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SUMMARY

Lumbar disc herniation (LDH) is a common cause of lower back pain and sciatica, and posterior lumbar in-
terbody fusion (PLIF) is always employed. This multicenter retrospective study investigates predicting in-
traoperative blood transfusion for LDHpatients undergoing PLIF in China. The research includes 6,241 pa-
tients from 22medical centers and employs 8 feature selection methods and 10machine learning models,
including an integrated stacking model. The optimal predictive model was selected based on the receiver
operating characteristic area under the curve, clinical applicability, and computational efficiency. Among
the evaluated combinations, the simulated annealing support vector machine recursive + stacking model
achieved the highest performance with an area under the curve of 0.884, supported by robust calibration
and decision curve analyses. A publicly accessible web calculator was developed to assist clinicians in de-
cision-making. This work significantly enhances intraoperative transfusion predictions, providing valuable
tools for improving patient management.

INTRODUCTION

Lumbar disc herniation (LDH) is a frequent cause of lower back pain and sciatica. Both nonoperative and operative treatments have been

employed. Common approaches include patient education, physical therapy, alternative medicine, and pharmacotherapy.1 To avoid painful

suffering, a combination of discectomy and posterior lumbar interbody fusion (PLIF) is often employed. PLIF, introduced in the 1940s, is now

regarded as the gold standard for spinal arthrodesis.2 It is widely used for treating lumbar spondylolisthesis.3 Although traditionally regarded
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as a thorough surgical approach, PLIF is less commonly employed for simple lumbar disc herniation today but may offer advantages such as

sufficient access for thorough decompression of neural elements and restored segmental lordosis.4 While traditional open PLIF effectively

manages lumbar spinal instability, there are concerns about prolonged hospitalization, blood loss, and potential postoperative complica-

tions.4 While minimally invasive (MIS) PLIF reduces blood loss, open PLIF remains necessary in specific cases like recurrent LDH or failed

MIS attempts.

Intraoperative blood loss is a significant problem for surgeons and multimodal and multidisciplinary strategies were proposed.5 Blood

transfusion is often effective and required when intraoperative blood loss occurs to an extent. In a study involving 5803 patients in 126 Euro-

pean centers, the intraoperative transfusion rate was 1.8% in general.6 Themean andmedian transfusedpacked red blood cells were 2.5 and 2

units respectively.6 Hospitals that frequently perform blood transfusions to patients experiencing considerable surgical blood loss tend to

have lower adjusted 30-day mortality rates, indicating that intraoperative blood transfusion in hospitals could serve as a potential indicator

of surgical quality.7

However, research on blood transfusion and PLIF is limited. In this multicenter retrospective study, we aim to utilize a comprehensive ma-

chine learning approach to predict intraoperative blood transfusion in open PLIF fusion surgery of LDH patients (Figure 1).
RESULTS
Characteristics of patients

As indicated in Table 1, a total of 6,241 patients were involved in the study, with a nearly balanced distribution of males (51%) and females

(49%). The gender distribution was slightly different between the transfusion (51% female, 49%male) and no transfusion groups (48% female,

52% male), with no statistically significant difference (p = 0.118). Median age was higher in the transfusion group (64 years) compared to the

no-transfusion group (57 years). The height and weight of patients were similar across groups, but the body mass index (BMI) was slightly

higher in the transfusion group and was statistically significantly different. 81% of the total participants were non-smokers, with a higher per-

centage of non-smokers in the transfusion group (86%) compared to the no transfusion group (80%). This differencewas statistically significant

(p < 0.001).

As for underlying conditions, significant differences were observed in the prevalence of hypertension, diabetes, coronary heart disease,

ischemic stroke, lumbar spinal stenosis, lumbar spondylolisthesis, and lumbar scoliosis between the two groups. Significant differences were

also found in the history of previous surgery and pre-surgery function. The study recorded the time from symptom onset to surgery, ranging

from less than a week to more than 3 years. Significant differences were observed between the groups in this aspect. Information on the num-

ber of levels of fusion in surgery was provided. The majority (60%) had a single level fusion, with significant differences in the distribution be-

tween the transfusion and no transfusion groups.

