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Background. Acute lung injury (ALI) is a fatal syndrome frequently induced by lipopolysaccharide (LPS) released from the
bacterial cell wall. LPS could also trigger autophagy of lung bronchial epithelial cell to relieve the inflammation, while the
overwhelming LPS would impair the balance of autophagy consequently inducing serious lung injury. Methods. We observed
the autophagy variation of 16HBE, human bronchial epithelial cell, under exposure to different concentrations of LPS through
western blot, immunofluorescence staining, and electron microscopy. Eight strands of 16HBE were divided into two groups
upon 1000 ng/ml LPS stimulation or not, which were sent to be sequenced at whole transcriptome. Subsequently, we analyzed
the sequencing data in functional enrichment, pathway analysis, and candidate gene selection and constructed a hsa-miR-663b-
related competing endogenous RNA (ceRNA) network. Results. We set a series of concentrations of LPS to stimulate 16HBE
and observed the variation of autophagy in related protein expression and autophagosome count. We found that the effective
concentration of LPS was 1000 ng/ml at 12 hours of exposure and sequenced the 1000 ng/ml LPS-stimulated 16HBE. As a
result, a total of 750 differentially expressed genes (DEGs), 449 differentially expressed lncRNAs (DElncRNAs), 76 differentially
expressed circRNAs (DEcircRNAs), and 127 differentially expressed miRNAs (DEmiRNAs) were identified. We constructed
the protein-protein interaction (PPI) network to visualize the interaction between DEGs and located 36 genes to comprehend
the core discrepancy between LPS-stimulated 16HBE and the negative control group. In combined analysis of differentially
expressed RNAs (DERNAs), we analyzed all the targeted relationships of ceRNA in DERNAs and figured hsa-miR-663b as a
central mediator in the ceRNA network to play when LPS induced the variation of autophagy in 16HBE. Conclusion. Our
research indicated that the hsa-miR-663b-related ceRNA network may contribute to the key regulatory mechanism in LPS-
induced changes of autophagy and ALI.

1. Introduction

ALI, an overwhelming inflammatory response within lung
and severely impaired function of gas change [1, 2], is a
common syndrome with high morbidity and mortality
which is induced by endotoxins, complement activation,

acid aspiration, and hyperoxia [3]. LPS released from the
bacterial cell wall is proved to be a vital incentive for ALI
development, which could activate various inflammatory
pathways [4–6] and result in imbalance of autophagy [7,
8]. Concerning to researches of lung diseases, LPS could
facilitate kinds of cells in lung and disease models of mouse
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to release proinflammatory factors and change in structures
of tissue [4, 6, 9–11].

Autophagy is an evolutionarily conserved catabolic pro-
cess for degrading intracellular component to maintain cel-
lular homeostasis and accommodate to environmental
irritation [12]. Within the impaired response caused by
LPS, autophagy plays a predominant role in regulatory
mechanism and reveals interaction with inflammation-
related signaling pathways. Zeng et al. constructed LPS-
induced mouse model of ALI and demonstrated that
4-phenyl butyric acid (4-PBA) could reduce the release of
the proinflammatory mediators by inhibiting nuclear factor
kappa-B (NF-κB) pathway and decrease autophagy flux in
ALI mouse via activation of AKT serine/threonine kinase
1 (AKT)/mammalian target of rapamycin (mTOR) signal-
ing pathway [8]. However, their further studies showed that
3-methyladenine (3-MA), a classic inhibitor of autophagy,
increased the endoplasmic reticulum (ER) stress and exac-
erbated cytotoxicity induced by LPS, which indicated
autophagy display a protective effect on the progression of
ALI. In mice and MH-S cells, Zhao et al. also demonstrated
there is severely impaired function of autophagy in LPS-
induced ALI model [13]. The levels of cytokines, including
interleukin- (IL-) 6, IL-1β, and tumor necrosis factor alpha
(TNF-α), are decreased by application of rapamycin, and
cell viability is improved with rescued function of autoph-
agy. Similarly, Zhang et al. investigated the regulatory
mechanism of autophagy in LPS-induced pulmonary dam-
age. They elaborated that, in the human pulmonary micro-
vascular endothelial cells (HPMVECs), LPS would lead to
higher permeability, lower vitality, and increased lactate
dehydrogenase (LDH) release rate, and these changes
would be aggravated when inhibiting autophagy. In animal
experiments, LPS caused severe pulmonary damage, includ-
ing hemorrhage, leukocyte infiltration and edema in lung
tissue, and high level of proinflammatory cytokines, which
was also aggravated by inhibition of autophagy [7]. To fur-
ther investigate the underlying regulatory mechanism
between autophagy and ALI, Nosaka et al. construct the
mice with myeloid-specific deletion of the autophagic pro-
tein ATG16L1 (Atg16l1fl/flLysMCre). They found that the
mice suffered hypoxemia and increased lung permeability
with significantly higher level of IL-1β, which indicated that
autophagy exerted a protective role in suppressing inflam-
masome activation and production of IL-1β [14]. Except
for the researches for discussing autophagy in ALI, autoph-
agy also exerts a crucial role for maintaining homeostasis in
other LPS-induced and inflammatory disease model. Kong
et al. revealed that LPS decreases the numbers of hepatic
autophagosome on the exposure of alcohol, and rapamycin
could reverse the ethyl alcohol (EtOH)-LPS-induced liver
injury via interaction of Toll-like receptor (TLR4)/lympho-
cyte antigen 96 (MD2) signaling complex [15]. LPS stimu-
lates Leydig cell in accumulation of oxidative stress and
causes turbulence of mitochondria, which is the important
influential factor involved in the steroidogenic impairment
of Leydig cells [16–18]. Li et al.’s research showed that
adrenomedullin (ADM) promotes autophagy of Leydig cells
to play a protective role of pyroptosis and cell biological

