNN approach to five representative methods discussed in Section 2:

1. CFRnet [31]: a neural network-based model that builds a balanced representation of the

data, in order to overcome possible bias between treatment groups, and predicts the out-

come of possible counterfactuals. CFRnet was originally designed for data including two

groups of treatments and therefore we adjusted the original framework to fit multiple treat-

ment groups, as we describe in Appendix E. CFRnet was recently evalauted in other similar

healthcare domains [31, 44].

2. Vulcan: a state-of-the-art treatment selection method specifically tailored for MDD [32].

The original code used in [37] was provided by the authors, some of which co-author this

article as well. The code was used “as-is” without further modification.

Fig 2. Visualisation of L3’s computation.

https://doi.org/10.1371/journal.pone.0258400.g002
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3. CBR: the prediction of each treatment t is estimated by the k nearest neighbors (KNN) in

the dataset who received treatment t. The similarity distance is based on popular cosine

similarity measure and the prediction is calculated as the weighted sum of the neighbors’

outcomes weighted by distance.

4. KMNN: The algorithm works in two phases, first a standard K-Means algorithm is executed

to identify clusters of patients based on their observable features, regardless of treatments

and outcomes. Then, for a given patient, distances are calculated with respect to the cen-

troids of the identified clusters which are then fed to the separately trained fully-connected

classification network in order to predict the outcome of the treatment.

5. LPAD: the state-of-the-art method for MDD treatment selection using sub-grouping [4].

As in DPNN, the clustering is performed in the latent-space. Note that, unlike DPNN,

LPAD does not explicitly predict the remission probability but rather focuses on determin-

ing optimal treatment. Therefore, a few technical steps were taken in order to appropriately

evaluate the LPAD also in terms of accuracy (see Appendix D).

For replication purposes, the Vulcan implementation is publicly available at: https://github.

com/Aifred-Health/Vulcan. All other benchmarks, as well as our DPNN implementation and

data analysis scripts, are publicly available at: https://github.com/Aifred-Health/DPNN_

Experiment.

5.2 Evaluation metrics

In many prediction tasks, the Area Under The Curve (AUC) is the central metric of choice for

evaluating a model’s performance. However, for our task, the AUC metric does not fully reflect

the quality of the output, since it is not a top-biased measure [45]. More specifically, in our set-

ting, our prime objective is to select an optimal treatment which is most likely to provide a

desirable outcome. Therefore, errors at the top of the list of treatments, sorted by their likeli-

hood for desired outcome (i.e., either ranking a “bad” treatment at the top of the list or ranking

a “good” treatment at the bottom of the list), are more critical than errors in the rest of the list.

Through this perspective, our evaluation is akin to that of learning to rank tasks, which require

different metrics than other prediction tasks do. Therefore, in addition to the AUC metric, we

adopt the standard Mean Reciprocal Rank (MRR) [46] commonly used in learning-to-rank

tasks.

Formally, let~ri be the vector of real remission probabilities for patients i across all possible

treatments, and ~pri be the vector of predicted remission probabilities. MRR is calculated as fol-

lows:

MRRðSÞ ¼
1

jSj

XjSj

i¼0

rank~pi ðargmaxðpri
� !
ÞÞ ð10Þ

where S is the evaluation set and argmaxðpri
� !
Þ is the treatment with the highest remission prob-

ability for patient i, according to the model’s output. rank~pi ðargmaxðpri
� !
ÞÞ is therefore the real

rank of selected treatment.

Similarly, we define the following Remission Prediction Loss (RPL) which measures the dif-

ference between the true remission probability of the selected treatment and the highest remis-
sion probability across all treatments as follows:

RPLðSÞ ¼
1

jSj

XjSj

i¼0

ðmaxð~riÞ � ri
argmaxðpri

� !
ÞÞ ð11Þ
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where riargmaxðpri
� !
Þ is the true remission probability of the treatment with the highest predicted

remission probability.

The MRR and RPL metrics capture different notions for measuring the discordance

between the treatment selected and the optimal one. MRR captures this notion in terms of

ranking order while RPL captures the same by effectiveness differences. Notice that for the

MRR metric—the higher the score—the better, while for the RPL metric—the lower the

score—the better.