Several preoperative lab measures including hematocrit, APTT, PT, fibrinogen, platelet count, hemoglobin, WBC, and albumin were

compared. Significant differences were spotted in hematocrit, APTT, platelet count, hemoglobin, and albumin levels between groups.
Feature selection

The dataset initially contained 35 features. Different feature selectionmethods resulted in different subsets (Figures S1, 2A, and 2B). SVM-RFE

selected 26 features, Boruta and GA-SVM each selected 25, while US and SA-SVM selected 18 and 16 features, respectively. Lasso identified

only 5 features. Interestingly, the intersection of all methods contained only 5 features, indicating that while each method identifies distinct

features, certain features were consistently chosen.
Basic and stacking machine learning models construction

Besides LR, basic models were first tuned and guided by AUC-ROC (Figure S2). Both the tuning process and LR (Figure S2) can be found in

supplement materials. 10-fold cross-validation was applied for all nine fine-tuned models to test their performance on the training dataset

(Figure S3A). It turned out that the LightGBM and RF had the best performance, with the AUC-ROC reaching 0.86. XGBoost laid behind

with an AUC-ROC of 0.85. Other models failed to reach 0.80 though.
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Figure 1. Comprehensive flowchart of the study

Patients were selected from 22 hospitals across China based on the inclusion and exclusion criteria. 6,241 patients were finally involved and divided into training

and test groups. 8 feature selection approaches, and 10 machine learning models (9 basic and 1 integrated stacking model) were adopted. After choosing

the best model, DCA and calibration curve were applied for evaluation. Model explainability was guaranteed by SHAP approach. A publicly accessible

web calculation was established for clinical usage. CV, cross-validation, SVM-RFE, support vector machine recursive feature elimination; GA-SVM,

genetic algorithm support vector machine recursive; US, univariate screening; SA-SVM, simulated annealing support vector machine; Lasso, least absolute

shrinkage and selection operator; LightGBM, light gradient boosting machine; RF, random forest; DT, decision tree; ENet, efficient neural network; KNN,

k-nearest neighbors; LR, logistic regression; MLP, multilayer perceptron; SVM, support vector machine; XGBoost, extreme gradient boosting; DCA, decision

curve analysis.
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Table 1. Basic characteristics of involved patients

Variables Total (n = 6241) No transfusion (n = 5315) Transfusion (n = 926) p value

Gender, n (%) 0.118

female 3050 (49) 2575 (48) 475 (51) –

male 3191 (51) 2740 (52) 451 (49) –

Smoking, n (%) <0.001

No 5025 (81) 4228 (80) 797 (86) –

Yes 1216 (19) 1087 (20) 129 (14) –

Hypertension, n (%) <0.001

No 4412 (71) 3846 (72) 566 (61) –

Yes 1829 (29) 1469 (28) 360 (39) –

Diabetes, n (%) <0.001

No 5602 (90) 4811 (91) 791 (85) –

Yes 639 (10) 504 (9) 135 (15) –

Coronary heart disease, n (%) 0.011

No 5949 (95) 5082 (96) 867 (94) –

Yes 292 (5) 233 (4) 59 (6) –

Chronic heart failure, n (%) 0.561

No 6202 (99) 5280 (99) 922 (100) –

Yes 39 (1) 35 (1) 4 (0) –

Hemorrhagic stroke, n (%) 0.445

No 6135 (98) 5228 (98) 907 (98) –

Yes 106 (2) 87 (2) 19 (2) –

Ischemic stroke, n (%) <0.001

No 6088 (98) 5223 (98) 865 (93) –

Yes 153 (2) 92 (2) 61 (7) –

Lumbar spinal stenosis, n (%) <0.001

No 4336 (69) 3786 (71) 550 (59) –

Yes 1905 (31) 1529 (29) 376 (41) –

Lumbar spondylolisthesis, n (%) <0.001

No 5723 (92) 4910 (92) 813 (88) –

Yes 518 (8) 405 (8) 113 (12) –

Sciatica, n (%) 0.178

No 6114 (98) 5201 (98) 913 (99) –

Yes 127 (2) 114 (2) 13 (1) –

Osteoporosis, n (%) 0.117

No 6088 (98) 5192 (98) 896 (97) –

Yes 153 (2) 123 (2) 30 (3) –

Lumbar spine fracture, n (%) 0.356

No 6204 (99) 5281 (99) 923 (100) –

Yes 37 (1) 34 (1) 3 (0) –

Lumbar scoliosis, n (%) <0.001

No 6184 (99) 5280 (99) 904 (98) –

Yes 57 (1) 35 (1) 22 (2) –

Previous transfusion, n (%) 0.461

No 6153 (99) 5243 (99) 910 (98) –

Yes 88 (1) 72 (1) 16 (2) –

(Continued on next page)
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Table 1. Continued

Variables Total (n = 6241) No transfusion (n = 5315) Transfusion (n = 926) p value

