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Abstract: Prefabricated solutions incorporating thermal insulation are increasingly adopted as an en-
ergy conservation measure for building renovation. The InnoWEE European project developed three
technologies from Construction and Demolition Waste (CDW) materials through a manufacturing
process that supports the circular economy strategy of the European Union. Two of them consisted
of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS)
and a ventilated façade. This study evaluates their thermal performance by means of monitoring
data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation
models enabling the reliable prediction of energy savings in different climates and use scenarios.
Results showed a reduction in energy demand for all demo buildings, with annual energy savings
up to 25% after placing the novel insulation solutions. However, savings are highly dependent on
weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric
assessment is performed to assess the impact of insulation thickness through an energy performance
prediction and a cash flow analysis.

Keywords: building retrofitting; energy conservation measures; construction and demolition waste;
building model calibration

1. Introduction

The building sector is one of the largest consumers of resources at European level
in terms of both material and energy aspects throughout all stages of a construction
project. In fact, one third of the waste generated in Europe comes from Construction
and Demolition Waste materials (CDW) [1]. To give a deeper insight, it is important to
remark that approximately 3 billion tons of waste materials are generated in the European
Union each year. Out of this, around 1 billion tons come from construction and demolition
activities, with a large quantity of CDW materials ending up in landfills without any
form of recovery or reuse [2]. Therefore, one of the pillars of the EU roadmap for the
decarbonization of the European economy and the reduction of waste production is focused
on the building sector [3].

The innovation on the end-of-life management of materials must be in line with
the target of the Waste Framework Directive 2008/98/EC to be achieved by 2020, which

Materials 2021, 14, 1226. https://doi.org/10.3390/ma14051226 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-5365-3238
https://orcid.org/0000-0001-5081-0958
https://orcid.org/0000-0002-9029-1678
https://orcid.org/0000-0001-7149-0578
https://doi.org/10.3390/ma14051226
https://doi.org/10.3390/ma14051226
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14051226
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/5/1226?type=check_update&version=1


Materials 2021, 14, 1226 2 of 15

requires 70% of CDW to be prepared for reuse, recycling, and other types of recovery [4].
The success of the existing quality assurance/control systems for the recycling of building
materials (as the European Quality Association for Recycling) [5] results in a high-quality
product with potential for market uptake.

Moreover, the revision of the Waste Framework Directive 2008/98/EC has consol-
idated the primary role of waste prevention, providing a five-step hierarchy of waste
management. Besides optimizing the recyclability properties of materials, solutions for the
recycling and reuse of existing building structures must be developed.

Several studies have assessed the feasibility of different construction products reusing
CDW materials. Experimental results obtained by Bravo et al. [6] show that, after the
incorporation of up to 25% of CDW, the variation of the properties of the concrete remains
within the established limits. Panizza et al. [7] presented the mechanical and physical
characterization of a geopolymer mortar embedding inorganic recycled aggregates from
CDW. Additionally, experimental results by Panizza et al. [8] illustrate promising properties
of geopolymers with up to 50% of CDW for use in building elements.

Further studies show the promising potential of geopolymers, which can exhibit a
wide variety of properties and characteristics depending on the mixing material selection,
inert and filler used, and processing conditions, including high compressive strength,
low shrinkage, short setting time, and good resistance to chemicals (acids, bases, and
organic solvents). They are mechanically stable up to 1000–1200 ◦C and are intrinsically
non-flammable, providing passive fire-resistance, with good behavior towards UV, high
humidity, and aggressive chemicals [9,10]. Furthermore, the intrinsic ability of geopolymer
surfaces to reproduce fine details opens up for a wide variety of products allowing for
architectural freedom.

Geopolymers are considered green materials for a sustainable economy [11] since they
derive from natural sources allowing the reuse of industrial by-products (furnace slag, fly
ash, etc.). Their ability to be prepared simply at room temperature implies 10 times less
CO2 emissions than Portland cement, reducing the raw materials consumption by using
industrial by-products. Finally, they have an easy end of life disposal and may be reused as
raw materials. Geopolymers exhibit a highly improved life cycle compared to mainstream
building materials such as Portland cement while keeping very good mechanical properties
and excellent fire resistance. Furthermore, geopolymers also present an interesting way to
recycle organic CDW such as wood. Indeed, geopolymers are an inorganic binder that can
be used similarly to historically used magnesite or Portland cement binders for producing
cement bonded wood wool panels and particle boards [12].

