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Abstract: Synchronization of the dynamic processes in structural networks connect the brain across
a wide range of temporal and spatial scales, creating a dynamic and complex functional network.
Microstate and omega complexity are two reference-free electroencephalography (EEG) measures
that can represent the temporal and spatial complexities of EEG data. Few studies have focused on
potential brain spatiotemporal dynamics in the early stages of depression to use as an early screening
feature for depression. Thus, this study aimed to explore large-scale brain network dynamics of
individuals both with and without subclinical depression, from the perspective of temporal and
spatial dimensions and to input them as features into a machine learning framework for the automatic
diagnosis of early-stage depression. To achieve this, spatio–temporal dynamics of rest-state EEG
signals in female college students (n = 40) with and without (n = 38) subclinical depression were
analyzed using EEG microstate and omega complexity analysis. Then, based on differential features
of EEGs between the two groups, a support vector machine was utilized to compare performances
of spatio–temporal features and single features in the classification of early depression. Microstate
results showed that the occurrence rate of microstate class B was significantly higher in the group
with subclinical depression when compared with the group without. Moreover, the duration and
contribution of microstate class C in the subclinical group were both significantly lower than in the
group without subclinical depression. Omega complexity results showed that the global omega
complexity of β-2 and γ band was significantly lower for the subclinical depression group compared
with the other group (p < 0.05). In addition, the anterior and posterior regional omega complexities
were lower for the subclinical depression group compared to the comparison group in α-1, β-2 and γ

bands. It was found that AUC of 81% for the differential indicators of EEG microstates and omega
complexity was deemed better than a single index for predicting subclinical depression. Thus, since
temporal and spatial complexity of EEG signals were manifestly altered in female college students
with subclinical depression, it is possible that this characteristic could be adopted as an early auxiliary
diagnostic indicator of depression.

Keywords: depression; microstate; omega complexity; resting-state EEG; visual processing

1. Introduction

Depression is a common disorder, with its main symptoms being depressed mood, lack
of interest in daily life, insomnia, and inability to enjoy life [1]. Numerous neuroimaging
studies have revealed that depression appears to be a psychiatric disorder caused by
abnormalities in brain function or structure [2–4]. It was found that synchronization of
dynamic processes in structural networks connect the brain in a wide range of temporal
and spatial scales, forming a dynamic and complex functional network [5]. A multiscale
(spatial and temporal) understanding of large-scale brain network dynamics facilitates the
elucidation of the underlying pathophysiology of depression.
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Large-scale networks are dynamically re-organized on subsecond time scales to func-
tion efficiently [6]. An electroencephalogram (EEG) is a non-invasive tool with a high
temporal resolution capable of detecting the spontaneous and rhythmic electrophysio-
logical activity of cortical neuron populations [7]. Microstate and complexity are two
reference-free EEG measurement methods. Microstate reflects the temporal dynamics of
the functional brain network, while omega complexity reflects the spatial dynamics of
the functional brain network [8]. EEG microstates are defined as transient (60–120 ms)
quasi-steady electric potential scalp topography that provide coordinated and synchronized
current activity of many simultaneously activated neurons [9]. The advantage of microstate
analysis is its ability to characterize the spatial organization and temporal dynamics of
large-scale cortical activity with high temporal resolution, taking into account the signals
recorded in various regions of the cerebral cortex [10]. Numerous experiments have shown
that the four resting-state microstates classes (Class A, B, C, and D) of the brain can be
systematically extracted by cluster analysis methods, which can map approximately 80% of
global variance [11].

Each microstate class represents a parallel information processing system in a dis-
tributed neural network. Microstate class A in the bilateral superior temporal gyrus and
middle temporal gyrus are associated with negative activation of BOLD, which play a vital
role in speech processing [12]. Microstate class B reflects visual resting-state networks and
involves representational thinking [13]. Microstate class C, relating to the default mode
network, is capable of integrating endoreceptive information with emotional salience to
form subjective representations [14]. Microstate class D is associated with activities of the
lateral dorsal and ventral regions of the frontal and parietal cortices, which are part of the
dorsal attentional network [15,16]. Characteristics of microstates can be described in terms
of duration, occurrence rate, contribution, and transition probabilities [17]. The duration
of a microstate is measured in the time difference between the start of the first microstate
class and the start of the next microstate class, reflecting the stability of underlying neural
components. The rate of occurrence of microstates indicates the number of occurrences of a
class of microstate per second, reflecting the tendency of the underlying neural generator
to be activated. Contribution is the average percentage of time each microstate covers,
calculated from its duration and occurrence. Transition probability between microstates is
the probability of transferring from one microstate to another and is usually interpreted
as the asymptotic behavior of transitions between microstates [18]. Previous studies have
found that the duration of microstate class C is shorter in patients with depression, while
the occurrence rate of microstate class B is higher [19,20]. A shorter duration of a microstate
indicates that information processing of some cognitive processes may be terminated in
advance. The higher the occurrence rate, the more frequently the basic steps of the cognitive
process must be repeated to complete certain mental processes [21].

