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Circulating tumor cells (CTCs) are defined as those cells that detach from a cancerous 
lesion and enter the bloodstream. While generally most CTCs are subjected to high 
shear stress, anoikis signals, and immune attack in the circulatory system, few are able 
to survive and reach a distant organ in a viable state, possibly leading to metastasis for-
mation. A large number of studies, both prospective and retrospective, have highlighted 
the association between CTC abundance and bad prognosis in patients with various 
cancer types. Yet, beyond CTC enumeration, much less is known about the distinction 
between metastatic and nonmetastatic CTCs, namely those features that enable only 
some CTCs to survive and seed a cancerous lesion at a distant site. In addition, critical 
aspects such as CTC heterogeneity, mechanisms that trigger CTC intravasation and 
extravasation, as well as vulnerabilities of metastatic CTCs subpopulations are poorly 
understood. In this short review, we highlight recent studies that successfully adopted 
functional and computational analysis to gain insights into CTC biology. We also discuss 
approaches to overcome challenges that are associated with CTC isolation, molecular 
and computational analysis, and speculate regarding few open questions that currently 
frame the CTC research field.
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inTRODUCTiOn

More than 90% of cancer-related deaths are due to metastasis development (1). However, historically, 
the majority of cancer research has been conducted with a focus on the primary tumor, mostly because 
of the higher availability of primary tumor specimens compared to biopsies of metastatic lesions, 
and difficulties to investigate spontaneous metastatic dissemination in vivo (2). As a consequence, 
our understanding of the vulnerabilities of metastatic cells remains limited, thus hampering the 
development of effective metastasis-suppressing agents. The metastatic process is commonly thought 
to be a relatively inefficient, multistep phenomenon that involves the intravasation of cancer cells into 
the blood circulatory system, their survival in the blood as circulating tumor cells (CTCs), followed 
by extravasation and seeding of metastatic CTCs into distant sites (3). While it is generally accepted 
that tumors are able to shed a relatively high number of cancer cells in circulation, it also appears 
that most CTCs are poised to die in the bloodstream or upon arrival to a distant site, mostly due to 
high shear forces and anoikis signals in circulation, immune attack or limited capability to adapt to 
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a foreign microenvironment (4). It is therefore critical to dissect 
features that distinguish those CTCs that are able to survive and 
initiate metastasis. To this end, liquid biopsy (e.g., blood sam-
pling) represents a minimally invasive yet extraordinary valuable 
source of CTCs (as well as other tumor-derived material such as 
circulating tumor DNA, proteins, and exosomes) from virtually 
all cancer types (5).

CTC isolation from Blood Samples
In recent years, we have witnessed remarkable improvements in 
the ability to efficiently isolate CTCs from blood samples. Several 
CTC isolation technologies are now available and designed to 
overcome constrains such as CTCs dilution in blood samples 
and variations in expression levels of cell surface markers that 
distinguish CTCs from blood cells. While these technologies 
have been extensively discussed elsewhere (6–10), on the other 
hand, it is becoming increasingly clear that a consensus is not yet 
reached within the CTC community regarding which technology 
should be used as a reference for CTC-related studies. While the 
CellSearch system has been FDA-cleared for CTC enumeration, 
a gold-standard technology for live CTC isolation and molecular 
analysis is not yet defined. Presently, it is often the case that CTC 
isolation for molecular catheterization is conducted in different 
laboratories with different technologies, and this may result 
in biases such as the preferential entrapment of specific CTC 
subpopulations depending on the technology of choice. Future 
studies involving large sample numbers will be needed to address 
specific biases of current individual technologies and indicate 
a reference tool for CTC isolation to standardize CTC-related 
studies.

While challenging and still subjected to technology-driven 
biases, CTC isolation and molecular characterization offers an 
extraordinary opportunity to investigate the metastatic process 
in real time and with minimally invasive procedures (i.e., blood 
sampling). Molecular analysis of CTCs often implies dealing with 
very limited cell numbers (10) and adapting molecular assays and 
computational analysis tools toward single-cell resolution (11). 
In the next paragraphs, we discuss recent studies that adopted 
molecular and computational analysis of CTCs to dissect features 
of metastatic cells. We also discuss single-cell analysis-related 
challenges that are typically encountered in CTC studies.