A second way to completely recycle CDW using concrete is re-clinkering the hy-
drated cement using standard cement kiln procedures. However, this process consumes a
significant amount of energy and releases large quantities of CO2.

Despite promising research results, the widespread adoption of CDW in construction
projects remains a challenge due to the lack of confidence among stakeholders [13]. Despite
the high potential for the incorporation of circular economy practices, there is still an extent
of uncertainty in the quality of CDW recycled materials due to inadequate information and
negative perception associated with these products and unexpectedly high cost. This is
especially relevant when considering the energy performance of buildings, since involved
technicians have little reliable information on the influence of these products on the energy
demand [14,15].

This issue is not trivial, as the building sector concentrates 40% of the final energy
use in Europe [16]. The energy efficiency of buildings is one of the key priorities of the
EU, as reflected in the Energy Efficiency Directive [17], which poses a special focus on
supporting environmentally sound decisions with energy efficient solutions. Building
energy performance is largely dependent on the materials used [18], and thus there is
a need for advanced and high-performance construction materials. In order to increase
the energy performance of existing buildings, External Thermal Insulation Composite
systems (ETICS) and ventilated façade systems are commonly used because of their proven
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effectiveness for improving thermal performance [19–21]. It is also necessary to improve
the understanding of material and component behavior in the whole life cycle to contribute
to lower embodied energy and resource efficiency. For these reasons, further actions are
necessary to lower the content of embodied energy of building elements. Therefore, new
materials combining structural properties, thermal resistance, and/or light weight need to
be developed [22].

Even though the materials of the envelope represent a key factor in the overall energy
efficiency of a building, only a limited number of studies have considered the combination
of energy efficiency and circular economy to develop energy efficient solutions and assess
the environmental performance of façade systems or similar products [23–25]. Hence,
further research is needed in order to develop innovative materials and solutions that
not only reduce the energy used on the production process, but also decrease the energy
demand of the buildings.

InnoWEE (INNOvative prefabricated components including different Waste construc-
tion materials reducing building Energy and minimizing Environmental impacts) [26]
is a research project developing innovative solutions from recycling CDW. The overall
objective of the project is to use geopolymer technology to produce a panel-based system
incorporating high amounts of CDW. These panels are used as insulating solutions in the
renovation of external walls of buildings. Two prefabricated innovative solutions have
been developed and tested under real conditions within the InnoWEE project in three demo
sites located in different climate conditions: Voula (Greece), Padova (Italy), and Bucharest
(Romania). Further details about the project developments can be found in Fodor et al. [27]
and Kvočka et al. [28]. The thermal performance of the InnoWEE products has been ana-
lyzed for the different demo sites through exhaustive modelling and simulations to assist
with the calculations of building energy savings. The models have been calibrated and
adjusted with real measured data according to the International Performance Measurement
and Verification Protocol (IPMVP). Furthermore, a cost-efficiency analysis for different
thicknesses of insulation has been performed to optimize and support the selection of the
most suitable solutions. The overall objective is not only to assess the thermal performance
of the panels, but also to study the impact of insulation thickness on the energy savings.

2. Methodology
2.1. Description of InnoWEE Solutions

This section describes the ETICS-like panels and the ventilated façade developed
within the InnoWEE project. As described by Kvočka et al. [28], two types of geopolymer
mixtures have been developed to manufacture these solutions: (i) High-density geopoly-
mer (HDG), which embeds approximately 50% by weight of inorganic CDW aggregates
(from fired clay, mortar, and concrete rubble); and (ii) wood geopolymer (WG), which
incorporates at least 40% of CDW wood particles. In regard to raw material information
and mixing methodology, either potassium silicate (HDG) or sodium silicate (WG) were
part of the liquid mixtures. Aggregates for those HDG solutions came from inorganic
harmless CDW materials, while softwood waste was used for WG production.