functions in response to the exposure of LPS [19]. They
compared the ADM with rapamycin and found the similar
effect on the phosphorylation of adenosine 5′-monopho-
sphate- (AMP-) activated protein kinase (AMPK)/mTOR
signaling pathway, and the combination of ADM and rap-
amycin exerts synergistic effect to lessen LPS-induced
injury of Leydig cells. The protective effects of autophagy
in inflammatory diseases are verified in various cell lines,
such as RAW264.7 macrophages [20, 21], BV2 microglial
cells [22], adipose-derived stem cells (ADSCs) [23], Caco-
2 and HT-29 colonic adenoma cells [24], hepatic stellate
cells [25], and microglia [26].

ceRNA can bridge the interplay with autophagy and
phenotypes of other diseases, especially in cancer and age-
related diseases [27, 28]. In common, ceRNA include partial
long noncoding RNAs (lncRNAs) and circular RNAs (cir-
cRNAs), which are noncoding RNAs (ncRNAs). Micro-
RNAs (miRNAs) are another kind of ncRNA and can
regulate different physiological and pathological processes
by targeting messenger RNA (mRNA). lncRNA and cir-
cRNA could competitively sponge with targeted miRNA to
exert function of ceRNA to release the targeted mRNA [29,
30]. ceRNA can participate in regulating initiation to matu-
ration progresses of autophagy, which modulate autophagy
phagophore initiation through upregulating expression of
mTOR, unc-51-like autophagy-activating kinase 1 (ULK1),
autophagy-related (ATG) 14L, and Beclin-1. ceRNA also
can upregulate ATG3, ATG4, ATG5, ATG7, and ATG12
to influence autophagy phagophore elongation [27]. In acute
promyelocytic leukemia (APL)-ascites mouse model and
APL cell lines, lncRNA HOTAIRM1 facilitates formation
of autophagosome to degrade oncoprotein PML nuclear
body scaffold (PML)-retinoic acid receptor alpha (RARA)
via targeting miR-20a [31]. In contrast, HOX transcript anti-
sense RNA (HOTAIR) could sponge miR-93 to upregulate
ATG12 expression in colorectal cancer cells, which is
reported to induce autophagy and decrease radiosensitivity
[32]. lncRNA PTENP1 can promote autophagy, as a sponge
of miR-17, miR-19b, and miR-20a, by targeting ULK1,
ATG7, p62, phosphatase and tensin homolog (PTEN), and
PH domain and leucine-rich repeat protein phosphatase 1
(PHLPP), which could promote progression of hepatocellu-
lar carcinoma [33, 34]. Concerning to age-related diseases
(ARDs), lncRNAs trigger cellular senescence and the
senescence-associated secretory phenotypes (SASPs) [28],
which are suggested as the two major contributors to inflam-
mation [35]. NIFK antisense RNA 1 (NIFK-AS1) and colon
cancer-associated transcript 1 (CCAT1) sponge miR-148a
and miR-146a, respectively, to suppress macrophage M2
polarization and malignant behaviors [36, 37]. lncRNA
myocardial infarction-associated transcript (MITA), growth
arrest-specific 5 (GAS5), HOTAIR, and urothelial cancer-
associated 1 (UCA1) can competitively bind miRNA to
promote macrophage M1 polarization, which induces upreg-
ulated level of ROS, proinflammatory cytokines, and matrix
metalloproteinase [38–41]. Among themutual transformation
of macrophages, M1 polarization is proinflammatory while
M2 polarization is anti-inflammatory [42]. As for the regula-
tory mechanism between autophagy and inflammation,

2 BioMed Research International



ceRNA also play a crucial role in targeting autophagy to
influence the progression of inflammation. In vascular endo-
thelial cells (VECs), Huang et al. found that TGFB2 overlap-
ping transcript 1 (TGFB2-OT1), a lncRNA derived from
TGFB2, can regulate autophagy [43]. They demonstrated that
LPS significantly upregulated the level of TGFB2-OT1 and
further use of mRNA chip assay revealed that miR3960,
miR4488, and miR4459 are targets of TGFB2-OT1. TGFB2-
OT1 sponged miR4488, miR4459, and miR3960 to regulate
N-acetyltransferase 8-like (NAT8L), La ribonucleoprotein 1,
translational regulator (LARP1), and ceramide synthase 1
(CERS1), which could affect mitochondrial functions by par-
ticipating in autophagy and induce production of IL-6, IL-8,
and IL-1β. Our aim is to investigate the regulatory mecha-
nism of ceRNA between autophagy and LPS-induced ALI
and find out the key mediators among the ceRNA network.

2. Material and Methods

2.1. Cell Culture, Antibodies, and Reagents. Immortalized
bronchial epithelial cell line 16HBE cells were obtained from
Procell Technology (Wuhan, China). They were cultured in
RPMI 1640 (Gibco) at 37°C with 5% CO2 and cocultured
with 10% foetal bovine serum (Biological Industries).
According to instruction, we dissolve the LPS powder into
different concentrations and stimulate 16HBE for 12 hours.