MOLeCULAR AnALYSiS OF CTCs

Molecular interrogation of CTCs has been made possible not only 
by the development of specialized CTC isolation technologies but 
also with the achievement of single-cell-resolution-sequencing 
protocols (12) and single-cell-based assays (13, 14). The applica-
tion of these approaches to CTCs has already generated a number 
of exciting observations, many of which provide insightful 
information in regard to features of metastatic precursors, CTC 
heterogeneity, and patient stratification.

Metastatic Precursors among CTCs
Circulating tumor cells are found in the blood of patients as single 
cells and as clusters of cells, with the latter being associated to a 
higher metastatic potential (15–19). Using mouse models with 

multicolor primary tumors, CTC clusters have been shown to 
break off from tumors already as clusters and to be composed 
by an oligoclonal group of cells (18). The oligoclonality of CTC 
clusters might have relevant implications regarding the fitness, 
seeding capability, and potential to resist to therapy of cluster-
derived metastatic foci; yet, this has to be further investigated. 
RNA sequencing of CTC clusters from breast cancer patients 
showed that cells within clusters rely upon the expression of 
cell–cell junction components such as plakoglobin, and that 
targeting plakoglobin reduces CTC clustering and metastasis in 
mouse models (18). Beyond plakoglobin—which is a challenging 
pharmacological target—it is currently unclear how to prevent or 
suppress the formation of CTC clusters in vivo, and further studies 
will be needed to identify cluster-specific vulnerabilities, as well 
as—more broadly—the vulnerabilities of metastatic precursors.

CTC Heterogeneity
Various studies have tackled the issue of CTC heterogeneity. For 
example, the phenotypic analysis of CTCs from patients initially 
diagnosed with ER-positive/HER2-negative breast cancer showed  
that CTCs are able to acquire HER2 expression in the metastatic 
setting (20). Using a combination of CTC culturing, single-cell 
RNA sequencing (scRNA-seq), and a small-scale drug screen 
combined with mass spectrometry analysis, it was shown that 
HER2-positive CTCs are more proliferative but not addicted 
to HER2, while HER2-negative CTCs display the activation 
of Notch and DNA damage pathways, as well as resistance to 
cytotoxic therapy (20). Combination treatment with paclitaxel 
and Notch inhibitors enables the suppression of the tumorigenic 
potential of both HER2-negative and HER2-positive phenotypes 
(20). In a separate study, the phenotypic analysis of human breast 
CTCs using quantitative RNA in situ hybridization (RNA-ISH) 
revealed a dynamic expression of epithelial versus mesenchymal 
markers, mostly as a consequence to treatment (21), suggesting 
that treatment itself may strongly impact the phenotypic hetero-
geneity of CTCs. In prostate cancer, the RNA expression profile 
of CTCs revealed a high degree of intra-patient heterogeneity, 
but even higher diversity across CTCs from different patients 
(22). For instance, prostate CTCs were shown to contain diverse 
AR gene mutations and splicing variants, with the activation of 
Wnt-signaling pathway featuring a subgroup of CTCs belonging 
to patients who were resistant to anti-androgen therapy (22). 
Among others, examples of CTC heterogeneity include studies 
showing Wnt2 expression mediating metastasis-associated sur-
vival signals through the TGF-b-activated kinase 1 in a subset of 
pancreatic CTCs (23), as well as evidence that the expression of 
specific gene combinations—such as HER2/EGFR/HPSE/Notch1 
and EpCAM/CD44/CD47/MET—may confer high metastatic 
potential to breast CTCs (24, 25).

Patient Stratification through the Analysis 
of CTCs
Molecular analysis of CTCs has also recently provided very 
exciting observations regarding patient stratification and the use 
of CTCs as a surrogate tool to investigate tumor genotypes and 
response to therapy. In multiple myeloma, when analyzing the 
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TABLe 1 | Examples of adopted methods to enable a molecular analysis of 
circulating tumor cells (CTCs).