Geopolymers are inorganic polymers obtained from the reaction of an aluminosili-
cate powder with an aqueous alkaline solution. The HDG material was developed using
geopolymeric technology to produce a system of panels incorporating high amounts
of CDW. The geopolymer binder was based on commercial solid precursors such as
metakaolin, ground granulated blast furnace slag, and class F fly ash.

Regarding the wood geopolymer, it is a similar material to a cement-bonded particle-
board, but with the wood aggregates kept together by a geopolymer binder able to set at
ambient temperature. Therefore, the wood geopolymer panel embeds 40% by weight of
wood particles, resulting in an apparent density of about 1.0 g/cm3 in dry conditions and
comprised between 1.1 and 1.2 g/cm3 in environmental conditions (interior ambient).
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2.1.1. ETICS-Like Panels

ETICS-like insulation panels have surface dimensions of 40 × 90 cm, with an inner
layer of expanded polystyrene (EPS) and an outer layer of HDG coming from CDW,
with the dimensions in Table 1 below. The physical properties of ETICS-like panels were
experimentally measured as per EN 12667:2001 [29].

Table 1. ETICS (External Thermal Insulation Composite System)-like panel description. HDG:
High-density geopolymer; EPS: Expanded polystyrene.

Features Measurement (mm)

Height 400
Length 900
Width 78

Layering
HDG Layer 8
EPS Insulation Layer 1 20
EPS Insulation Layer 2 50

Thermal Resistance 2.037 (m2·K/W)

2.1.2. Ventilated Façade

The ventilated façade cladding panels are made from geopolymer technology with
surface dimensions of 59.5 cm × 59.5 cm. Panels are composed of an outer HDG layer
(8 mm thick) with two horizontal ribs, and 7 mm thick WG inserts. Cladding panels are
supported at four points using adjustable stainless-steel body anchors, allowing a 50 mm
thick rear-ventilated air cavity behind the panels. The cladding panels are installed with a
5 mm wide open joint between them, both horizontally and vertically. Therefore, the cavity
is ventilated all along its height, and not only through the lower and upper parts. The
arrangement of the cladding panels and the fixing system are described in detail in [30].

If there was thermal insulation between the existing wall and the ventilated cavity, as
is typical for such ventilated façade systems, the metallic support elements would break
through that thermal insulation. A desktop assessment using three-dimensional numerical
modelling was performed for estimating the impact of these thermal bridges on the heat
flow and potential associated moisture risks [30]. The study concluded that the risk of
condensation and mold growth on internal surfaces is successfully prevented by thermal
insulation, but the multi-dimensional heat flow associated with the anchors grows as
insulation levels increase. However, if no gaps are present in the insulation in the area
around the anchors, the additional heat flow associated with the support elements keeps
in a range of 8–13%, showing better thermal performance than typical aluminum-based
systems comprising vertical profiles supported by brackets.

2.2. Energy Performance Assessment

For the achievement of a successful Building Energy Model (BEM), it is crucial to
minimize the discrepancies between the actual measured performance and predictions
from the building model. Best practices for measurement and validation are applied in
this work to avoid this divergence known as “performance gap” [31]. Equivalent building
models bring a precise resemblance between the design and the operational building.

Complete software building models allow for the evaluation of the energy demand
under different conditions. DesignBuilder [32] building modelling software (v6.01, Design-
Builder Software Ltd Stroud, Gloucestershire, UK) based on the open-source Energy Plus
simulation engine (v8.9, U.S. Department of Energy’s (DOE), Building Technologies Office
(BTO) and NREL, Golden, CO, USA) has been used, allowing the modelling of complex
geometries and the performance evaluation of alternative construction designs. In order to
estimate the energy savings achieved by InnoWEE solutions, the energy performance of
the existing building (baseline period) is compared with the retrofitted scenario (reporting
period). The energy assessment has been performed in accordance with the principles
and best practices in International Performance Measurement and Verification Protocol
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(IPMVP) [33]. Option D (calibrated simulation) has been used to conduct the study, calcu-
lating energy savings through the simulation of energy consumption and demand of either
the whole facility, or sub-facility. The energy outputs of the model have been calibrated
using hourly measured data or monthly billing data.