There are a variety of EEG measurements based on chaos or nonlinear systems theory
that characterizes the physiological complexity of the human brain. These include approxi-
mate entropy, Taken’s estimator, Lyapunov exponent, and multiscale entropy [22,23]. It has
been shown that intrinsic complexity enables adaptation of biological systems, while loss of
complexity is strongly associated with cognitive impairment in patients with schizophrenia,
depression, and Alzheimer’s disease [24]. However, the above methods can only describe
the complexity of the neurophysiological time series of a single channel, but they cannot
evaluate spatial complexity within the whole or regional brain.

Wackermann et al. (1993) proposed using the omega complex by combining principal
component analysis and Shannon entropy calculations to quantify the global synchroniza-
tion of frequency bands between spatially distributed brain regions. The omega complexity
used in EEG signal analysis enables it to describe the spatial dynamics of the brain elec-
trical field in the macro state by finding the correlation between the multiple channels
and representing the final results as a single number. Omega complexity evaluates the
degree of synchronization between spatially distributed processes by defining the entropy
of λ-spectra of cross-spectral matrices of the EEG data for each frequency point via Fourier
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transform. In addition, omega complexity is calculated for the kinetic characteristics of
multichannel signals with two or more channels, which can be flexibly adapted to analyze
regional or overall changes, reflecting the signal’s spatial synchronization. Research has
shown that omega complexity was sensitive to cognitive processes in different types of
mental illness. For example, some studies found a significant increase in anterior omega
complexity in patients with schizophrenia, suggesting loosened cooperation or coordina-
tion of brain processes in the forebrain regions active in schizophrenia [25,26]. Another
study of male adolescents with mild spastic diplegia also found increased omega spa-
tial complexity of EEG signals [27]. Omega complexity was lower in a study of patients
with epilepsy [20,22]. Although altered spatial complexity has been found in neurological
disorders, it has not been studied in individuals with depression. Several studies have
suggested abnormalities in large-scale brain networks of patients with depression, includ-
ing inadequate connectivity in the frontoparietal network [4], reward circuits centered in
the ventral striatum [28], and reduced functional connectivity between the frontoparietal
and cingulo-opercular networks [29]. Complexity is a characteristic of a healthy biological
system, meaning that other psychopathologies are accompanied by lower complexity, and
functional connectivity is altered in depression. Accordingly, we hypothesize that brain
functional network complexity is reduced in college students with subclinical depression
(ScD). We also hypothesized that the altered spatio–temporal dynamics are related to the
degree of depression among female college students.

Although the combined use of EEG microstates and omega complexity to study
mental disorders has only been conducted in one study, to our knowledge [27], it has
proven valuable in investigating pathophysiology profiles associated with neurological or
psychiatric disorders. ScD, considered prodromal/premorbid to major depressive disorder
(MDD), is a description applied when an individual experiences depressive symptom that
are not severe or persistent enough to be diagnosed as MDD [30,31]. ScD has become
widespread among college students worldwide [32–34]. It was also found that individuals
with ScD had a five-fold increased risk of experiencing their first episode of MDD [35]. In
addition, females were more affected by stress and anxiety than males, often leading to
a higher prevalence of ScD [36,37]. In consequence, this study focuses on female college
students with ScD and intends to provide a basis for preventing the development of DMM.

Machine Learning (ML) is the core of artificial intelligence. The purpose of ML is
to enable computers to learn from existing data and information, obtaining potential
patterns in the data that could be applied to the analysis and prediction of unknown
data [38,39]. With powerful data processing and excavation capability, ML methods provide
advantages for predicting various diseases [40,41]. ML algorithms applied to depression
are random forests, K-nearest neighbour, Bayesian networks, and support vector machine
(SVM) classifiers [42,43]. SVM can find the best compromise between model complexity
and learning ability based on limited sample information, minimizing structural risks to
obtain the best learning generalization ability [44]. Moreover, SVM is better able to deal
with small-sample, nonlinear, and high-dimensional issues [40]. Since the sample size of
this study is relatively small, the SVM model was used for binary classification. According
to the class labels, the SVM model can classify the feature space based on a ‘hyperplane’
that distinguishes students with and without ScD.

To explore the dynamics of large-scale brain networks in ScD at multiple scales (spatial
and temporal), this study aimed to distinguish differences in features between individuals
with and without ScD using EEG microstates and omega complexity analysis. Based on
these different features, the secondary aim was to perform dichotomies by ML to verify
that classification performance was better for combining spatial and temporal information
than single-dimensional information.
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2. Methods
2.1. Participants