Antibodies used were rabbit anti-LC3B (Cell Signaling
Technology, 3868), rabbit anti-SQSTM1/p62 (Cell Signaling
Technology, 8025), and mouse anti-GAPDH (Beyotime,
AF5009). Lipopolysaccharide (Sigma-Aldrich, L4391), DAPI
(Solarbio, C0065), and RAPA (Sigma-Aldrich, 553210) were
used in this study.

2.2. Sample Collection and Preparation. RNA degradation
was operated on 1.5% agarose gels. RNA integrity was
assessed using the RNA Nano 6000 Assay Kit (Agilent Tech-
nologies, CA, USA). RNA concentration and purity were
measured using the NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE).

The rRNA removal used the Ribo-Zero rRNA Removal
Kit (Epicentre, Madison, WI, USA) with 1.5μg RNA per sam-
ple. Sequencing libraries were generated using NEBNextR

Ultra™ Directional RNA Library Prep Kit for IlluminaR

(NEB, USA) following the manufacturer’s recommendations.
Finally, PCR products were purified (AMPure XP system)
and library quality was assessed on the Agilent Bioanalyzer
2100 and qPCR.

RNA sample preparations consumed 2.5 ng RNA per
sample as input material. Sequencing libraries were gener-
ated using NEBNextR Ultra™ small RNA Sample Library
Prep Kit for IlluminaR (NEB, USA) following the manufac-
turer’s recommendations. PCR products were purified, and
library quality was assessed as mentioned above.

After cluster generation using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina), the library preparations were sequenced
on an Illumina platform and reads were generated.

2.3. Quantification of Gene Expression Levels and Significant
Differentially Expressed RNAs Screening. The levels of gene

expression were estimated by fragments per kilobase of tran-
script per million fragments mapped, i.e., FPKM. The for-
mula is shown as follows:

FPKM =
cDNA fragments

Mapped fragments millionsð Þ × Transcript length kbð Þ :

ð1Þ

Differential expression analysis was performed using the
DESeq R package. The resulting P values were adjusted
using the Benjamini and Hochberg approach for controlling
the false discovery rate. Genes with an adjusted P value <
0.01 and absolute value of log2 ðfold changeÞ > 1 found by
DESeq were assigned as differentially expressed. The DER-
NAs, including DElncRNAs, DEmiRNAs, DEcircRNAs,
and DEGs, were identified by the limma package in R which
was performed to identify. The ggplot2 R package was used
to generate volcano plot. LogFC > 0 indicated that genes
were downregulated; in contrast, genes were upregulated
with logFC < 0. The significant differentially expressed
RNAs were defined asP < 0:05and∣logFC∣ > 1:5.

2.4. The Functional Enrichment and Pathway Analysis. Gene
Ontology (GO) enrichment analysis of the DEGs was imple-
mented by the clusterProfiler R packages. Enrichment anal-
ysis uses hypergeometric testing to find GO entries that are
significantly enriched compared to the entire genome back-
ground. Gene set enrichment analysis (GSEA) can also be
analyzed by clusterProfiler.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
database resource for comprehending the advanced func-
tions and biosystem in molecular level, which could make
relevance between sequenced genomes and systemic func-
tions of cell, species, and ecosystem. We found the signifi-
cantly enriched KEGG pathway of DEGs via clusterProfiler
R packages compared to the entire genome background.

2.5. Candidate Gene Selection. We used Search Tool for the
Retrieval of Interacting Genes (STRING) (http://string-db
.org/) to figure out the interaction relationship for these
DEGs with confidence score > 0:4 [44]. Then, PPI network
of DEGs was visualized by Cytoscape [45]. According to
the default algorithm of the cytoHubba plugin, ranking
nodes indicated the importance of networks [46], which help
us locate hub genes. The Molecular Complex Detection
(MCODE) plugin was performed to select linked genes with
degree cutoff = 2 and k − core = 2.

2.6. Construction of a hsa-miR-663b-Related ceRNA Network
and the Combination Pathway Analysis of Host Gene. Our
research obtained the candidate ceRNA pairs via miRNA-
targeted relationship and satisfy the following conditions:
(a) the number of identical miRNAs between ceRNA pairs
should be greater than 5 and (b) P value < 0.01 and adjusted
FDR < 0:05. We found that hsa-miR-663b was the key regu-
lator between these selected ceRNA pairs, which was related
to many ceRNA pairs. The combination pathway analysis of
host gene used the classical algorithm PageRank in the ran-
dom walk model to obtain the score of all nodes in network.
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Ranging these scores and selecting the top 10 percent as
crucial nodes, these nodes were analyzed in pathway
enrichment and were mapped into the top 5 enriched
pathways. Then, we used igraph R package to visualize
these relationships.