Firstly, the building is modelled in its existing condition and simulated for a baseline
period (scenario 0) with EnergyPlus. The thermal behavior of every zone is calculated
based on the building features, HVAC schedules, occupancy patterns, internal gains, and
system loads. The process meets EN ISO 15927 1-6 [34], EN ISO 52000-1 [35], ASHRAE
Handbook of Fundamentals (2005) [36], and EN ISO 13790:2008 [37].

Following this, Heating Degree Days (HDD) and Cooling Degree Days (CDD) [38]
are applied in order to weather-normalize energy consumption between the building
model and real data as described in Equation (1). This normalization allows a like-for-
like comparison between the outdoor conditions of a typical year used in the building
simulation, and real measured outdoor data. Typical Meteorological Years (TMY) are
derived from hourly observations at a specific location by the national weather service
or meteorological office. They are data sets that typify one year of hourly climate data
extracted from at least 10-year records [39]. The climate datasets in the present study are
based on recorded observations and predictions for future scenarios induced by climate
change have not been considered.

Qmet,norm = Qmet·
HDDmod
HDDreal

[kWh] (1)

where Qmet,norm is the normalised energy data [kWh], Qmet is the metered energy data
[kWh], HDDmod is the number of heating degree days of the TMY of the model, HD is the
number of heating degree days for the measured conditions. An analogous equation is
used for CDD.

Whenever measured weather data is available for the monitored periods, the TMY
climate file is modified to include recorded outdoor temperature, solar radiation, and
relative humidity.

The measured data is included in all models. The thermal characterization of the
ventilated façade is based on the normalized procedure described in ISO 6946:2017 [40].
The methodology discards the thermal resistance of the air layer and the cladding and
considers a surface resistance of 0.13 m2·K/W on the former external surface wall.

Later, calibration data is modified to meet an acceptable level of fluctuation between
simulation results and monthly utility bills. Operating and influential parameters such
as occupancy profiles, internal gains, equipment, and ventilation rates are commonly
included in this process. Then, InnoWEE solutions are applied to the calibrated model to
build the reporting period (scenario 1) and obtain the energy consumption after retrofitting
measures. Finally, normalized savings are determined with the calibrated simulation
results representing the baseline period (before retrofitting) and the reporting period (after
retrofitting). Additionally, the impact of the insulation thickness is assessed on the building
energy needs for all demo sites by means of parametric simulations. Figure 1 shows the
outline of the model calibration process.

Figure 1. Outline of the model calibration process.
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2.3. Optimization

Once the simulation models are developed and validated, the energy demand of the
building can be predicted under different scenarios to optimize the solutions with the best
compromise between investment, operation cost, and energy efficiency. This parametric
optimization focuses on economic Key Performance Indicators (KPIs) to understand the
investment needed and the savings on the energy costs after the building renovation. The
economic KPIs are:

(a) Annual economic savings after retrofit.
(b) Payback time required for the return of an investment.

In energy-efficient renovation projects, the initial investment is eventually paid off by
the avoided operational cost associated with energy savings. The cumulative cashflow is
calculated as per Equation (2).

C f low =
i

∑
n
[Qannual ·Celect]− Cinv (2)

where C f low is the cumulative cashflow in year n [€], n is the number of years considered in
the calculation [a], Qannual is the annual energy saving from the retrofit measures [kWh/a],
Celect is the cost of electricity for year i [€/kWh], and Cinv is the investment cost of the
retrofit measures [€].

The optimization is performed based on a sensitivity analysis on the economic KPIs.
KPIs for a range of insulation thicknesses are presented in the results and discussion
section.

3. Demo Cases and Model Validation

Three demo sites of the InnoWEE project are selected for this study, located in Romania,
Italy, and Greece. All of them had parts retrofitted with both the ETICS-like panels and the
ventilated façade. The present section focuses on the Old City Hall of Voula Municipality
site in Greece, as a case study that illustrates the methodology applied to all locations.

The City Hall of Voula is a heritage building from 1967 located in a residential area in
the Municipality of Voula-Vouliagmeni, Greece. It is composed of two floors and a partial
basement. The main floor at ground level is an open area, while the first floor is mainly an
office space with light partitions. Figure 2 shows the former state of the building before the
retrofit. As depicted in Figure 3, both ETICS-like panels and the ventilated façade were
installed in two different rooms on the south facing façade, Office 1 and Office 2. Figure 4
displays the 3D model of the building, including the sun path and the relevant shading
components.