Study participants were first-year female students at Shaanxi Normal University. They
were assessed by two psychologists from the University Counseling Center using the Self-
Rating Depression Scale (SDS) [45] and the Beck Depression Scale-II (BDI-II) [46]. Chinese
BDI-II is a 21-item self-reporting inventory to assess depressive symptoms, having good re-
liability (α = 0.911) and validity in college students [47]. Inclusion criteria for the ScD group
were BDI-II scores between 14 and 27, and having sufficient visual and auditory levels to
complete the required experiments [48]. Inclusion criteria for the healthy controls group
(HCs) were BDI-II scores below 13 and SDS scores below 15. Exclusion criteria for both
groups included: (1) a history of traumatic brain injury or depression; (2) suicide attempt;
(3) taking psychiatric medications (including antidepressants, mood stabilizers, antipsy-
chotics, and benzodiazepines); (4) having physical comorbidities (e.g., cerebrovascular
disease and cancer), and (5) having mental comorbidities (e.g., schizophrenia, bipolar
disorder, and post-traumatic stress disorder). We performed a priori power analysis using
G*Power 3.1. The sample size of 36 for each group was sufficient. A priori power analysis
for mixed repeated measure ANOVA suggested obtaining a large effect with 0.90 power
(1 − β) and 0.05 Type I error rate, and the number of repetitions was 4. A total of 40 female
students with ScD (mean age = 18.72 years, SD = 0.36 years) and 38 healthy students of sim-
ilar age were recruited. According to the Edinburgh Handedness Inventory, all participants
were right-handed [49]. Demographic data of participants are shown in Table 1. There
were no statistical differences for age, BMI, and education level between the two groups.

Table 1. Demographic information of participants (Mean ± SD).

Variable HCs (n = 38) ScD (n = 40)

Age, years 18.72 ± 0.36 18.51 ± 0.42
Height, cm 162.71± 6.62 160.70 ± 6.73
Weight, kg 52.37 ± 4.72 50.00 ± 1.92

BMI, kg/m2 20.79 ± 2.73 19.43 ±1.61
SDS 10.57 ± 5.47 66.71 ± 5.38 ***

BDI-II 3.46 ± 0.73 24.86 ± 2.02 ***
Note: HCs, healthy controls; ScD, Subclinical depression; BMI, body mass index; SDS, Self-rating Depression
Scale; BDI-II, Beck Depression Inventory II; ***: p < 0.001.

The study was conducted in accordance with the Declaration of Helsinki principles
and all procedures were carried out with adequate understanding and written informed
participant consent. Research ethics approval was obtained from the Ethics Committee of
Shaanxi Normal University (202116010). All participants gave written informed consent
and received financial compensation for participating in the study.

2.2. EEG Acquisition and Preprocessing

Participants were seated in a comfortable experimental laboratory and exposed to
limited sound and appropriate lighting. During the experiment preparation phase, par-
ticipants were asked to remain relaxed and avoid strenuous movements of the head and
hands throughout the entire experiment. In total, 4 min of resting-state EEG data were
collected with eyes closed and eyes opened. EEG data were recorded with 32 electrodes
following the 10/10 international electrode placement system (Neuroscan Inc., Abbotsford,
VIC, Australia). The EEG acquisition system applied a 0.1–100 Hz bandpass filter to the
signal and digitized it with a sampling rate of 1024 Hz. Electrodes CPz and AFz were used
as reference and ground. Vertical electrooculogram (EOG) was recorded with electrodes
placed above and below the left eye, and the horizontal EOG was recorded with electrodes
placed lateral side of both eyes. All electrode impedances were maintained below 10 kΩ.

The study analyzed EEG data in the closed-eye state as there was excessive eye-
movement artifacts in the open-eye state. Raw EEG data was pre-processed using EEGLAB
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(Version R2013b, San Diego, CA, USA), an open-source toolbox running on MATLAB
environment (Version R201 3b, MathWorks, Natick, MA, USA). A 0.5–45 Hz bandpass filter,
as well as a 50 Hz notch filter, were applied to the EEG data using a finite impulse response
filter. Thereafter, the EEG waveforms were epoched into segments of 2-s duration and
remontaged to an average reference. An independent component analysis (ICA) procedure
was used to identify and extract artifact components, and remove the segment of the
sources containing eye blink artifacts, eye movement, and EMG artifacts (High-frequency
signals). EEG data processing and analysis process is shown in Figure 1.
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(B) microstates analysis; (C) omega complexity analysis; (D) subclinical depression prediction.

2.3. EEG Microstate Analysis

In microstate analysis, the multichannel EEG signal is considered a series of instanta-
neous topographies of electric potentials. The peak position of the global field power (GFP)
curve represents the moment of the strongest field intensity and the highest topographic
signal-to-noise ratio. The GFP is equivalent to the root mean squared of electrodes at that
time point:

GFT(t) =

√
∑n

i=1 (vi(t)− v(t))2

n
where vi(t) is the voltage at electrode i at time t, v(t) is the mean voltage across all electrodes
at time t, and n is the number of electrodes.
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To begin, the processed EEG data was digitally bandpass filtered at 2 to 20 Hz
(Figure 1) [17,50]. Then, the GFP of each participant across 30 electrodes was calculated, and the
multichannel EEG topography was obtained based on the GFP. Lastly, the EEG topography of
participants was submitted to the Topographic Atomize & Agglomerate Hierarchical Clus-
tering algorithm, which identified clusters with similar topology. The number of clusters
was predetermined to encompass four classes (A/B/C/D). Polarity of EEG topography
was ignored. Four parameters—duration, occurrence, contribution, and transition—were
calculated for each microstate. Global interpreted variance (GEV) index was used to judge
the fitting effect. GEV is calculated by calculating the similarity between EEG sample points
and their prototype microstates. A higher GEV value indicates a better fit.