Unfortunately, calculating the MRR and RPL can only be done in settings where some

counterfactual knowledge is available. For example, MRR can only be calculated if the data

contains the true ordering over the possible treatments for patients. While such data is avail-

able in Experiment 1 (synthetic data), it is unavailable in Experiment 2 (real-world clinical

data). Therefore, in Experiment 2, we adopt a different metric as proposed in other similar

medical treatment selection works (e.g., [32]) called Remission Rate or RR for short. The idea

behind the RR measure is to use the test set such that for each patient in it, the model is exe-

cuted and the predicted optimal treatment is identified. Then, we filter out all patients in the

test set who did not receive the predicted optimal treatment. Through this process, we are left

with a subset of the original set of patients, all of whom had received the predicted optimal

treatment in practice. Based on these patients alone, the average remission rate, i.e., the portion

of remission-labeled patient-treatment pairs, is calculated and reported as the RR of the

model. Since we are using a k-fold evaluation technique, we derive a set of RR results, one for

each fold. Note that this procedure is not optimal since the RR metric is only based on a (possi-

bly small) subset of patients. In addition, unlike the MRR and RPL metrics, the RR metric does

not reflect the quality of the ranking, which is desirable in our setting. Despite the fact that the

RR is not an optimal metric, it is a meaningful one- it represents the proportion of patients

who would reach remission if they were assigned treatments using the model, which can then

be compared to the baseline remission rate in order to determine the clincal value of the

model.

5.3 Experiment 1—Synthetic data

5.3.1 Data generation. In this study, we consider settings where patients can be assigned

one of multiple possible treatments and: 1) The patients can be divided into sub-groups that

differ in their reactions to different treatments; and 2) These sub-groups are defined in the

latent space, which is not directly observable by the model, meaning that the features that

define these clusters are not given as input to the model. As such, in order to generate appro-

priate synthetic data that adheres to these assumptions we perform a “reverse engineering”-

like process, starting with a set of randomly generated “prototypes”, around which fictitious

patients are created. We assume four possible treatment exist, and each treatment is associated

with a unique function that maps a patient to an outcome. These functions were non- linear

and generated randomly. Each patient is randomly assigned to one of four treatments and the

associated likelihood of remission. The resulting dataset consists of 10,000 patients which are

represented in the slightly noisy feature space yet are clustered around 5 prototypes in the
latent space. The parameters used for our data generation procedure were not meaningful in

the context of our task and when those were varied little difference in patterns was encoun-

tered. We describe the process in more detail in Appendix C, and the script for generating the

data is available in https://github.com/Aifred-Health/DPNN_Experiment.

5.3.2 Training. We separated the dataset into a training set and a test set using the k-fold

cross validation technique [47], in which the dataset is split into k consecutive folds and each

fold is used once for the test set while the k − 1 remaining folds are used for the training set.
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We report the results for k = 5, while similar results were obtained for other standard choices

for k. For each of the splits, we trained and tested the DPNN and each of the benchmark algo-

rithms in the same way. We repeated this process 100 times in order to obtain a sufficiently

large results pool and subsequently obtained 100 samples of each metric for each method.

All clustering algorithms (DPNN, LPAD and Kmean) were executed assuming 5 clusters.

We obtained the hyper-parameters by an automated process that searched various combina-

tions of parameters and found the combination that yielded the best results. We ran all models

for 100 epochs, with 10 samples in each batch and a 0.0001 learning rate. We found that our

network performed best with a single hidden layer in both the autoencoder and the classifica-

tion network. Appendix A provides the fully hyper-parameter setup we used and the hyper-

parameter tuning process.

5.3.3 Results. For all examined metrics, the results do not distribute normally according

to the Shapiro-Wilk test [48], a standard issue when analyzing the performance of machine

learning algorithms [49]. As such, we use the Friedman’s test [50] followed by post-hoc Wil-

coxon signed rank significance tests (Wilcoxon’s test for short) [51] for pairwise comparisons

with proper p-value adjustment using Bonferroni correction [52].

The Friedman’s test showed that the evaluated methods differ significantly on all examined

metrics (MRR, RPL and AUC), p� 0.01.

For the MRR metric, we found the DPNN model was significantly superior to all the bench-

marks (p� 0.01) with DPNN demonstrating a median MRR of 0.451 (median absolute devia-

tion, MAD for short = 0.004) followed by the Vulcan method (median = 0.441, MAD = 0.005),

KMNN (median = 0.444, MAD = 0.013), CFR (median = 0.444, MAD = 0.014), CBR

(median = 0.442, MAD = 0.011), and LPAD (median = 0.44, MAD = 0.006). Recall that for

MRR, the higher the better.