Molecular assay Target Reference

Tracing 
fluorescently 
labeled cancer cells 
in circulation

Quantification of the metastatic potential of 
single CTCs and CTC clusters

(18, 19)

Quantitative mass 
spectrometry of 
cultured CTCs

Detection of protein expression levels to 
identify differentially regulated proteins upon 
drug treatment

(20)

Quantitative RNA 
in situ hybridization

Assessment of dynamically expressed 
transcripts upon drug treatment and 
identification of CTC subpopulations

(21, 25)

Direct xenograft 
transplantation of 
patient-derived 
CTCs

Phenotypic analysis of metastasis-initiating 
CTCs

(24)

Single-cell RNA 
sequencing

Detection of gene expression changes to 
identify differentially regulated genes and 
pathways in individual CTCs

(18, 20, 22)

Single-cell DNA 
sequencing

Identification of single nucleotide variants 
(SNPs), insertions, deletions, amplifications, 
and translocations to determine the genomic 
landscape of individual CTCs

(26–28)

The molecular assay types, their main objective (target), and the corresponding 
references are summarized.

TABLe 2 | Computational methods for circulating tumor cell (CTC) analysis 
based on single-cell-sequencing approaches.

Computational 
method

Technical challenges Target Reference

Single-cell DNA 
sequencing

 – Low coverage
 – Nonuniform coverage
 – PCR errors
 – Allele dropout
 – Allelic imbalance

SNV (39)

CNV (42–46)

Phylogeny (51, 52, 
54–56)

Single-cell RNA 
sequencing

 – Amplification bias
 – Dropout of low 

abundant transcripts

Gene expression 
profiling

(60–62, 67, 
69)

Differential 
expression

(63, 64, 68)

Coexpression 
network

(76)

Phylogeny (47, 48, 
69–75)

SNV (49)

CNV (47, 48)

Computational methods for CTC analysis, related technical challenges and applications 
(target), as well as references are shown.
SNV, single nucleotide variant; CNV, copy number variant.
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mutational landscape of CTCs and matched bone marrow tumor 
cells, it was found that alterations in oncogenes like KRAS, NRAS, 
or BRAF were detectable in both specimens, suggesting blood 
sampling as a reliable and less invasive method for mutational 
screening of such patients (26). In a similar fashion, comparing 
whole-exome sequencing data with primary tumor, matched 
lymph node metastasis and CTCs from a prostate cancer patient 
revealed that the majority of CTC mutations were present in 
matched tumor tissue, thus providing a proof-of-concept for the 
effectiveness of CTC genomics in the clinical setting (27). With 
regard to patient stratification, CTCs have also proven useful to 
stratify chemosensitive versus chemorefractory small-cell lung 
cancer patients (28). Particularly, it was shown how DNA copy 
number variations (CNVs) can be assessed in small-cell lung 
CTCs and help predict responsiveness to chemotherapeutic 
agents, arguing that CTC analysis may be used as a tool to guide 
treatment decisions in the clinical setting (28). In addition to 
the analysis of CTCs, interrogation of other blood components 
including circulating tumor DNA (currently more advanced on 
the clinical side) allows to detect cancer-associated variants in the 
blood of patients with good sensitivity and specificity; yet, it may 
require a more targeted approach (i.e., assessing specific hotspots 
that are known or expected to carry a mutation) compared to 
CTC analysis.

Taken together (see also Table 1), these examples of molecular 
CTC analysis represent a proof of concept of the versatility and 
potential of CTC-related studies to investigate the metastatic pro-
cess as well as to influence treatment decisions, complementarily 
to the analysis of other tumor-derived blood components such as 
circulating tumor DNA, reviewed elsewhere (5). Hand in hand 

with the molecular characterization of CTCs, computational 
analysis represents a major accelerator to take full advantage of 
CTC-sequencing efforts and to generate actionable hypotheses. 
Below, we discuss typical challenges of computational CTC data 
analysis, mostly dealing with single-cell resolution data, and 
approaches to help overcome current sequencing limitations.

COMPUTATiOnAL AnALYSiS OF CTC

With a number of recent technological breakthroughs in cell 
capture and single-cell-sequencing (SCS) protocols, it is now pos-
sible to interrogate the genome, transcriptome, and epigenome 
of CTCs. The application of these technologies is improving 
our understanding of CTC biology as well as the relationship 
between CTCs and matched primary or metastatic tumors (12). 
Yet, despite significant improvements in SCS, the major analytical 
challenges remain. The main challenge is the interpretation of 
data in the context of strong stochastic variation and high error 
rate generated during the amplification of the low amount of 
starting material derived from a single cell. To address this issue, 
noise-specific computational methods have been developed. In 
the following paragraphs, we summarize the current challenges 
in the analysis of SCS data, with an emphasis on those that are 
potentially affecting the interpretation of CTC studies (see also 
Table 2).