2.4. Omega Complexity Analysis

The 30-channel EEG data from each subject were transformed to the frequency domain
using Fourier Transform. The omega complexity of the seven frequency bands was calcu-
lated as the average value within each frequency limit: delta (1–3.5 Hz); theta (4–7.5 Hz);
alpha-1 (8–10 Hz); alpha-2 (11–13 Hz); beta-1 (13–20 Hz); beta-2 (20–30 Hz); and gamma
(30–45 Hz). Studies have shown that the complexity of anterior and posterior regions have
different functional significance [25]. Thus, the global complexity and regional complexity
of each frequency band were calculated. Global complexity was obtained by calculating
the cross-spectral matrix of the 30 × 30 of all electrodes. Regional complexity was obtained
by calculating a 7 × 7 cross-spectral matrix using electrodes in the prefrontal (i.e., electrode
Fp1, Fp2, F7, F3, Fz, F4 and F8) and posterior (i.e., electrode T5, T6, P3, P4, Pz, O1, and
O2) regions. Principal component analysis of these cross-spectral matrices yielded a spectrum
of eigenvalues. These were normalized to assess the relative contribution of each principal
component to the total variance. The calculation process of omega was as follows. First, the
cross-spectral matrix C of global complexity and local complexity was calculated, respectively:

C =
1
N

N

∑
i=1

ui ∗ uT
i

where K is the number of electrodes, N is the EEG signal length.
Then the eigenvalue λ1, . . . , λk of the matrix C was calculated. Next, the normalized

feature λ′i was calculated.

λ′i =
λi

∑ λi

According to the definition of omega:

log(Ω) = −∑λ′i∗log
(
λ′i
)

Therefore, the omega spatial complexity can be calculated:

Omega = exp

−
K

∑
i=1

λ+
i log

(
λ′i
)

The omega complexity can be viewed as a measure of the spatial complexity of a given
set of EEGs, which ranges in value from 1 to K. A smaller omega value indicates that the
number of modes existing between the computed signals is small, with a single-mode,
and a high degree of synchronization; a larger omega value indicates that the number of
modes existing between the computed signals is large and the degree of synchronization
is poor. For example, if the value of omega tends to K, it is known from the knowledge
of information theory that the calculated signal has a uniform distribution of modes with
the highest number of modes, the highest complexity, and the worst synchronization; on
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the contrary, if the value of omega tends towards 1, it indicates that the distribution of
the signal has only one mode, and the highest synchronization is achieved. The omega
complexity values for each frequency point were averaged over the epochs (Gao et al., 2017;
Kondakor et al., 2005).

2.5. Support Vector Machine

All analyses were performed in R. Before using SVM classification, all features were
converted into sequences with mean 0 and 1 by the normalization method. In this study,
the linear kernel and the Gaussian radial basis kernel functions were selected as kernel
functions, and the hyperparameters were tuned by grid search. Nested cross-validation
was used to search for the super parameters by estimating the generalization error of the
underlying model to obtain the best model parameters. The classification performance
was evaluated based on nested cross-validation (remaining one cross-validation for the
outer layer, five-fold for the inner layer). The inner layer was five-fold cross-validation,
splitting the data into five parts: four for training and one for testing (80% for training and
20% for testing), leaving sufficient test samples to ensure that useful information about
accuracy could be provided. In addition, the receiver operating characteristic (ROC) curve
was performed for evaluating SVM models. The area under the curve (AUC) of the ROC
curve was 0.5 for random probability prediction and 1 for perfect prediction.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS (23.0; SPSS, Inc., Chicago, IL, United
States). The Wilcoxon test was used for non-normally distributed data. Two-way analyses
of mixed repeated-measures variance (ANOVA) with a between-subject factor for the
group (ScD and HCs) and a within-subject factor for microstate classes (A/B/C/D) were
performed for the microstate duration, occurrence, and contribution. Two-way analyses
of mixed repeated-measures ANOVA with between-subject factor for the group (ScD and
HCs) and within-subject factor for microstate transition probability 12 (A -> B, A -> C,
A -> D, B ->A, B-> C, B -> D, C ->A, C -> B, C->D, D ->A, D -> B, D -> C) were performed for
the microstate transition probability. Two-way ANOVA with between-subject factor for the
group and within-subject factor for scalp region (anterior, posterior) was also performed
for the omega complexities in each frequency band. A Greenhouse–Geisser correction of
the ANOVA assumption of sphericity was applied where appropriate. The Bonferroni-
correction method was used to correct multiple comparisons. In addition, an independent
sample t-test was performed for the global omega complexity. The level of significance was
set at p < 0.05. Effect size in all ANOVA analyses was reported by partial eta squared (η2),
where 0.05 represents a small effect, 0.10 represents a medium effect, and 0.20 represents a
large effect [51]. Cohen’s d was computed to estimate the effect size of post hoc tests.