Similar results were encountered for the RPL metric. The DPNN model (median = 0.084,

MAD = 0.006), was significantly superior to Vulcan (median = 0.097, MAD = 0.006), CFR

(median = 0.091, MAD = 0.001), CBR (median = 0.09, MAD = 0.006), and LPAD

(median = 0.091, MAD = 0.007), while no significant difference were found when comparing

DPNN and KMNN (median = 0.084, MAD = 0.006), p� 0.01. Note that DPNN demonstrates

better performance than KMNN, yet the difference is not statistically significant. Recall that

for the RPL metric, lower numbers are preferable.

Table 3 summarizes the results and presents the performance of all methods also in specific-

ity, sensitivity, positive predictive value (PPV) and negative predictive value (NPV) [53].

DPNN, KMNN and LPAD receive the number of clusters (or prototypes), ℓ, as input. Since

the data was originally generated from 5 prototypes, we chose to use the correct input for all

three methods. A full sensitivity analysis by ranging ℓ from 2 to 9 shows that slight changes to

Table 3. Experiment 1 (synthetic data): Median scores for each evaluated method (column) and evaluation metric (row). For all metrics ecepts RPL, the higher the bet-

ter. For RPL, the lower the better. Results in bold are significantly superior to non-bold results, p� 0.01.

Metric

Method DPNN Vulcan CFR CBR KMNN LPAD

MRR 0.451 0.441 0.444 0.442 0.444 0.44

RPL 0.084 0.097 0.091 0.09 0.084 0.091

AUC 0.751 0.777 0.754 0.755 0.739 0.732

Sensitivity 0.07 0.182 0.257 0.087 0.024 0.183

Specificity 0.986 0.964 0.914 0.808 0.98 0.824

PPV 0.502 0.488 0.622 0.366 0.471 0.375

NPV 0.333 0.344 0.319 0.314 0.327 0.329

For all metrics ecepts RPL, the higher the better. For RPL, the lower the better. Results in bold are significantly superior to non-bold results, p� 0.01.

https://doi.org/10.1371/journal.pone.0258400.t003
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this input result in little effective change for DPNN and that the correct number of clusters

could be identified using the elbow method, see Appendix F for complete details.

5.4 Experiment 2: MDD clinical data

As discussed before, in real-world clinical data our evaluation possibilities are narrower since

the data includes only the outcome of a single treatment with no practical way to obtain the

counterfactuals. Therefore, the MRR and RPL metrics cannot be evaluated on real data and are

replaced by the RR metric (see Section 5.2). Therefore in experiment 2 we report the results on

the AUC and RR metrics alone.

5.4.1 Data. The real world data consisted MDD patient level data from multiple clinical

trials: CO-MED [54], STAR�D [55], REVAMP [56], EMBARC [57] and IRL-GREY [58]. All-

together, the dataset described 4754 patients. In these studies, patients were and randomized

to different anti-depressant treatments, and regularly reported their depressive symptoms

every few days, with common questionnaires for evaluating depression, such as The 16-Item

Quick Inventory of Depressive Symptomatology (QIDS) [59] and Hamilton Depression Rat-

ing Scale (HAM-D) [60]. Each patient was described by 26 features, including features describ-

ing the initial depressive disorders (e.g. suicidal ideation and fatigue) as reported in the

questionnaires at the beginning of the study and social-demographic features (e.g. age and

education). In addition, the data included for each patient a “treatment feature”, describing

the treatment he or she received. The “treatment feature” indicated one from 6 possible anti-

depressant treatment courses: escitalopram, citalopram, venlafaxine, sertraline, and the combi-

nations of bupropion and escitalopram, and mirtazapine and venlafaxine. In addition, every

patient had a binary outcome label: remission or no-remission. The full description of the

data, including the 26 features and the pre-processing procedure are presented in Appendix B.

5.4.2 Training. Unlike Experiment 1 where the true number of prototypes was known

(chosen by us), in this experiment, we first evaluated the performance of each method by vary-

ing the value of ℓ from 2 to 9. The full sensitivity analysis results are presented in Appendix F.

We found that in both DPNN and KMNN the model performed best with 6 prototypes (ℓ = 6)

and that the LPAD method performed best with three prototypes (ℓ = 3). Therefore, in this

experiment we set ℓ = 6 for the DPNN and KMNN and ℓ = 3 for the LPAD evaluation.

5.4.3 Results. As was the case in Experiment 1, the results using both metrics (AUC and

RR) were not normally distributed using the Shapiro-Wilk normality test [48]. As such, follow-

ing the same analysis procedure of Experiment 1, we use the Friedman’s test followed by post-

hoc Wilcoxon tests for pairwise comparisons with Bonferroni correction.