2.7. Western Blot Analysis. 16HBE were lysed in RIPA buffer
(Beyotime, P0013), which were grown on 6-well culture
plates. Then, equal amounts of extracted proteins (10-
30μg) were separated in 10-15% SDS-PAGE and transferred
to the polyvinylidene difluoride membrane (Immobilon-P
Transfer Membranes, IPVH00010, 0.45μm) by electropho-
resis. The membranes were incubated with specific primary
antibody for 1 h at room temperature and afterwards were
incubated by anti-mouse IgG, HRP-linked secondary anti-
body (Cell Signaling Technology, 7076) or anti-rabbit IgG,
HRP-linked secondary antibody (Cell Signaling Technology,
7074). When finished the above footsteps, the membranes
were detected by chemiluminescence detection (Tannon
4800). The grayscale of the bands was quantified using Ima-
geJ (Version 1.58j8), and the data were normalized to the
GAPDH loading controls.

2.8. Electron Microscopy (EM). 16HBE were stimulated with
different concentrations of LPS for 12 h. After treatment,
16HBE were fixed with 2% glutaraldehyde/0.1M phosphate
buffer (pH 7.4) and in 1% osmium tetroxide/0.1M phos-
phate buffer (pH 7.4) and dehydrated with a graded series
of ethanol. Then, we embedded these fixed 16HBE into
epoxy resin. Ultrathin sections were stained with lead citrate
and uranyl acetate. The sections were observed with the
Hitachi H-7500 transmission electron microscope (Hitachi,
Tokyo, Japan). For quantitative evaluation of autophago-
somes in 16HBE, 16 image fields (8 of 1500x and 5000x,
respectively) were selected for each sample.

2.9. Immunofluorescence Staining. 16HBE cells grown on 36-
well culture slides were fixed with 4% paraformaldehyde for
15min and were permeated with 0.03% Triton X-100 (Solar-
bio, T8200) for 20min. 5% BSA (BioFroxx, 4240) was used
to block cells for 30min; then, the primary antibodies were
incubated for 12-18 hours and secondary antibodies were
incubated for 1 hour at room temperature. Fluorescence
microscopy (Olympus, IX81, Japan) analysis of LC3B and
DAPI staining were performed in 16HBE.

2.10. Statistical Analysis. Statistical analysis was performed
using GraphPad Prism 7.00 and R 4.0.5 software. Date are
shown as the average (±SEM) taken from at least 3 indepen-
dent experiments. Parametric data between 2 different
groups were compared by the Student t-test. The variance
for multiple comparisons was determined by one-way anal-
ysis. Significance was defined as P < 0:05. The statistical
methods of bioinformatics analysis were detailed as men-
tioned previously.

3. Results

3.1. LPS-Induced Autophagy in Lung Epithelial Cells. To
explore the alteration of autophagy when 16HBE suffered

from the stimulation of LPS, we set different concentrations
of LPS and observed the changes of autophagy via western
blotting, immunofluorescence staining, and electron micros-
copy (Figure 1). To preliminarily confirm the variation trend
of autophagy in LPS-induced 16HBE cell lines, we detected
the expression of microtubule-associated protein 1 light chain
3 beta (MAP1LC3B) and sequestosome 1 (SQSTM1/p62). The
expression of MAP1LC3B-I and SQSTM1/p62 appeared
similar trend which rose firstly along with the higher concen-
tration of LPS and reached climax in 1000ng/ml of LPS.
Nevertheless, the expression of them declined with unceas-
ingly increasing concentration of LPS. The expression of
MAP1LC3B-II was apparently upregulated compared to the
negative control group, whereas it showed no obvious dis-
crepancy between the LPS-induced groups (Figure 1(a)). In
immunofluorescence, we labeled autophagosomes and nuclei
with LC3-II punctate dots and DAPI which emitted red and
blue colors, respectively (Figure 1(b)). We set the NC group
and RAPA group as the negative and positive control
groups and found that there were more LC3B punctate dots
in the 1000 ng/ml LPS-stimulated group. Subsequently, we
verified the identical phenomenon through electron micros-
copy (EM) evaluation (Figure 1(c)). LPS significantly
increased the number of autophagic vacuoles, and the
change was mostly obvious in the 1000 ng/ml LPS-
stimulated group (Figure 1(d)). Under observations, most
vacuoles were late/degradative autophagic vacuoles/autoly-
sosomes (AVd or AVl) in our research which typically
had only one limiting membrane and contained electron-
dense cytoplasmic material.

3.2. Differentially Expressed Genes in LPS-Stimulated Lung
Epithelial Cells. We constructed 8 strains of 16HBE into
two groups as the negative control group and LPS-
stimulated group, and they all included 4 strains of the iso-
genous 16HBE. The stimulative concentration of LPS was
1000 ng/ml, and stimulative time was 12 hours. Then, we
made the whole transcriptome sequencing analysis in these
cells to figure out the alterations in 16HBE after LPS-
related stimulation. We obtained 750 DEGs and constructed
volcano plot to display the distribution of DEGs in the
dimensions of -log10 (P value) and log2 (FC). On the basis
of P < 0:05 and ∣FC ∣ >1:5, 312 genes were upregulated and
438 were downregulated as shown in Figure 2(a). To intui-
tively understand the overall distribution of expression levels
and fold changes, we also demonstrate the results in MA plot
(Figure 2(b)). We made hierarchical clustering analysis and
display it in heat map (Figure 2(c)).