Figure 2. City Hall of Voula [source: InnoWEE project].

The existing HVAC system consists of split air conditioning units of different capacities.
As the whole building has been divided in two main thermal zones, the same type of system
is applied for all areas.
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Regarding the validation process for this demo case, utility bills provided by the build-
ing owner were normalized by using heating and cooling degree days (see Equation (1)).
Consequently, the inputs of the building model were adjusted to match simulation results
with normalized metered data.

Figure 3. InnoWEE retrofitting: (a) ETICS-like panels in Office 1, (b) ventilated façade in Office 2
[source: InnoWEE project].

Figure 4. Virtual model. Voula Town Hall, Greece. (a) Building geometry and (b) Sunpath

Figure 5 compares energy consumption results from the model with the measured en-
ergy consumption pattern. The model for the baseline (pre-retrofit) period was selected for
calibration as explained in the Methodology section. The deviation between electricity bills
and the building model remains within acceptable tolerances for the IPMVP protocol [33].
The model has a coefficient of determination R2 = 0.86 and the coefficient of variation of the
root mean square error is CV(RMSE) = 12%. Discrepancies in monthly aggregated energy
consumption between model predictions and measured values range between ±0.3% and
±24%. The annual mean normalized bias error is MNBE = 0.2%.

Figure 5. Calibration of the simulation model with utility bills for the demo building in Voula
(Greece).
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4. Results and Discussion

This section presents results for the estimated energy savings, an analysis of the
impact of the insulation thickness, and finally an economic assessment performed with the
model previously described. A comparison of scenarios, as well as a sensitivity analysis,
assesses the performance of InnoWEE solutions in the Voula demo building described in
the previous section. Additionally, a summary of the results obtained in the project for all
three demo sites is included, along with an environmental analysis for the operation phase
focused on the reduction of the energy needs.

4.1. ETICS-Like Panels

Office 1 was refurbished with ETICS-like panels. The outcomes of the validated model,
including former conditions (scenario 0), are compared with the outcomes coming from
the simulation of the retrofitted model (scenario 1).

Figure 6 illustrates the heating and cooling requirements prior to and following the
façade upgrade with an insulation thickness of 7 cm. Overall, the total annual energy
demand of the building is reduced considerably. However, it is worth noting that heating
requirements decrease substantially, while cooling demand mainly remains steady or even
increases slightly from April to October. A likely explanation is that high levels of insulation
hinder the dissipation of heat gains from solar radiation, computers, or occupants. Despite
that effect, the annual dynamic simulation results display total energy savings of 25.6%.

Figure 6. Energy needs before (scenario 0) and after (scenario 1) the placement of ETICS-like in Voula
demo site.

Additionally, different thicknesses of EPS are simulated to assess the impact of insu-
lation thickness both on the building energy demand and on the return of investment of
the renovation works. Figure 7 shows the result of the parametric simulation. In general,
energy savings rise more sharply from 4 to 5 cm of insulation thickness. Beyond that width,
the increase of insulation thickness has a lower but steady impact, gradually growing
to reach the peak at 8 cm. Further increasing insulation thickness to 9 cm makes energy
savings drop due to the increase on the cooling load, as explained previously.
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Figure 7. Annual energy savings against insulation thickness.

In terms of economic feasibility, Figure 8 shows the time required to redeem the
funds expended in the investment as a function of the insulation thickness considered.
It is remarkable that increasing insulation thickness also lengthens the payback period.
While adding 5 cm of insulation would take close to ten years to get a return, 9 cm would
take nearly 13 years. Therefore, although the highest energy savings are achieved by
using an insulation thickness of 8 cm, the time required to compensate for the initial
investment accounts for more than twelve years. The cumulative cashflow assessment has
been performed considering the next assumptions:

(a) Cost of electricity: 0.195 €/kWh [41];
(b) annual inflation on the cost of electricity: 3%;
(c) cost of 2 cm EPS: 6.287 €/m2.

Figure 8. Cashflow analysis for different thicknesses of ETICS.
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4.2. Ventilated Façade

Office 2 was refurbished with a ventilated façade as described in Section 3. A compar-
ison of the energy consumption before (scenario 0) and after (scenario 1) the installation is
performed in this section.