Using the Friedman’s test, we found that the methods vary significantly in both RR and

AUC scores (p� 0.01).

For the RR metric, pairwise comparisons reveal that the DPNN significantly outperforms

all other benchmarks with a median score of 0.446 (MAD = 0.039) compared to Vulcan which

demonstrated a median score of 0.413 (MAD = 0.035), CFR (median = 0.418, MAD = 0.045),

CBR (median = 0.415, MAD = 0.025), KMNN (median = 0.412, MAD = 0.032) and LPAD

(median = 0.411, MAD = 0.016), p� 0.01. Interestingly, the KMNN significantly outper-

formed all other benchmarks (other than DPNN), p� 0.01. It is important to note that the

general remission rate, i.e. the portion of remission-labeled patients in the entire dataset, is

only 0.355. Namely, all evaluated methods have demonstrated an expected added benefit com-

pared to a random treatment selection procedure. Note that the RR metric is based on a vary-

ing number of samples (see Section 5.2). Nonetheless, the above results are found to be

statistically significant. Table 4 summarizes the results. As mentioned above (Section 5.2), the

RR metric is based only on a subset of patients from the test set (the patients who received the
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optimal treatment within the test set). In all models, this group of users were in average

between 30% and 40% of the test set (between 287 and 383 patients).

As was the case in Experiment 1, Vulcan was significantly superior to all other methods in

terms of AUC achieving a median score of 0.65 (MAD = 0.001) compared to DPNN

(median = 0.64, MAD = 0.011), CBR (median = 0.58, MAD = 0.013), KMNN (median = 0.595,

MAD = 0.012), CFR (median = 0.626, MAD = 0.01), LPAD (median = 0.608, MAD = 0.011),

p� 0.01. Nonetheless, DPNN significantly outperforms CFR, KMNN, CBR and LPAD meth-

ods, p� 0.01.

Table 4 summarizes the main results presented above. In addition, the table presents the

performance of all methods in specificity, sensitivity, PPV and NPV measures.

6 Discussion

The experimental results presented in Section 5 demonstrate the advantages and limitations of

our proposed DPNN approach. In both experimental setups, we see that the DPNN favorably

compares with several state-of-the-art methods for treatment selection in terms of its low dis-

cordance with the unknown optimal treatment selection policy at a minimal expense in pre-

diction accuracy. Specifically, for the MRR, RPL and RR metrics, we see that the DPNN

significantly outperforms all benchmark methods. On the other hand, in order to achieve this

advantage, as the DPNN is shown to have slight reduction in its performance in terms of

AUC. From a practical perspective, it is claimed that “a prediction model is only as good as its

resulting agent’s performance” [61]. Adopting this viewpoint means that, in several decision-

making environments, the DPNN’s tradeoff of AUC performance for MRR, RPL and RR per-

formance is worthwhile. This is because the purpose of the model is to increase the number of

patients reaching remission; a significant increase in this metric has more clinical value than

less than a percent difference in an accuracy metric. As such, we expect that the DPNN

approach will prove more valuable as a clinical decision support technology compared to the

evaluated state-of-the-art methods.

When presenting a new approach such as the DPNN, it is worthwhile discussing its limita-

tions. First, as discussed above, DPNN has a small decrease in AUC performance to improve

other, arguably more important, metrics. In environments where AUC is the prominent met-

ric for evaluation, this may result in other methods (such as Vulcan) being preferred. We

believe that in many medical decision-making environments, and specifically in MDD treat-

ment selection, DPNN advantages supersede its limitations.

Second, DPNN requires the number of prototypes to be defined before execution. This is a

standard limitation to most clustering-based algorithms and can be largely mitigated by adopt-

ing one of the many clustering analysis techniques commonly used for determining the

Table 4. Experiment 2 (clinical data): Median scores for each evaluated method (column) and evaluation metric (row). For both metrics, the higher the better. Results

in bold are significantly superior to non-bold results, p� 0.01.