3.3. Differentially Expressed Noncoding RNAs in LPS-
Stimulated Epithelial Cells. Except for sequencing in
mRNAs, we also sequenced noncoding RNAs (ncRNA)
including lncRNAs, circRNAs, and miRNAs. The volcano
plots and heat maps of differentially expressed noncoding
RNAs are shown in Figures 3(a)–3(f). Similarly, we set the
screen criteria as P < 0:05 and ∣FC ∣ >1:5. We found more
differentially expressed ones in lncRNAs, which contained
230 upregulated and 219 downregulated lncRNA. circRNAs
only revealed 76 differentially expressed ones in our study

4 BioMed Research International



0 600 800 1000

16 HBE

SQSTM1/p62

LPS (ng/ml)
(kDa)

62

14MAP1LC3B

GAPDH

1200 1600

37

N
C

60
0 

ng
/m

l

14
00

 n
g/

m
l

12
00

 n
g/

m
l

80
0 

ng
/m

l

10
00

 n
g/

m
l

0.0

0.5LC
3B

/G
A

PD
H

1.0

1.5

2.0

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎
⁎⁎⁎

N
C

60
0 

ng
/m

l

14
00

 n
g/

m
l

12
00

 n
g/

m
l

80
0 

ng
/m

l

10
00

 n
g/

m
l

0.0

1.0p6
2/

G
A

PD
H 2.0

3.0

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎

(a)

DAPI

NC

10 X

50 ng/ml LPS

200 ng/ml LPS

1000 ng/ml LPS

RAPA

LC3 Merge

(b)

100 ng/m LPS

1500 X 5000 X

200 ng/m LPS

1000 ng/m LPS

RAPA

NC

(c)

N
C

10
0 

ng
/m

l L
PS

RA
PA

20
0 

ng
/m

l L
PS

10
00

 n
g/

m
l L

PS

0

5

Au
to

ph
ag

ic
 v

ac
uo

le
s c

ou
nt

10

15

20

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

(d)

Figure 1: LPS induces autophagy in 16HBE. (a) WB using anti-MAP1LC3B, anti-SQSTM1/p62, and anti-GAPDH. 16HBE were treated
with different concentrations of LPS (0-1600 ng/ml) and RAPA (50 nM) for 12 h, and protein samples were collected. Shown is a
representative experiment of 2 showing similar results. The middle panel is the average (±SEM) of the relative increase in LC3B
normalized to GAPDH and the right panel is the average (±SEM) of the relative increase in SQSTM1/p62 normalized to GAPDH.
∗∗∗P < 0:001 and ∗∗∗∗P < 0:0001. (b) Fluorescence microscopy detection (10x) of DAPI (left panels) and LC3 (right panels). 16HBE
were treated with different concentrations of LPS (0-1600 ng/ml) for 12 h. (c) Electron microscopy detection of autophagosome in
16HBE with different concentrations of LPS (0-1600 ng/ml) and RAPA (50 nM). (d) Shown in this panel is average (±SEM) of
autophagosome counts taken from 6 image fields (1500x) for each sample. ∗∗∗P < 0:001 and ∗∗∗∗P < 0:0001.
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(Table 1). These heat maps demonstrated that there were
existing variations between the negative control groups and
LPS-stimulated groups which furtherly prompted underly-
ing ceRNA regulatory network in 16HBE when suffering
exposure of LPS (Figure 3).

3.4. Enrichment Analysis of Differentially Expressed Genes
and ncRNAs in LPS-Stimulated Epithelial Cells. To investi-
gate functions of the differentially expressed genes and
ncRNAs, we performed GO and KEGG using clusterProfiler
of R. Enriched terms with P < 0:05 were displayed (Figure 4
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Figure 2: Comprehensive analysis of differentially expressed genes. (a) The volcano plot of differentially expressed genes. (b) The MA plot
of differentially expressed genes. (c) The heat map of differentially expressed genes.
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Figure 3: Continued.
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and S1). The genes were mainly enriched in viral transcrip-
tion, nuclear-transcribed mRNA catabolic process, and
SRP-dependent cotranslational protein targeting to the
membrane in biological process; CD40 receptor complex
and cytoplasmic side of the plasma membrane in cellular
component; structural constituent of ribosome and
mitogen-activated protein kinase (MAPK) kinase kinase
binding in molecular function (Figures 4(a) and 4(b)); and
ribosome, Parkinson’s disease, and oxidative phosphoryla-
tion in KEGG (Figure 4(c)). The cis-targeted genes of
lncRNAs were enriched in blood coagulation and Fc-
epsilon receptor signaling pathway in biological process

(Figure S1A), the lysosomal membrane and endosome
membrane in cellular component (Figure S1B), identical
protein binding and histone deacetylase binding in
molecular function (Figure S1C), and HTLV-I infection
and Herpes simplex infection in KEGG (Figure S1D). The
trans-targeted genes of lncRNAs were enriched in nuclear-
transcribed mRNA catabolic process and translation
initiation in biological process (Figure S1E), CD40 receptor
complex in cellular component (Figure S1F), structural
constituent of ribosome and ubiquitin-conjugating enzyme
binding in molecular function (Figure S1G), and ribosome,
oxidative phosphorylation, and Parkinson’s disease in
KEGG (Figure S1H). The circRNAs were mainly enriched
in positive regulation of cell migration in biological process
(Figure S1I), while there was no predominant result in
KEGG under limitation of P < 0:05. The miRNA was
mainly enriched in dendrite and neuron projection in
cellular component (Figure S1J), protein kinase binding in
molecular function (Figure S1K), and pathway in cancer,
endocytosis, and the MAPK signaling pathway in KEGG
(Figure S1L).