3. Results
3.1. EEG Microstate

In this study, the four microstate classes accounted for a mean of 81.38% (SD = 3.58%)
of the data variance across the ScD group and 82.12% (SD = 4.02%) of the data variance
across the HCs group.

Microstate occurrence. The main effect of this microstate class was significant,
F (3, 183) = 4.40, p = 0.008, η2 = 0.067. Post hoc t-tests revealed a significantly higher
frequency of microstate class A than microstate class D. The main effect of the group was
not significant, F (1, 61) = 1.84, p = 0.184, η2 = 0.029. The interaction effect between group
and microstate class interaction was significant, F (3, 183) = 2.87, p = 0.038, η2 = 0.035.
Simple effects analysis found a significant difference between the two groups of students
in microstate class B, p < 0.05. Further post hoc analysis found that microstate class B had a
higher frequency for the ScD than the HCs group.

Microstate duration. The main effect of this microstate class was significant, F (3, 183) = 1.71,
p = 0.168, η2 = 0.027. The main effect of the group was not significant, F (1, 61) = 2.17,
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p = 0.146, η2 = 0.034. The interaction effect between group and microstate class was
significant, F (3, 183) = 1.56, p = 0.202, η2 = 0.025. Post hoc tests revealed that the durations
of microstate class C were significantly longer for the HCs group compared to the ScD
group (t = 2.891, df = 61, p = 0.005, Cohen’s d = 0.74).

Microstate contribution. The main effect of this microstate class was significant,
F (3, 183) = 3.16, p = 0.026, η2 = 0.049. The main effect of the group was not significant,
F (1, 61) = 1.85, p = 0.179, η2 = 0.029. The interaction effect between group and microstate
class was not significant, F (3, 183) = 2.11, p = 0.100, η2 = 0.033. Follow-up t tests indicated
significant differences in the contribution of microstate class C for the HCs group compared
to the ScD group (t = −2.76, df = 61, p = 0.008, Cohen’s d = 0.706). The results are shown in
Table 2.

Table 2. Microstate parameters of the ScD and HCs groups.

Class A Class B Class C Class D
Mean SD Mean SD Mean SD Mean SD

Duration (ms)
ScD group 71.50 12.13 64.53 8.99 62.91 12.52 67.77 34.68
HCs group 73.32 14.36 66.92 12.06 73.77 17.49 64.85 16.09
t (df = 61) −0.546 −0.899 −2.891 0.415

p 0.308 0.206 0.005 0.679
Cohen’s d 0.14 0.22 0.74 0.11

Occurrence/s
ScD group 4.06 0.80 3.81 0.93 3.62 1.02 3.34 1.26
HCs group 3.67 0.83 3.27 0.98 4.03 0.74 3.28 0.92
t (df = 61) 1.882 2.256 −1.784 0.221

p 0.065 0.028 0.078 0.826
Cohen’s d 0.52 0.56 0.46 0.05

Contribution (%)
ScD group 28.98 8.79 24.62 7.54 23.14 9.12 23.25 14.06
HCs group 26.90 9.17 21.96 8.97 29.26 8.34 21.88 9.75
t (df = 61) 0.917 1.283 −2.758 0.442

p 0.363 0.204 0.008 0.660
Cohen’s d 0.23 0.32 0.70 0.11

Bold values indicate statistical significance (p < 0.05).

Microstate transitions probability. The main effect of microstate transition pairs was
significant, F (11, 371) = 3.69, p = 0.026, η2 = 0.049. The main effect of the group was not
significant, F (1, 61) = 0.360, p = 0.55, η2 = 0.006. The interaction effect between group and
microstate transition probability was significant, F (11, 371) = 2.50, p = 0.004, η2 = 0.039. The
results of post hoc tests indicated the microstate transition pairs significantly increased from
microstate class A to microstate class B (t = 3.288, df = 61, p = 0.002, Cohen’s d = 0.827) and
from microstate class B to microstate class A (t = 2.879, df = 61, p = 0.005, Cohen’s d = 0.737)
for the ScD group than for the HCs group. The results also significantly increased from
microstate class C to microstate class D (t = −2.399, df = 61, p = 0.019, Cohen’s d = 0.642)
and class D to class C (t = −2.238, df = 61, p = 0.029, Cohen’s d = 0.573) for the HCs group
than for the ScD group. The other microstate transition probabilities were not significant
between the ScD and HCs (A→C: p = 0.20; A→D: p = 0.54; B→C: p = 0.44; B→D: p = 0.27;
C→A: p = 0.25; C→B: p = 0.50; D →A: p = 0.71; D→B: p = 0.22). Significant results for
microstate transition probability are shown in Figure 2.
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3.2. Omega Complexity

We first compared the global omega complexity of the two groups using an indepen-
dent samples t-test, which is shown in Table 3. The results revealed that global omega
complexity has a significant reduction in the beta-2 (t = −2.452, df = 61, p = 0.017\0.05,
Cohen’s d = 0.63) and gamma bands (t = −2.546, df = 61, p = 0.013\0.05, Cohen’s d = 0.65)
for the ScD group compared to the HCs group.