Metric

Method DPNN Vulcan CFR CBR KMNN LPAD

RR 0.446 0.413 0.418 0.415 0.412 0.411

AUC 0.64 0.65 0.626 0.58 0.595 0.608

Sensitivity 0.075 0.175 0.471 0.25 0.032 0.017

Specificity 0.965 0.926 0.817 0.811 0.987 0.985

PPV 0.522 0.509 0.611 0.385 0.492 0.343

NPV 0.36 0.37 0.306 0.365 0.357 0.355

For both metrics, the higher the better. Results in bold are significantly superior to non-bold results, p� 0.01.

https://doi.org/10.1371/journal.pone.0258400.t004
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optimal number of clusters to use in a dataset [62]. In addition, as shown in Appendix F,

DPNN is not very sensitive to the number of clusters in the data considered, which requires

further investigation in order to determine the best way to interpret the clinical or biological

meaning of the resulting clusters. Lastly, DPNN is built on several rather restrictive assump-

tions as outlined in Section 4. Specifically, it is unlikely that the assumption that samples (i.e.,

patients) can be divided into sub-groups which significantly differ in their reactions to differ-

ent treatments will hold in all decision-making domains. While this theoretically limits the

applicability of the DPNN approach, it appears that such settings are prominent, especially in

the mental healthcare domain. Given the abundance of mental conditions, their prevalence in

the general public and the great costs associated with them, DPNN can prove useful to a variety

of high-impact treatment selection environments.

The architecture of our network, and specifically the prototypes learned by the network,

can potentially increase the interpretability of the network’s results, which is essential in an

automated depression treatment selection system. Recent work demonstrates interpretability

can drive physicians trust in an automated treatment selection system, which in turn can influ-

ence their use of the system’s results [63]. This makes model interpretability a prime target for

improving the physician-AI interaction. Therefore, in future work we plan to investigate how

to explain the DPNN results to clinicians and how the network’s results are perceived by both

the clinicians and the patients.

7 Conclusions

In this article, we propose and evaluate a novel deep learning-based approach, DPNN, that

simultaneously identifies sub-groups of patients as well as predicts personalized treatment out-

comes. Our approach is shown to strike a delicate balance between the fully personalized para-

digm (which ignores any possible clustering of patients) and the sub-grouping paradigm

(which ignores individual differences within the groups) and favorably compares to existing

benchmarks using synthetic and real-world clinical data.

Focusing on the important challenge of personalizing depression treatment, our approach

demonstrates significant advantages over existing state-of-the-art methods. These advantages

can potentially be translated into a significant reduction of the burden of depression in both

the patient level and in the population-level and lead to a superior level of care.

As mentioned above, the actual remission rate in our dataset was 35.5%. Therefore, the

DPNN method produced an 8% absolute and 23% relative improvement over random treat-

ment allocation. In current practice, patients can be prescribed any of a number of treatments,

with treatments considered equally effective at the population level, approximating a random

assignment at scale. Therefore, these results are potentially clinically significant- given the

large number of patients with MDD, a 23% improvement over current practice could mean

potentially a very large number of patients reaching remission earlier and without needing to

try multiple treatments.

We intend to extend this work in two directions: First we are currently preparing our sys-

tem to be tested in a live clinical trail. This trial may shed new light on additional factors relat-

ing to the treatment selection process. For example, we expect that the interpretability of the

model will be identified as an issue for further research (see [64] for a recent overview). We

believe that the DPNN approach can enable physicians to gain insights through the learned

prototypes and their “resemblance” to each individual patient. We plan to investigate this

human-computer interaction issue in the future. Second, in this work, we primarily focused

on the performance of our models in terms of selected treatment efficacy. As such, we intend to

extend our analysis of the prototypes outputted by associating clinical meanings to each
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prototype. This additional analysis and interpretation is challenging yet it can prove very bene-

ficial from a clinical perspective. Last, we plan to experiment with additional decision-making

domains, both medical and non-medical, to better understand the advantages and limitations

of our approach.

8 Appendices

A Model training parameters

The DPNN method includes several hyper-parameters that can be configured and effect the

model’s performance. In this appendix, we present the values of the hyper-parameters used in

both our experiments. The full list of hyperparameters are presented below in Table 5.

In both experiments, we set the hyper-parameters λ1 to 0.01 λ2 to 0.05, α to 0.85 and the

learning rate to 0.0001. These parameters were found to be most useful using a simple grid-

search.

Regarding the inner layers of the model, we found that the model performed best, in both

experiments, with one inner layer in the auto-encoder component (one inner layer in the

encoder and a symmetrical layer in the decoder). In the first experiment, the layer consisted 14

nodes and in the second experiment 18 nodes.In addition, in both experiments the classifier

layers components included one hidden layer, In experiment 1, the layer consisted 16 nodes

and in experiment 2 we used 11 nodes.

We obtained the hyper-parameters by an automated process that searched various combi-

nations of parameters and found the combination that yielded the best results.