As a matter of fact, there are specific aspects of CTCs that 
might contribute to increase the noise of the data. First, CTCs are 
exposed to different extrinsic stress factors in vivo, such as shear 
stress, attack by the immune system, and anticancer therapies (10, 
29). These phenomena might modify the gene expression profile 
and induce apoptosis, thus reducing the quality and quantity 
of the extracted DNA and mRNA. Second, depending on the 
method used for isolation, CTCs can be admixed with leukocytes, 
stromal cells, and platelets (30). In RNA-seq data, it is possible to 
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perform a negative selection of samples that show a substantial 
contamination, for instance, by evaluating the expression of 
specific leukocyte-associated markers or to digitally remove 
signatures of genes typically belonging to benign cells (31). In 
addition, CTC can be found as a single cell or clusters of cells (18). 
When not carefully controlled for, this introduces variability on 
the amount of starting material per each sample, possibly leading 
to systematic biases during amplification steps.

As described below, noise and low coverage on SCS analysis 
is traditionally compensated by combining data from other cells, 
usually from dozens to thousands of cells. However, the dilution 
factor of CTCs in the bloodstream and the limited volume of 
blood available from cancer patients generally lead to obtain only 
very few cells per patient (typically between 0 and 10 per tube of 
blood) (11). This limitation is traditionally addressed by pooling 
cells from the same individual, but this hampers any conclusions 
regarding the CTC heterogeneity and the detection of rare CTC 
subpopulations. Experimental solutions such as CTC-derived 
explants and the development of cell lines from captured CTC 
can help to increase the number of cells to investigate (32, 33), at 
the expense of low efficiency of such processes and possible biases 
during ex vivo culturing.

variant Detection
Single-cell DNA sequencing (scDNA-seq) of CTCs followed by 
mutation calling has enabled to investigate oligoclonality in CTCs 
and to identify differences compared to primary and metastatic 
tumors (27, 34–36). Yet, the data obtained after whole-genome 
amplification (WGA) is generally characterized by low-coverage 
breath, nonuniform coverage, false-positive (FP) errors intro-
duced by PCR, false-negative (FN) errors due to insufficient 
coverage, allele dropout (ADO), and allelic imbalance. To date, 
there are no computational approaches for variant detection that 
model this noise. As an alternative, most published studies tried 
to estimate technical variability comparing the variants obtained 
from single-cell data with bulk sequencing or control samples 
(27, 37, 38). Currently, only single nucleotide variants (SNVs) 
and CNVs can be detected accurately from SCS.

Methods developed for SNV detection (39) rely on the muta-
tion frequency across cells to calculate the posterior probability 
of the variant to be present in at least two cells. This approach 
reduces the fraction of FP but, as a consequence, mutations 
observed in only one cell are discarded. More robust methods 
will be needed to address FN events introduced by ADO, the 
major contributor to technical errors, affecting 10–50% of muta-
tion sites (40, 41). Current methods for CNV use segmentation 
algorithm based on GC-normalized coverage (42–46). These 
methods are heavily affected by the nonuniform coverage 
obtained after WGA. Although this can be partially improved 
using amplification protocols that produce more uniform cover-
age (40), the resolution is limited to megabase-scale CNVs (42, 
44). On the other hand, these methods have shown a relatively 
high specificity in low-coverage data (42, 44, 46). Further, vari-
ant detection can also be performed on scRNA-seq data, and a 
number of studies have attempted to infer copy number profiles 
by averaging the relative expression levels over large genomic 
regions (47, 48). RNA-seq can be used for SNV calling, but this 

approach is limited by RNA-editing events, allele-specific expres-
sion, and the small fraction of genes that are expressed at a high 
level (49).