Figure 9 shows a monthly comparison throughout a full year. In the same way as for
ETICS-like panels, the heating energy demand of the demonstration building drops with
the ventilated façade, but the cooling requirements hardly fluctuate in the summer months.
The total energy saving for a full year is estimated at 2.44%.

Figure 9. Energy needs before (scenario 0) and after (scenario 1) the ventilated façade in the Voula
demo site.

Looking into Figure 10, there is an 83% increase in the annual energy savings when
6 cm thick thermal insulation is added, reaching almost 300 kWh/year. Nevertheless, if
the thickness of insulation is larger than 6 cm, energy consumption is not further reduced
substantially.

Figure 10. Ventilated façade including external wall insulation.
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Regarding the economic assessment, for the case of the ventilated façade, there is
no sensible payback period since the first capital investment is considerably high when
compared with the energy savings achieved. As described in [30], thermal insulation is
advised along with the ventilated façade in order to avoid condensations.

From the simulation model of Voula Old Town, it can be concluded that the placement
of both ETICS-like panels and ventilated façade have the potential of substantially reducing
the energy consumption for Office 1 and 2, respectively.

4.3. Comparison of Savings among Demo Buildings

Results from the selected demonstration building, along with findings from the two
other demo sites, are summarized in the present section.

Table 2 depicts the energy savings achieved using ETICS-like panels and ventilated
façade in Italy, Romania, and Greece, allowing the comparison between climates, solutions,
and seasons of the year.

Table 2. Energy savings with InnoWEE passive solutions for all demonstration sites.

Italy, Padova Romania, Bucharest Greece, Voula

Cfa: Humid Subtropical Cfa: Humid Subtropical Csa: Mediterranean Hot Summer

TMY/Monitored TMY/Monitored TMY

Reversible Heat Pump Electric Heater/No Cooling
Available Reversible Heat Pump

Summer Winter Total Summer Winter Total Summer Winter Total

ETICS −16.7% 37.4% 32% - 4.40% 4.40% −4% 49% 25.66%
VF −1.6% 2.6% 2.4% - 4.25% 4.25% 0.24% 4.74% 2.44%

Note: Classification taken from Köppen-Geiger Climate [42]. TMY: Typical Meteorological Years.

The advantage of ETICS-like panels is apparent in Italy, with savings reaching up to
32% of total annual energy consumption. However, the reduction of savings in summer
is striking. For the ventilated façade solutions, there is a dramatic fall of the total saving,
accounting for nearly thirteen times lower. The seasonal pattern is similar to ETICS-like
panels, with a slight rise of savings up to 1.6%.

In Greece, the behavior of the building with the novel solutions shows large similarities
with the Italian demo site. The performance is more advantageous in winter than in summer.
Moreover, the ETICS-like panels appear to be more suitable than the ventilated façade.
Further details and analysis can be found in Section 3.

On the other hand, the models for Romania showed less savings than the other demo
sites. The energy savings along the year are similar for both ETICS-like and ventilated
façades, approximately 4%. The reason for the difference with the other demonstration
sites might lie on the outdoor conditions. In this case, there is no significant difference
attributed to the season.

All simulations and validations were based on recorded climate data and future
scenarios due to climate change have been left out of the scope of the present study. Further
work might focus on the potential impact of extreme conditions posed by cooler winters,
warmer summers, or an increment in mean temperature.

Additionally, following the methodology proposed in [43], primary energy factors
and greenhouse gas (GHG) emission coefficients were obtained based on the electricity
mix of each country. Applying those factors to the energy demand, primary energy, and
GHG emission savings were calculated. The annual savings obtained are presented in
Table 3 and they relate to the operation phase after the retrofit. A cradle-to-cradle life cycle
assessment is described in [28].
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Table 3. Annual savings for Primary Energy and Greenhouse gas emissions with InnoWEE passive
solutions for all demo sites.