Test size influence. In our experiments we used a 5-fold validation, therefor the test size

was 20% of the original dataset. In order to investigate the influence of the test size on the per-

formance of the DPNN model with the MDD data, we tried splitting the data by 4 other possi-

ble train-test ratios: 5% (test ratio), 10%, 25%, 50%. For each of these ratios, we ran the model

10 times and measured the median RR measure and the AUC. In Table 6, we present the

Table 5. Hyper-parameters of the DPNN model in both experiments.

hyper-parameter meaning value in experiment 1 value in experiment 2

ℓ number of prototypes 6 5

hidden-layers in e number of hidden-layers and nodes in the auto-encoder 12 nodes, single layer 18 nodes, single layer

hidden-layers in h number of hidden-layers and nodes in the classification network 12 nodes, single layer 11 nodes, single layer

learning-rate controls how quickly the model is adapted during training 0.0001 0.0001

epochs number of epochs in training 75 90

batch size number of training examples utilized in one iteration 10 10

λ1 auto-encoder loss (L2) weight (Eq 9) 0.01 0.01

λ2 auto-encoder prototype variance loss (L3) weight (Eq 9) 0.05 0.06

α balance of the prototype variance loss (Eq 6) 0.85 0.95

https://doi.org/10.1371/journal.pone.0258400.t005

Table 6. Train-test ratio influence on the performance of the DPNN model with the MDD data, medians results.

test-train ratio RR AUC

5: 95 0.375 0.645

10: 90 0.41 0.635

20: 80 0.446 0.64

25: 75 0.411 0.621

50: 50 0.433 0.631

https://doi.org/10.1371/journal.pone.0258400.t006
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median result. The results in the third row, for the 20:80 ratio, are the results in we obtained

with the 5-fold cross validation, which we reported in our paper. This ratio gave the best result

in RR measure, which is our prime objective.

B The MDD data description

The real world data consists of MDD patient-level data from several major clinical trials:

CO-MED [54], STAR�D [55], REVAMP [56], EMBARC [57] and IRL-GREY [58]. Combining

studies was necessary in order to include enough different treatments to produce a model of

potential clinical value (as a model which simply assists in selecting between one treatment or

another is not likely to be of clinical use when over a dozen treatments and treatment combi-

nations can be selected from). CO-MED enrolled outpatients with MDD who were random-

ized to three anti-depressant treatment arms: escitalopram and placebo, bupropion and

escitalopram, or mirtazapine and venlafaxine. The purpose of the trial was to assess whether

combination treatment was superior to monotherapy, but similar remission rates were

observed in each arm. STAR�D is the largest pragmatic trial of depression treatment ever con-

ducted to date and followed patients through multiple courses of treatment; in our dataset we

look at the first stage of treatment of the four levels of the study (which is the level analyzed in

this study), all patients received citalopram, and the remission rate was 33%. we used the first

stage because we were interested in predicting response to an initial monotherapy trial, and

also because sample size decreased significantly in later stages of the study. As it was a prag-

matic study, aside from requiring that patients have at least moderate severity major depres-

sion, there were few strict exclusion criteria (other than medical instability or substance abuse

disorders that requiring detoxification, eating disorders, or obsessive compulsive disorders)

making the study fairly representative of a real clinical sample (n = 2876). REVAMP was a

study comparing a medication with two different psychotherapies added to the medication; we

analyzed the medication only group, which included patients on escitalopram, bupropion,

venlafaxine or mirtazapine (however due to small sample size we were unable to include the

patients on mirtazapine for this analysis). Patients needed to have chronic depression, and

were not allowed to have psychotic disorders, bipolar disorder, post traumatic stress disorder,

obsessive compulsive disorder, eating disorders, substance abuse or personality disorders.

EMBARC was a study focused on finding biomarkers of depression treatment response; we

use the sertraline and bupropion arms of the study as these treatments as monotherapy were

not available in other data sets we had access to. Finally, IRL-GREY was a study of older adults

with depression; we use the data from the first stage of the study, where all patients recieved

venlafaxine monotherapy.