3.5. Construction of the PPI Network and Screening of
Modules and Hub Genes. To furtherly figure out the signifi-
cant proteins and biological modules which played a vital
role in the LPS-induced ALI, we constructed PPI network
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Figure 3: Comprehensive analysis of differentially expressed RNAs. (a) The volcano plot of differentially expressed lncRNAs. (b) The heat
map of differentially expressed lncRNAs. (c) The volcano plot of differentially expressed circRNAs. (d) The heat map of differentially
expressed circRNAs. (e) The volcano plot of differentially expressed miRNAs. (f) The heat map of differentially expressed miRNAs.

Table 1: The differentially expressed RNAs in LPS-stimulated
16HBE.

DEG set
(L01_L02_L03_L04
vs. L05_L06_L07_L08)

All DEG Upregulated Downregulated

lncRNA 449 230 219

circRNA 76 21 55

miRNA 127 34 93

The L01 represents the first strain of 16HBE, and the rest can be known in
the same way.
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Figure 4: Continued.
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via utilizing STRING and visualized the differentially
expressed genes through Cytoscape software and cytoHubba
(Figure 5(a)). Then, we located top 12 hub genes (UPF2,
MYC, RPL34, RPL39, RPS3A, RPS23, RPS7, RPL7, RPL31,
RPS24, RPS27A, RPS10-NUDT3) by calculating maximal
clique centrality (MCC) which was the top 1 module and
revealed the most densely connected region (Figure 5(b)).
We selected 36 genes (IL6, RPS27A, MYC, ESR1, CCND1,
CDC42, COX7C, RPS3A, ITGAM, PSMA6, FBXW7,

DYNC1I2, TXN, MT-CYB, RPS23, MT-CO2, RAD51,
SOCS3, HINT1, RPS7, RPL34, RPS24, KCNQ1, TOP2A,
NDUFA5, MT-CO3, B2M, RAN, CKAP5, HIST1H2AD,
SMC3, BCL2L1, RAB11A, RPL31, CXCL1, CP) via degree
analysis (degree value ≥ 15) and made functional annotation
of these 36 genes by M-code which illustrated the vital func-
tions in 6 GO terms (P < 0:05). The results are showed in
Table 2 and contained RNA binding, nuclear-transcribed
mRNA catabolic process, nonsense-mediated decay, poly(A)
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Figure 4: Functional enrichment analysis of differentially expressed genes in LPS-stimulated 16HBE. (a) Gene Ontology terms of
differentially expressed genes in LPS-stimulated 16HBE. The right panel is the annotations of ID of GO terms. (b) The discrepancy of
GO terms between differentially expressed genes and whole genes. (c) The KEGG enrichment analysis of differentially expressed genes in
LPS-stimulated 16HBE via clusterProfiler R package. The horizontal ordinate is enrichment factor which shows the ratio of differentially
expressed genes enriched in the pathway to whole genes enriched in the pathway. The vertical ordinate is -log10 (Q-value).
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Figure 5: Screening the key genes and further GO analysis from PPI network. (a) The PPI network constructed via STRING. (b) Hub genes
selected using cytoHubba. (c) The outer circle represents the expression (logFC) of 36 differentially expressed genes in each enriched GO
(Gene Ontology) terms. The inner circle indicates the significance of GO terms (log10-adjusted P values). Red points indicate upregulated
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RNA binding, response to estradiol, SRP-dependent cotran-
slational protein targeting to the membrane, and negative
regulation of transcription from RNA polymerase II pro-
moter (Figures 5(c) and 5(d)).

3.6. Combined Analysis and Construction of hsa-miR-663b-
Related ceRNA Network. The differential analysis of whole
transcriptome showed differentially expressed mRNA,
miRNA, lncRNA, and circRNA of multiple groups, and the
overall variation significance were exhibited through Circos
(Figure 6(a)). The observation of variations of multiomics
data in whole transcriptome was attributed to discover the
differential regulatory mechanism. We used the classical
algorithm PageRank in the random walk model to obtain
the score of all nodes in network which represented the
importance in network. We made pathway enrichment anal-
ysis of the crucial RNAs in network and then selected the
first five pathways with most significant enrichment to illus-
trate the gene interactions of these pathways via igraph R
package (Figure 6(b)). To better predict the upstream regu-
latory mechanism in the progression of LPS-induced ALI,
we constructed a ceRNA network to elaborate the regulatory
relationships. According to the whole transcriptome
analysis, we took the DElncRNAs or DEcircRNAs as the
center and matched corresponding targeted relationships
with DEGs and DEmiRNAs to constitute DElncRNA-
DEmiRNA-DEG ceRNA pairs (Table 3) and there were no
DEcircRNA-DEmiRNA-DEG ceRNA pairs by screening. In
these differentially expressed RNA, hsa-miR-663b exerted a
central regulatory function (Figure 6(c)). Hence, we pre-
sented a hsa-miR-663b-related ceRNA network to explain
the regulatory mechanism in LPS-induced ALI, which was
conductive for us to furtherly explore the diagnosis and
intervention methods of ALI.