A specific downstream analysis of variant calling is the 
reconstruction of single-cell phylogenies. These phylogenies 
can reconstruct the subclonal compositions of cells, reveal-
ing the evolutionary history of the tumor and, in the case of 
CTC-sequencing studies, specific metastatic-seeding patterns. 
A variety of approaches have been recently developed that are 
customized for the characteristics of scDNA-seq data (50–55). 
Some of these models can accommodate doublet cells into the 
analysis (51, 56) and are of particular interest for the analysis of 
CTC clusters. At the moment, current approaches only use SNVs 
as source information, and additional efforts are required to 
integrate CNV into the models.

Gene expression Profiling
Methods of whole transcriptome amplification (WTA) for single 
cells are well established but also suffer from amplification bias 
and unwanted variation. To overcome this challenge, some of 
these protocols integrate unique molecular identifiers that allow 
to track single molecules through the amplification process, 
thus reducing amplification bias (57). In addition, spike-ins of 
known concentration can be used to quantify sensitivity and 
technical variation (58). However, WTA and subsequent analysis 
methods struggle with reliable amplification for lowly expressed 
transcripts (59), leading to dropout events that add uncertainty 
to downstream analyses. Different methods and workflows have 
been developed for single-cell quality control that allows to 
remove batch effects and unwanted biological variability such as 
cell-cycle variation (60–62). To compare expression across cells, 
the data need to be normalized to remove cell-specific biases such 
as read depth and cell capture efficiency. Specific methods are 
available to normalize scRNA-seq data that account for a high 
degree of technical noise, low coverage, and a high proportion of 
dropout events (63–65).

Generally, there are two main downstream analyses of 
scRNA-seq data: differential expression (DE) and clustering. 
DE may help to find specific expression signatures associated 
with metastasis (31, 66) or to study differences between CTC and 
CTC clusters (18). It is possible to use methods for DE developed 
for bulk sequencing (67) coupled with the single-cell-specific 
pre-normalization. However, there are tools specifically devel-
oped for scRNA-seq, such as SCDE (64), MAST (63), and BASiC 
(68), that apply their specific normalization approaches. Second, 
similar to scDNA-seq phylogenies, unsupervised clustering of 
cells based on scRNA-seq can help to identify differences across 
cells and subclonal tumor populations. There is a wide range 
of methods available for clustering developed for scRNA-seq 
data, each of them with specific advantages and disadvantages 
(47, 48, 69–75). Besides DE and clustering, scRNA-seq has been 
used for network modeling to provide insights about complex 
transcriptional regulation. The most popular approach that has 
been already applied in a number of scRNA-seq studies is gene 
coexpression network analysis (WGCNA) (76). However, net-
work analysis methods require a large sample size, which rarely 
applies to CTC studies.
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Single-Cell Multi-omics
Recent technological breakthroughs now allow simultaneously 
interrogating RNA and DNA from a single cell, enabling a par-
allel analysis of gene expression, methylation status, and DNA 
mutations (77–81). This opens up the possibility to more com-
prehensively understand cellular processes. For example, it is now 
feasible to correlate DNA methylation status with gene expression 
and to directly link genomic variation to transcriptional vari-
ability to discover expression quantitative loci (79, 82). To date, 
there are no computational methods that are tailored to combine 
multiple molecular layers and at the same time to control for tech-
nical variation from single-cell genomics. Computational tools 
in this field are needed, as future developments in amplification 
and sequencing techniques will allow to robustly apply single-cell 
multi-omics to study complex questions in CTC biology.

COnCLUDinG ReMARKS

We have recently witnessed extraordinary advances in under-
standing CTC biology, including the potential of CTCs to reveal 
targetable cancer vulnerabilities. For instance, several proof-of-
concept studies have begun dissecting the heterogeneity of CTCs 
and have highlighted characteristics that enable few selected 
CTCs to seed a metastasis. Other studies have shown a potential 

for CTCs to drive patient stratification and treatment eligibility 
choices. However, many questions remain to be answered, sev-
eral of which relate to the applicability of CTC analysis in the 
clinical setting (possibly together with the analysis of circulating 
tumor DNA) and the identification of metastasis-suppressing 
therapies. To this end, computational analysis plays a pivotal role. 
Addressing major single-cell-related challenges in computational 
biology will allow scientists to generate hypotheses and interpret 
data in a highly reliable manner and to accelerate the discovery 
process in CTC biology and beyond.
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