Table 3. Global omega complexity of the ScD and HCs groups.

ScD HCs t (df = 61) p Cohen’s d

Delta 4.75 ± 1.03 4.72 ± 1.02 0.118 0.906 0.03
Theta 4.27 ± 0.89 4.64 ± 0.97 −1.582 0.119 0.41

Alpha1 2.86 ± 0.67 2.95 ± 0.92 −0.464 0.644 0.12
Alpha2 2.72 ± 0.57 2.73 ± 0.63 −0.044 0.965 0.01
Beta1 3.92 ± 0.71 3.91 ± 0.70 0.069 0.945 0.02
Beta2 4.63 ± 0.92 5.21 ± 0.93 −2.452 0.017 0.63

Gamma 5.38 ± 1.34 6.21 ± 1.24 −2.546 0.013 0.65
Bold values indicate statistical significance (p < 0.05).

Then, a 2 (ScD vs. HCs) × 2 (scalp region: anterior and posterior) mixed ANOVA was
conducted for regional omega complexities at seven EEG frequency bands (i.e., delta, theta,
alpha-1, alpha-2, beta-1, beta-2, and gamma), which is shown in Figure 3.

There was no significant main effect and interaction effect in δ band.
θ band: results showed that the main effect of the group was significant,

F (1, 61) = 31.141, p < 0.000, η2 = 0.338; post hoc analysis revealed that the regional omega
complexities were significantly lower for the ScD group (M = 2.68, SE = 0.08) compared
to the HCs group (M = 3.00, SE = 0.08). The main effect of the scalp region was also
significant, F (1, 61) = 3.69, p = 0.026, η2 = 0.049. The posterior regional (M = 2.62, SE = 0.71)
omega complexities were significantly lower compared to the anterior regional (M = 3.06,
SE = 0.07). There was no significant interaction effect, F (1, 61) = 2.56, p = 0.115, η2 = 0.040.

α-1 band: results showed that the main effect of scalp region was significant,
F (1, 61) = 132.52, p < 0.000, η2 = 0.685; there was no significant main effect of group,
F (1, 61) = 0.832, p = 0.365, η2 = 0.013. There was a significant interaction effect between
group and scalp region F (1, 61) = 5.00, p = 0.029, η2 = 0.076; post hoc analysis revealed that
omega complexities were significantly lower in the posterior region (M = 1.71, SE = 0.54)
compared to the anterior region (M = 2.50, SE = 0.07).
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α-2 band: results showed that the main effect of scalp region was significant,
F (1, 61) = 201.16, p < 0.000, η2 = 0.767; post hoc analysis revealed that omega complexities
were significantly higher in the posterior region (M = 2.40, SE = 0.06) compared to the
anterior region (M = 1.57, SE = 0.04). There was also a significant interaction effect between
group and scalp region F (1, 61) = 7.87, p = 0.007, η2 = 0.114. Further comparative analysis
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found that omega complexities were significantly higher for the HCs group (M = 2.51,
SE = 0.45) compared to the ScD group (M = 2.29, SE = 0.45), p = 0.057.

β-1: results showed that the main effect of scalp region was significant,
F (1, 61) = 101.06, p < 0.000, η2 = 0.624; post hoc analysis revealed that omega complexities
were significantly higher in the posterior region (M = 2.88, SE = 0.05) compared to the
anterior region (M = 2.21, SE = 0.06), p < 0.000. There was no significant main effect of
group and interaction effect between group and scalp region.

β-2: results showed that the main effect of scalp region was significant,
F (1, 61) = 11.04, p = 0.002, η2 = 0.153; post hoc analysis revealed that omega complexities
were significantly higher for the posterior region (M = 3.14, SE = 0.06) compared to the
anterior region (M = 2.88, SE = 0.08). There was also a significant main effect of group,
F (1, 61) = 4.63, p = 0.035, η2 = 0.071. Further comparative analysis found that omega
complexities were significantly higher for the HCs group (M = 3.30, SE = 0.40) compared to
the ScD group (M = 2.98, SE = 0.52) in the posterior region, p = 0.01.

γ band: results showed that the main effect of scalp region was significant,
F (1, 61) = 5.55, p = 0.022, η2 = 0.083; post hoc analysis revealed that omega complexi-
ties were significantly higher in the anterior region (M = 3.38, SE = 0.09) compared to the
posterior region (M = 3.19, SE = 0.07), p = 0.022. There was also a significant main effect of
group, F (1, 61) = 5.93, p = 0.018, η2 = 0.089. Further analysis found that omega complexities
were significantly higher in the HCs group (M = 3.46, SE = 0.10) compared to the ScD group
(M = 3.11, SE = 0.10) in the anterior region, p = 0.018. There was no significant interaction
effect between group and scalp region F (1, 61) = 1.150, p = 0.288, η2 = 0.019.