4. Discussion

ALI was a form of parenchymal lung disease which had var-
ious etiologies and usually leaded to fulminant respiratory
failure and death. It could develop to acute respiratory dis-
tress syndrome (ARDS) and had approximately 33% mortal-
ity rate leading to consumption of significant healthcare

resources globally [47]. In recent years, it had obtained
some achievements in a better comprehension of ALI
pathophysiology and proposed some novel measures to
pharmacotherapy such as corticosteroid, N-acetylcysteine,
statins, surfactants, and antibiotics. Nevertheless, these
therapies still had not obviously declined the mortality
and morbidity of ALI patient, especially the critical ones
[48]. The central feature of ALI was an excessive inflam-
matory response, but autophagy, as a process for maintain-
ing cellular homeostasis, exerted an ambiguous effect in
ALI [8, 49–51]. The activation of mTOR facilitated LPS-
induced ALI in mouse, and similarly, 3-MA increased the
cytotoxicity of A549 alveolar epithelial cells [8, 49]. The
above results proved that inhibition of autophagy gener-
ated harmful influence and demonstrated that autophagy
plays a protective role in pathogenesis of ALI. While some
researchers proposed the opposite view, they discovered
that the mechanical ventilation may activate nucleotide-
binding oligomerization domain-like receptor containing
pyrin domain 3 (NLRP3) inflammasome, which could be
suppressed by silencing ATG-5 [50]. Song et al. thought
that excessive activating autophagy of alveolar type II epi-
thelial (AT-II) cells is a major cause of ALI and found that
microRNA-34a could inhibit the excessive activation of
autophagy to relieve LPS-induced ALI via targeting
forkhead box O3 (FOXO3) [51]. To investigate the
autophagy-related regulatory mechanism in ALI, we con-
structed LPS-induced ALI model in 16HBE human bron-
chial epithelial cells.

To observe the alterations of autophagy in 16HBE under
LPS exposure, we utilized western blot, immunofluorescent
staining, and electron microscopy to evaluate changes of
autophagy-related protein expression levels and autophagic
vacuole amounts. The expressions of LC3B-I and p62 were
obviously upregulated under exposure of LPS and reached
the highest levels with the LPS concentration of 1000 ng/ml.
Although the expression of LC3B-II was likewise increased
compared to the negative control group, it did not appear
a significant difference (P value > 0.05) under the stimula-
tion of different concentrations of LPS. LC3 were primary
Atg8-family homolog examined in mammalian cells and
the classic autophagosome marker in autophagy-related

Table 2: The top 6 GO terms of 36 differentially expressed genes.

Category ID Term Genes Adj_Pval

BP GO:0006614
SRP-dependent cotranslational protein

targeting to membrane
RPS7, RPL31, RPL34, RPS3A, RPS27A, RPS24, RPS23 2:11E − 08

BP GO:0000184
Nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay

RPS7, RPL31, RPL34, RPS3A, RPS27A, RPS24, RPS23 8:70E − 08

MF GO:0044822 Poly(A) RNA binding
TOP2A, RPS7, RPL31, RPS3A, TXN, RPS27A,

RPS24, RAN, RPS23
9:68E − 04

BP GO:0032355 Response to estradiol CCND1, MYC, ESR1 0.012963812

MF GO:0003723 RNA binding PSMA6, RPS7, RPL31, RPL34, RPS3A 0.019110457

BP GO:0000122
Negative regulation of transcription
from RNA polymerase II promoter

CCND1, MYC, TXN, RPS27A, ESR1 0.046553861

BP: biological process; MF: molecular function.
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researches. LC3-I and LC3-II were the nonlipidated and lipi-
dated forms, respectively [52]. The accumulation of LC3-II is
often represented with interruption of the autophagosome-
lysosome fusion step [53]. SQSTM1/p62 protein was an
index of autophagic degradation, and the lower levels of

SQSTM1/p62 usually represented the activation of autoph-
agy [54]. The above results seemingly demonstrated that
autophagic flux of 16HBE was interrupted under stimulation
of 1000 ng/ml LPS. Under our observation, the amount of
autophagic vacuoles was indeed increased with LPS and

Gene
lnRNA
miRNA

MSTRG.148111.10

MSTRG.148111.15 FLJ16779-201

MSTRG.144243.12 AC103718.1-201 MSTRG.144146.2

AL731571.1-201MSTRG.13465.1AC055713.1-201 MSTRG.65795.2

DAG1

PIK3R2

EGLN3

ZDHHC18

PPFIA4

DMBT1

EPPK1CDK3

SPNS3

CHAC1

hsa-miR-663b

(c)

Figure 6: Combined analysis of whole transcriptome and construction of hsa-miR-663b-related ceRNA network. (a) The Circos plot of
differentially expressed RNAs. The outermost circle represents chromosome information, then followed by mRNA, lncRNA, circRNA,
and miRNA. Red bars indicate upregulated gene, and blue bars indicate downregulated gene. The height of bar represents significance.
(b) Pathway enrichment analysis of the crucial RNAs. Dot: gene; rectangle: pathway; red dot: crucial gene; line: interrelation of gene-gene
or gene-pathway. (c) Construction of hsa-miR-663b-related ceRNA network.