Italy Romania Greece

Cfa: Humid Subtropical Cfa: Humid Subtropical Csa: Mediterranean Hot Summer

TMY/Monitored TMY/Monitored TMY

Primary Energy Savings (kWh/year)

ETICS 296.48 2867.12 1400.19
VF 37.47 2769.38 109.38

GHG Emission Savings (kg/year)
ETICS 62.99 545.70 427.11

VF 7.96 527.10 33.37

5. Conclusions

The aim of the present study was to investigate and optimize the energy performance
of prefabricated geopolymer façade cladding panels made from large fractions of CDW.
Firstly, a simulation model of the buildings was created to predict their energy performance.
Secondly, a weather-normalized energy consumption was carried out for a like-for-like
comparison between simulated and measured data, which led to the calibration of the
building model matching simulation results and monthly utility bills. Thirdly, a scenario
analysis was performed to test different configurations of the InnoWEE solutions to identify
the retrofitting solution with the most positive impact. Finally, the environmental impact
was analyzed for final energy, primary energy, and GHG emissions.

In order to compare existing and retrofitted scenarios, calibrated building models
were simulated throughout the baseline (pre-retrofit) period and reporting (post-retrofit)
period. The main outcomes from those simulations are listed below:

1. Energy savings achieved with InnoWEE passive solutions are in a similar range for
the Greece and Italy demonstration sites.

2. ETICS-like panels are the most beneficial solution regarding energy savings for all
locations.

3. Both ETICS-like and ventilated façade work more efficiently throughout winter
months with higher heating demand.

4. The advantage of the ventilated façade throughout summertime might be underesti-
mated since the model is based on ISO 6946:2017. This method does not consider the
heat sink effect in the air cavity, which is the most beneficial feature of those systems
for cooling purposes.

5. Cooling loads in warm climates might increase slightly by adding insulation, but such
increases are negligible in the context of the full year consumption for the climates
considered in this study.

6. For ETICS-like panels, reduced returns are obtained in annual energy savings beyond
8 cm of insulation thickness in the Greece demonstration site.

7. Insulation thickness is a decisive parameter to find an adequate balance between
investment and operating cost.

Overall, this study has demonstrated that the InnoWEE ETICS-like panels and ven-
tilated façades are capable of reducing the energy needs of a building, posing a feasible
and potentially competitive alternative to be incorporated into the construction sector.
In the future, the building models developed in this project can be used to simulate the
performance of InnoWEE products in different building typologies and locations.

The outputs of the study suggest that circular economy can produce innovative
materials and building elements, that can be competitive to similar market products if
financially supported by public bodies. However, regarding the costs of the outer material,
its inclusion into the initial investment would elevate the payback period and lower the
feasibility for a market uptake. The reuse of materials and, therefore, the reduction on the
impact of building retrofitting implicit to these materials indicate that policy makers and
public stakeholders should support the use of these new materials with incentives and
regulations.
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As identified in this study, the thermal performance of the ventilated façade is limited
and would be likely improved by the addition of thermal insulation between the existing
wall and the ventilated cavity.

Regarding future research plans, the authors are already working on an assessment of
highly insulated buildings for resilience to future climate changes. As it can be concluded
by the presented work, highly insulated buildings may experience high cooling demands
due to internal loads. From the resilience point of view, energy efficiency strategies must
consider extreme events and warmer summers. The building models presented in this
study will be exploited to understand the impact of climate change on buildings and to
adapt retrofitting strategies accordingly.
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28. Kvočka, D.; Lešek, A.; Knez, F.; Ducman, V.; Panizza, M.; Tsoutis, C.; Bernardi, A. Life Cycle Assessment of Prefabricated
Geopolymeric Façade Cladding Panels Made from Large Fractions of Recycled Construction and Demolition Waste. Materials
2020, 13, 3931. [CrossRef]

29. European Committee for Standardization. EN 12667:2002 Thermal Performance of Building Materials and Products. Determination of
Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Products of High and Medium Thermal Resistance;
European Committee for Standardization: Brussels, Belgium, 2002.

30. Arregi, B.; Garay, R.; Garrido-Marijuan, A. Assessment of thermal performance and surface moisture risk for a rear-ventilated
cladding system for façade renovation. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012102. [CrossRef]

31. Romero, A.; Izkara, J.L.; Mediavilla, A.; Prieto, I.; Pérez, J. Multiscale building modelling and energy simulation support tools.
In eWork and eBusiness in Architecture, Engineering and Construction; CRC Press: Boca Raton, FL, USA, 2016; pp. 316–322. ISBN
978-1-138-03280-4.