3.3. Correlations Results

Results of Spearman’s rank correlation revealed a significant negative correlation
between the duration (r = −0.45; p = 0.007) and contribution (r = −0.39; p = 0.024) of
the microstate class A and the BDI-II score (r = −0.45; p = 0.007). A significant positive
association between the microstate transition (B→D) and the BDI-II score (r = 0.38; p = 0.026)
scores was also revealed. Furthermore, a significant positive association between global
omega complexity in θ (r = 0.36; p = 0.034) and γ (r = 0.39; p = 0.023) bands and the BDI-II
score scores was found. Finally, the results of Spearman’s rank correlation revealed a
significant positive association between anterior regional omega complexity in θ (r = 0.35;
p = 0.045), β-1 (r = 0.40; p = 0.02) and γ (r = 0.35; p = 0.044) bands and the BDI-II score scores.

3.4. SVM Results

Microstate indicators (the occurrence of microstate class B and the duration and
contribution of microstate class C) and spatial complexity (the regional complexity of θ, β2
and γ bands and the global complexity of β2 and γ) were taken for ML analysis. Using
the microstate parameter, the accuracy of different kernel functions in the SVM model
were found to be 62% (gaussian) and 63% (linear), respectively. The classification accuracy
of the SVM for omega parameters was 60%. The accuracy of the combination of the two
indices were 75% and 76%, respectively, significantly higher than the accuracy rate of the
single index, increasing by about 15%. The training set corresponding to the test set of the
SVM was used to plot the ROC curve (Figure 4). Similarly, single indicator features were
found to be less effective in prediction models of the ScD group; however, two indicators
(AUC = 0.81 and 0.80) were more effective in prediction models of female college students
with ScD. The classification performance of the SVM classifier based on the two kernel
functions for each EEG indicator and the combination of the indicators are presented in
Table 4.
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Table 4. SVM classification while discriminating ScD and HCs groups.

EEG Features
Linear Kernel Function Gaussian Kernel Function

Accuracy AUC Accuracy AUC

Microstate 62% 67% 63% 69%
Omega complexity 60% 62% 60% 64%

Combine 75% 80% 76% 81%
AUC: area under curve.

4. Discussion

In this study, we investigated the spatio–temporal complexity of brain networks
in female college students with and without ScD using EEG microstate indicators and
omega complexity. We found a significant decrease in the occurrences of microstate B
and a significant increase in the duration and contribution of microstate class C among
students with ScD compared to those without. The change of spatial complexity was
mainly manifested by a significant decrease in global omega complexity in the beta-2 and
gamma bands, a significantly reduced prefrontal region in alpha-2 and gamma bands,
and the posterior region of the beta-2 band among students with ScD, compared to those
without. The SVM results showed that the differential index of the two analysis methods
could distinguish female students with ScD from those without, with an AUC of 0.81
for the test sets. These results may contribute to the development of future auxiliary
diagnostic methods.

4.1. EEG Microstates

Four microstates were separated from the two groups of EEG microstate sequences.
The topological modes of the four microstates were generally consistent with previous
studies [20,52]. The duration, rate of occurrence, and contribution of the four EEG-based
microstates were calculated to assess the differences between groups. These properties
of microstates have been frequently used in previous studies [53–56]. Microstates may
correspond to specific categories of mental states, and these ongoing mental processes are
known to affect the processing and response mode of incoming information [57].

We found that the occurrence rate of microstate class B was more frequent in the
ScD than in the HCs groups, with no significant differences in duration or contribution.
The source of microstate class B is located mainly in the occipital cortex and is associated
with negative BOLD activation in the bilateral striate visual cortex, which is significant for
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visual processing [58]. Dedovic et al. (2005) explored the effects of psychological stress
on individuals’ physiological and brain activation levels and found that the motor and
visual cortices are activated when individuals are stressed Dedovic, et al. [59]. This may be
indicative of the increased occurrence rate of microstate class B due to increased activation
of bilateral striatal visual areas as a result of psychological stress.

We also demonstrated shorter durations and contribution of self-representation re-
lated microstate class C in the ScD group compared to the HCs group. Earlier studies
have shown that the shortening of the duration of microstate class C is indicative of the
cognitive decline in patients with MDD and has also been associated with neuropsychiatric
symptoms [60,61]. Furthermore, microstate class C was reduced when new perceptions
were constructed Müller, et al. [62]. Thus, a decrease in microstate class C was associated
with difficulties in reconsidering previous cognitive-emotional assessments in response to
certain environmental stimuli in female college students with depression.

We found a negative correlation between depressive symptom scores and the duration
and contribution of microstate class A. However, the findings of Damborská et al. (2019)
showed that the severity of depressive symptoms was positively correlated with the
occurrence rate of microstate class A [19]. Murphy et al. (2020) also found that the
occurrence rate of microstate class A increased for patients with MDD [20]. They also
noted that the duration and contribution of microstate class D were negatively correlated
with the severity of symptoms. No difference in microstate D was found between the
two groups in this study. One study reported significantly lower duration, coverage, and
contribution of microstate class D in participants with depression compared to healthy
controls [20]. Consistent with previous findings, microstates classes A and B preferentially
transfer between each other [63]. Microstates A and B are associated with lower-order
sensory networks, whereas microstates C and D are associated with higher-order cognitive
networks. One possible reason for this discrepancy is that our participants only had
subclinical depression.