All in all, we had seven different treatments available for the model to learn to predict

remission rates for: bupropion, escitalopram, citalopram, venlafaxine, sertraline, and the com-

binations of bupropion and escitalopram, and mirtazapine and venlafaxine. However, in this

study we excluded the group of patients that received bupropion only since it was very small in

comparison to the other groups (65 patients). These are all first-line or combinations of first-

line treatments and are commonly used in clinical practice [65]; while they are essentially

equally effective at the population level when looking at the data from each of these studies,

clinically they are used differently and in usual practice are thought to help different kinds of

patients in a differential manner [66]. We did not use data from placebo arms from any of the

studies; given these are all known to be effective treatments, comparison to placebo to prove

efficacy was not necessary and would not have provided useful information in predicting dif-

ferential treatment response, though in future work we plan to assess prediction of differential

response to placebo, as in [67]. When determining patient remission status, we took an “intent
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to treat” approach, using all patients (even those who dropped out before study end as long as

they had been in the study for a minimum of two weeks, as prior to two weeks there is not

likely to be any effect of treatment) and ascertaining remission at the last possible measure-

ment in order to capture the state of the patient as they were leaving the study (as a parallel to

the last point at which they would be leaving treatment in a real clinical setting). While this

results in a remission rate that would be lower than that observed if one were to look only at

remission rates at the end of the study and therefore to greater lack of balance between the

remission and non-remission categories- it also provides a dataset closer to true clinical reality

and which matches the remission rates reported in the included studies. The sample was

37.6% female. The sample overall included patients with similar remission rates, a high rate of

chronic or recurrent depression, and generally with patients with psychiatric comorbidities

permitted to enroll in most studies. All the datasets together included 4754 patients, with an

overall 35.5 percent remission rate. These studies were ideal for our analysis because they

included similar eligibility criteria and outcome measures and generally allowed clinicians to

tailor patient dose to patient need and tolerance, as in real practice. They were all carried out

as investigator-initiated studies of well-known treatments as well, and were more focused on

comparative efficacy than on getting a new treatment approved.

The data initially included 213 features, and the model performed poorly on the the raw

data. Therefore, we first employed the following methods for feature reduction in order to

improve the various models’ results:

1. Feature importance thresholding via randomized Lasso: This procedure randomly shuffled

the samples and selects the set of features most closely linked to the label we were trying to

predict (i.e. remission).

2. Recursive feature elimination with cross validation (RFECV): This method trains a model

with subsets of the original feature list and detects the features with the most value for the

performance of the model.

We were able to identify a list of 26 optimal parameters (not including the target value and

treatment feature) for our feature selection by iteratively running the features with our models

and assessing the prediction metrics. These methods were implemented from the Python pack-

age Sci-kit Learn.

In addition, at a later step during model development we removed one of the seven original

treatment courses, bupropion, since it only included 63 instances in the data. We are currently

working to secure more data on patients using this treatment, so future iterations of the model

can include this and potentially other treatments as well.

Features list. Here we list the final features used in our model. all features are categorical

and were reported by various questionnaires.

1. From HAM-D questionnaire: Poor appetite or overeating.

2. From HAM-D questionnaire: Impact of your family and friends.

3. From HAM-D questionnaire: Early morning insomnia.

4. From HAM-D questionnaire: Energy/ fatigability.

5. From HAM-D questionnaire: Pleasure/enjoyment.

6. From HAM-D questionnaire: Reactivity of mood.

7. From HAM-D questionnaire: Suicidal ideation.
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8. From HAM-D questionnaire: Sympathetic arousal.

9. From HAM-D questionnaire: Outlook towards future.

10. From HAM-D questionnaire: Fatigue.

11. From HAM-D questionnaire: Has private insurance.

12. QIDS total score (the sum of all symptom values in the QIDS questionnaire).

13. Number of relatives living with patient.

14. From QIDS questionnaire: Appetite (increased).

15. From QIDS questionnaire: Concentration/decision making.

16. From QIDS questionnaire: Energy/fatigability.

17. From QIDS questionnaire: Involvement.

18. From QIDS questionnaire: Mood (sadness).

19. From QIDS questionnaire: Mid-nocturnal insomnia.

20. From QIDS questionnaire: Suicidal ideation.

21. Climbing several flights of stairs.

22. Currently employed partial or full time.

23. 16 or more years of education.

24. Number of friends living with patient.

25. One to four number of relatives living with patient.

26. One to five number of persons in household.

C Synthetic data generation

In this appendix we describe in detail the process of data generation for the synthetic data we

used in Experiment 1 (Section 5.3). First, we randomly created a set of 5 prototypes (ℓ = 5),

where each prototype is represented as a 10 feature vector (q = 10), each of which is sampled

from a normal distribution with a mean of 0 and standard deviation of 10. For each prototype,

we generated a set of 2,000 fictitious patients in the latent-space according to the same normal

distribution around the prototypes. Each patient was randomly assigned to one of four treat-

ments (k = 4).

Each of the four treatments was associated with a randomly chosen non-linear remission
function that maps patients’ latent features to a probability of remission. The remission func-

tion determines the remission probability using two linear matrix multiplications with a RELU

activation function in between. All the values of the matrices were randomly generated from a

standard normal distribution. The first matrix’s size was 10 × 5 and the second matrix 5 × 2.