Table 3: The DElncRNA-DEmiRNA-DEG ceRNA pairs.

lncRNA miRNA Gene

MSTRG.148111.15 hsa-miR-663b DAG1

MSTRG.148111.10 hsa-miR-663b SPNS3

FLJ16779-201 hsa-miR-663b CHAC1

MSTRG.16479.1 hsa-miR-210-5p CHAC1

MSTRG.1512.7 novel_miR_1799 PIK3R2

MSTRG.144243.12 hsa-miR-663b PIK3R2

MSTRG.141087.2 novel_miR_1799; novel_miR_752 PIK3R2

AC103718.1-201 hsa-miR-663b ZDHHC18

MSTRG.144146.2 hsa-miR-663b ZDHHC18

AC103718.1-201 hsa-miR-663b DMBT1

MSTRG.144146.2 hsa-miR-663b DMBT1

MSTRG.13465.1 hsa-miR-663b EGLN3

MSTRG.148111.15 hsa-miR-663b EGLN3

DLEU1-212 novel_miR_1799 CASP14

AL731571.1-201 hsa-miR-663b CDK3

AC055713.1-201 hsa-miR-663b PPFIA4

MSTRG.65795.2 hsa-miR-663b EPPK1
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showed higher levels on the exposure of 1000 ng/ml LPS
through immunofluorescent staining and electron micros-
copy. Generally, the initial autophagic vacuoles, also called
autophagosomes, typically had a double membrane [55],
whereas there was typically only one limiting membrane in
the AVd, and it usually contained electron-dense cytoplasmic
and/or organelles at various stages of degradation [56, 57]. In
the late digestion process, there were only a few membrane
fragments and it was hard to distinguish amphisomes,
autolysosomes, and lysosomes [58]. However, the most
autophagic vacuoles were single-membrane and the typical
double-membrane vacuoles were not significant in our
research. These results may demonstrate that when exposed
to 1000 ng/ml LPS, the autophagic flux of 16HBE was inter-
rupted in late phage and the degradation of autophagosome
may be suppressed by stimulation of LPS.

A total of 750 significant DEGs were identified, which
mainly enriched in MAPK kinase kinase binding in molecu-
lar function and oxidative phosphorylation pathway. When
exposed to LPS, these DEGs may play a crucial regulatory
in LPS-induced ALI. Then, we constructed PPI network to
visualize the interaction relationship of DEGs and selected
36 core genes to reanalyze for functional enrichment. These
genes mainly enriched in 6 different GO terms. In addition,
we also analyzed the targeted genes of differentially
expressed lncRNA, circRNA, and miRNA for functional
enrichment. It was worth to be mentioned that the targeted
genes of miRNA mainly enriched in endocytosis and MAPK
signaling. Multiple researches had demonstrated that MAPK
signaling was one of the upstream regulatory mechanisms of
mitophagy. Mangiferin could suppress PTEN-induced
kinase 1 (PINK1)-parkin RBR E3 ubiquitin protein ligase
(PRKN) mitophagy via protein kinase A (PKA)-MAPK sig-
naling to promote a brown fat-like phenotype in murine
C3H10T1/2 mesenchymal stem cells [59]. The sonodynamic
therapy could trigger MAPK/p38-PINK1-PRKN-dependent
mitophagy, in which the antioxidant suppressed the
MAPK/p38 activation and sonotoxicity [60]. What is more,
Chen et al. had proved that p38 MAPK could directly phos-
phorylate PRKN at serine 131 to disturb the protective func-
tion of mitophagy [61]. However, if mitophagy is also
interrupted along with the suppression of autophagy in
LPS-stimulated 16HBE is worth to further exploration.

ceRNA was the research focus in recent years, which was
a new transcriptional regulatory mechanism. In combined
analysis of several kinds of differentially expressed RNA,
we selected the differentially expressed mRNA, lncRNA, cir-
cRNA, and miRNA for further analysis of ceRNA relation-
ship. Then, we found hsa-miR-663b as a core molecule in
the ceRNA network, which was the target of several regula-
tory ceRNA. In previous researches, hsa-miR-663b usually
was described as a tumor promoter in endometrial cancer,
osteosarcoma, bladder cancer, and colorectal cancer
[62–65]. However, in an analysis of whole-genome miRNA
expression in peripheral total blood samples of patients with
acute myocardial infarction (AMI), hsa-miR-663b also
showed high sensitivity and specificity for the discrepancy
from the control groups, which may reveal hsa-miR-663b
could be a significant biomarker for cardiovascular diseases

[66]. Interestingly, Ragusa et al. detected the miRNA tran-
scriptome in colorectal cancer with the treatment of MAP-
K/extracellular signal-regulated kinase (ERK) inhibitors
and found that hsa-miR-663b was upregulated in three cell
lines and induced downregulation of cyclin D2 (CCND2)
[67]. It may hint us that there were underlying regulatory
mechanisms between hsa-miR-663b and MAPK signaling.
In the next step, we were aiming to explore the expression
of hsa-miR-663b in ALI and other lung diseases and then
furtherly constructed and verified the hsa-miR-663b-related
ceRNA regulatory network.

5. Conclusion

Our research constructed a novel hsa-miR-663b-related
ceRNA regulatory network in LPS-induced ALI by a whole
transcriptome sequencing and comprehensive bioinformat-
ics analysis, which may contribute to the key regulatory
mechanism in LPS-induced changes of autophagy and ALI.
There may exist an underlying regulatory mechanism
between hsa-miR-663b, MAPK signaling, and autophagy/-
mitophagy. Nevertheless, the expression level of hsa-miR-
663b and specific regulatory mechanism of ceRNA in ALI
should be furtherly validated by molecular experiments.
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