4.2. Omega Complexity

The human brain is complex, with multiple levels of temporal and spatial scales and
consisting of interconnected feedback loops. Thus, studying individual brain signaling
complexity may provide insight into understanding physiological complexity. Compared to
traditional EEG analysis methods (e.g., spectral power, coherence, and nonlinear analysis),
this study quantifies spatial complexity of EEG data by omega complexity, which assesses
the number of independent electrophysiological sources and the overall degree of synchro-
nization between spatially distributed brain regions. It also reveals a significant difference
in EEG spatial complexity between ScD and HCs groups since the omega complexity in
the ScD group differs globally and regionally from that of the HCs group. The anterior
frontal region of theta band, the global and the posterior region of beta-2 band, and the
global and anterior region of gamma band were significantly lower in the ScD group, as
shown in Table 2.

Theta rhythms in the central frontal area are correlated with thought activity and
concentration levels [64]. The beta rhythms are mostly found in the frontal lobe and are
associated with cortical excitability, reflecting emotional and cognitive processes. One
study found increased theta and beta rhythms synchrony in visual cognition in patients
with depression and hypothesized that this was related to their attentional deficits [65]. In
this study, we found that the theta band omega complexity of the anterior region and the
global and posterior frontal omega complexity of the beta-2 bands in the ScD group was
significantly lower than that of the HCs group, indicating a decrease in spatial complexity
and an increase in synchronization. The present study further demonstrates that the
attention deficit may be related to reduced spatial complexity. In addition, it has been
shown that theta asymmetry in frontal–central brain regions in depressed patients may be
related to their depressive and anxiety symptoms. In the present study, the complexity of
global and anterior regions was positively correlated with depressive symptoms. The beta-1
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band of the prefrontal region omega was positively correlated with the omega complexity
depressive mood scale.

Gamma rhythms mainly appeared in the frontal and anterior central regions related
to attention, excitement, perceptual processing, and condition perception. Li et al. (2015)
found that during emotional processing, the brain network parameters of patients with
depression showed a tendency to randomize [66]. The global complexity of the gamma
band was significantly lower in this study, further demonstrating that the gamma network
randomization trend of the group with depression has low spatial complexity. Gamma
band global and anterior complexity is positively correlated with BDI scores, suggesting
prefrontal complexity is associated with depressive mood regulation.

Previous studies have shown that higher spatial complexity is associated with higher
information processing speed [67]. Low spatial complexity indicates that some of these
functional brain regions are not activated, likely hindering information processing in the
task. Furthermore, because the human nervous system works economically and efficiently,
trials with higher spatial complexity may have relatively low levels of neural activation.
Reduced global omega complexity demonstrates that the brains of female college students
with subclinical depression are less coordinated during information transmission.

4.3. The Classification Results

Results of SVN based on different kernel functions were basically the same, but
Gaussian functions improved efficiency by 1% over the results of linear kernel functions.
The ML results showed that the predictive classification accuracy of female college students
with subclinical depression was 81%. Mumtaz et al. (2018) used the decision tree method
to classify the EEG frequency band power, and the accuracy reached 80% [68]. Earlier,
Mumtaz et al. (2017) collected the EEG data of MDD in the resting state, showing that the
classification accuracy of features extracted by wavelet transform was the highest, reaching
87.5% [69]. These studies have mainly focused on the diagnosis of MDD, whereas early
recognition of subclinical depression may be particularly vital in preventing MDD.

4.4. Limitations

Although we found that the combination of microstates and omega was more accurate
than a single indicator, a higher classification effect was not achieved due to the small
sample. Moreover, the study did not adequately consider and control for confounding
variables. Depression is a complex disorder with a complex etiology influenced by bio-
logical and social factors. In future studies, covariates such as parental education level
and educational level correlated with subclinical depression, amongst others, should be
included with strictly matched experimental and control groups.

5. Conclusions

Depression rates are increasing worldwide. Without early screening methods for
depression, patients are only diagnosed when they develop MDD. In this study, EEG
microstates and omega complexity analysis were used to obtain spatio–temporal dynamics
of large-scale brain functional networks as features in female college students with and
without ScD. The features of two groups with significant differences were then input
into the SVM model for binary classification. The microstate results suggest that female
college students with ScD may be due to psychological stress leading to an increased
activation time of microstate class B-related visual cortex, while difficulties in the cognitive–
emotional assessment are associated with less duration and contribution of microstate class
C. Decreased Omega complexity in the theta, beta-2, and gamma bands indicate reduced
functional connectivity within brain regions and may be associated with attention deficits.
SVM results showed that the classification performance of spatio–temporal information
features of EEG signals outperformed single-dimensional information features. The spatio–
temporal complexity of the EEG signal is altered in the early stages of depression, which
may provide a reference for future early ancillary diagnosis of depression.
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