As before, slight variations to these parameters and other choices of non-trivial remission

functions have demonstrated similar results. The outcome for each patient-treatment pair,

namely remission or non-remission, was chosen using a softmax operator over the results of

the above calculation.

To complete the process, each generated patient was “decoded” into 16 observable (non-

latent) features using a decoder function. The decoder function uses a matrix multiplication
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where the matrix’s size was 10 × 16. All the values of the matrix were randomly generated from

a standard normal distribution. In addition, in order to avoid over-simplicity, the decoder

function added 4 irrelevant features to the observed space. These features that were randomly

generated from the standard normal distribution. altogether, each patient was now represented

by 20 features (d = 20).

Overall, the above process produced a synthetic dataset of 10,000 patients represented in

the non-latent space, each associated with one random treatment and an outcome. The script

we used for this process was implemented in python and is publicly available at: https://github.

com/Aifred-Health/DPNN_Experiment/tree/master/Experiment/Synthetic_Data_

Experiment.

D LPAD

In our experiments we compared our model to LPAD: a sub-grouping method for treatment

of depression, based on Latent Profile Analysis. We mentioned above (Section 5) that this

method we first divided our dataset into train and test sets (80%-20% split), and executed the

original LPAD procedure on the training set. Then, using the test set, we first classified each

patient to the nearest cluster. We then use the data from the patients allocated to each cluster

in order to estimate the remission likelihood for that cluster through a standard maximum

likelihood estimation. This way, we were able to obtain the optimal treatment for each patient,

based on his associated cluster. We used this procedure in order to calculate all the metrics

described in Section 5.2.

E CFRNet adjustment

CFRnet was originally designed for data including two groups of treatments, however the

authors mention that the method can be trivially extended to multiple treatments, by estimat-

ing the outcome for each pair of treatments and aggregating the results [31]. In our evaluation

we followed their suggestion in both experiments as follows: For each sample, we predicted the

outcomes of each possible per of interventions (treatments), and than we averaged the results

for each intervention. Consequently, we obtained for each sample a predicted outcome for

each possible intervention and specifically for the intervention he or she actually received, and

we used these results for calculating the various metrics.

F Sensitivity analysis

In our experiments we evaluated three methods that involve prototyping or clustering: DPNN,

KMNN and LPAD. Before comparing the models’ performance, we first analyzed the effect of

Table 7. Sensitivity analysis- synthetic data. Performance by Number of Clusters.

DPNN kmean LPAD

AUC MRR RPL AUC MRR RPL AUC MRR RPL

2 0.73 0.42 0.1 0.71 0.44 0.09 0.74 0.44 0.08

3 0.74 0.44 0.1 0.71 0.44 0.11 0.74 0.44 0.08

4 0.74 0.44 0.1 0.76 0.44 0.08 0.74 0.44 0.09

5 0.75 0.45 0.09 0.74 0.44 0.09 0.73 0.44 0.09

6 0.75 0.45 0.09 0.76 0.42 0.08 0.74 0.44 0.09

7 0.73 0.44 0.1 0.77 0.44 0.09 0.74 0.44 0.09

8 0.77 0.43 0.08 0.77 0.41 0.08 0.74 0.44 0.1

9 0.75 0.44 0.09 0.76 0.46 0.08 0.73 0.43 0.1

https://doi.org/10.1371/journal.pone.0258400.t007

PLOS ONE Treatment selection using prototyping

PLOS ONE | https://doi.org/10.1371/journal.pone.0258400 November 12, 2021 22 / 26

https://github.com/Aifred-Health/DPNN_Experiment/tree/master/Experiment/Synthetic_Data_Experiment
https://github.com/Aifred-Health/DPNN_Experiment/tree/master/Experiment/Synthetic_Data_Experiment
https://github.com/Aifred-Health/DPNN_Experiment/tree/master/Experiment/Synthetic_Data_Experiment
https://doi.org/10.1371/journal.pone.0258400.t007
https://doi.org/10.1371/journal.pone.0258400


the number of prototypes (or clusters) on the performance of the models. All three methods

were executed with the number of prototypes ranging from 2 to 9. For each number of proto-

types, we ran the models 5 times and obtained the average value of all metrics. We found that,

in Experiment 2, for the RR metric in the MDD data, the model performed best with 6 proto-

types, for both the DPNN and KMNN models. The results for both experiments, are presented

in Tables 7 and 8.
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