32. DesignBuilder Software Ltd. Available online: https://designbuilder.co.uk/ (accessed on 18 February 2021).
33. IPMVP Committee. International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and

Water Savings; National Renewable Energy Lab.: Golden, CO, USA, 2001; Volume 1.
34. International Standard Organisation. EN ISO 15927 1-6: 2009—Hygrothermal Performance of Buildings–Calculation and Presentation

of Climatic Data; European Committee for Standardization: Brussels, Belgium, 2009.

http://doi.org/10.1002/fam.2119
http://doi.org/10.1016/j.enbuild.2015.08.009
http://doi.org/10.3390/recycling5040031
http://doi.org/10.1016/j.jobe.2019.100742
https://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en
https://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en
https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012L0027&from=EN
http://doi.org/10.1016/j.jobe.2019.100772
http://doi.org/10.1016/j.scs.2019.101713
http://doi.org/10.1016/j.enbuild.2019.01.033
http://doi.org/10.1016/j.enbuild.2013.04.004
http://ectp.ectp.org/cws/params/ectp/download_files/36D2981v1_Eeb_cPPP_Roadmap_under.pdf
http://doi.org/10.3390/ma13132970
http://www.ncbi.nlm.nih.gov/pubmed/32635157
http://doi.org/10.1016/j.scitotenv.2016.03.098
http://www.ncbi.nlm.nih.gov/pubmed/27054305
http://doi.org/10.1016/j.wasman.2016.10.041
http://www.ncbi.nlm.nih.gov/pubmed/27816471
https://innowee.eu/
http://doi.org/10.1051/e3sconf/201911103076
http://doi.org/10.3390/ma13183931
http://doi.org/10.1088/1755-1315/410/1/012102
https://designbuilder.co.uk/


Materials 2021, 14, 1226 15 of 15

35. International Standard Organisation. ISO 52000-1: 2017—Energy Performance of Buildings—Overarching EPB Assessment—Part 1:
General Framework and Procedures; International Organization for Standardization (ISO): Geneva, Switzerland, 2017.

36. American Society Of Heating, Refrigerating and A-C Engineers. ASHRAE Handbook: Fundamentals; ASHRAE: Peachtree Corners,
GA, USA, 2005.

37. International Standard Organisation. ISO 13790: 2008 Energy Performance of Buildings—Calculation of Energy Use for Space Heating
and Cooling; International Organization for Standardization (ISO): Geneva, Switzerland, 2008.

38. Heating & Cooling Degree Days—Free Worldwide Data Calculation. Available online: https://www.degreedays.net/ (accessed
on 21 October 2020).

39. Wilcox, S.; Marion, W. Users Manual for TMY3 Data Sets. 2008. Available online: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.538.430&rep=rep1&type=pdf (accessed on 4 March 2021).

40. International Standard Organisation. ISO 6946:2017 Building Components and Building Elements—Thermal Resistance and Thermal
Transmittance—Calculation Methods; International Organization for Standardization (ISO): Geneva, Switzerland, 2017.

41. Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 14 March 2020).
42. World Maps of Köppen-Geiger Climate Classification. Available online: http://koeppen-geiger.vu-wien.ac.at/ (accessed on 14

December 2020).
43. Eguiarte, O.; Garrido-Marijuán, A.; de Agustín-Camacho, P.; del Portillo, L.; Romero-Amorrortu, A. Energy, Environmental

and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe. Energies 2020, 13, 3939.
[CrossRef]

https://www.degreedays.net/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.430&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.538.430&rep=rep1&type=pdf
https://ec.europa.eu/eurostat/data/database
http://koeppen-geiger.vu-wien.ac.at/
http://doi.org/10.3390/en13153939

	Introduction 
	Methodology 
	Description of InnoWEE Solutions 
	ETICS-Like Panels 
	Ventilated Façade 

	Energy Performance Assessment 
	Optimization 

	Demo Cases and Model Validation 
	Results and Discussion 
	ETICS-Like Panels 
	Ventilated Façade 
	Comparison of Savings among Demo Buildings 

	Conclusions 
	References