Previous surgery, n (%) <0.001

No 5289 (85) 4580 (86) 709 (77) –

Yes 952 (15) 735 (14) 217 (23) –

Pre function, n (%) <0.001

No 1783 (29) 1600 (30) 183 (20) –

Yes 4458 (71) 3715 (70) 743 (80) –

Bone graft, n (%) <0.001

No 322 (5) 300 (6) 22 (2) –

Yes 5919 (95) 5015 (94) 904 (98) –

Time from symptom onset to surgery, n (%) <0.001

1 to 3 years 673 (11) 545 (10) 128 (14) –

<1 month 1527 (24) 1379 (26) 148 (16) –

<1 week 1141 (18) 1057 (20) 84 (9) –

< half a year 1246 (20) 1020 (19) 226 (24) –

<1 year 578 (9) 482 (9) 96 (10) –

>3 years 1076 (17) 832 (16) 244 (26) –

ASA, n (%) <0.001

1 332 (5) 288 (5) 44 (5) –

2 4419 (71) 3826 (72) 593 (64) –

3 1083 (17) 845 (16) 238 (26) –

4 407 (7) 356 (7) 51 (6) –

Total comorbidities, n (%) <0.001

0 3724 (60) 3289 (62) 435 (47) –

1 1677 (27) 1375 (26) 302 (33) –

2 692 (11) 546 (10) 146 (16) –

3 or more 148 (2) 105 (2) 43 (5) –

Number of levels fusion, n (%) <0.001

1 3775 (60) 3558 (67) 217 (23) –

2 1892 (30) 1464 (28) 428 (46) –

3 or more 574 (9) 293 (6) 281 (30) –

Age (yrs),

Median (Q1, Q3)

58 (49, 67) 57 (48, 66) 64 (55.25, 70) <0.001

Height (m),

Median (Q1, Q3)

1.65 (1.62, 1.7) 1.65 (1.62, 1.7) 1.65 (1.62, 1.7) <0.001

Weight (kg),

Median (Q1, Q3)

67.12 (63, 72.6) 67.03 (63, 72.48) 67.98 (63, 73) 0.099

BMI (kg/m2),

Median (Q1, Q3)

24.03 (22.14, 26.2) 24 (22.1, 26.12) 24.49 (22.6, 26.79) <0.001

Time from admission to surgery days, Median (Q1, Q3) 4.38 (3.43, 6.21) 4.19 (3.31, 6) 5.46 (4.39, 7.88) <0.001

Pre Hct (%), Median (Q1, Q3) 41.1 (37.7, 44.2) 41.3 (38, 44.31) 39.7 (36.3, 43.49) <0.001

Pre APTT (s), Median (Q1, Q3) 29.8 (27.4, 32.8) 29.89 (27.6, 33) 29.2 (26.7, 31.2) <0.001

Pre PT (s),

Median (Q1, Q3)

11.9 (11.3, 12.7) 11.9 (11.3, 12.7) 11.9 (11.1, 12.7) 0.186

Pre Fib (g/L),

Median (Q1,Q3)

2.83 (2.46, 3.24) 2.83 (2.46, 3.26) 2.82 (2.45, 3.2) 0.462

Pre PLT (109/L),

Median (Q1, Q3)

220.99 (187, 252) 221.59 (189, 252.19) 212.35 (175, 250) <0.001

(Continued on next page)
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Table 1. Continued

Variables Total (n = 6241) No transfusion (n = 5315) Transfusion (n = 926) p value

Pre HGB (g/L), Median (Q1, Q3) 135 (125.82, 146.01) 135.37 (126, 147) 132.35 (122, 144) <0.001

Pre WBC (109/L), Median (Q1, Q3) 6.33 (5.3, 7.41) 6.34 (5.3, 7.4) 6.22 (5.2, 7.46) 0.123

Pre albumin (g/L), Median (Q1, Q3) 41.7 (39.36, 44.6) 41.8 (39.4, 44.7) 41.2 (38.77, 43.9) <0.001

APTT, activated partial thromboplastin time; Fib, fibrinogen; Hct, hematocrit; HGB, hemoglobin; PLT, platelet count; Pre, preoperative; PT, prothrombin time;

WBC, white blood cell.
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A stackingmodel was built based on the combination of DT, ENet, KNN, LightGBM, LR, MLP RF, SVM, and XGBoost models. We adopted

Lasso regression as the meta-classifier for our comprehensive stacking model. After training, the stacking model was found to have higher

accuracy than any basic model mentioned above (Figure 3A).
Figure 2. Results of feature selection

(A) Venn diagram of feature intersections among six feature selection models and original features. Region 5 reflects the intersection of all methods.

(B) Details of features selected by each model. There are 35 features in total. Abbreviations: SVM-RFE, support vector machine recursive feature elimination; GA-

SVM, genetic algorithm support vector machine recursive; US, univariate screening; SA-SVM, simulated annealing support vector machine; Lasso, least absolute

shrinkage and selection operator.

6 iScience 27, 111106, November 15, 2024



Figure 3. AUC-ROC of models

(A) AUC-ROC of all possible combinations between feature selection group and machine learning models.

(B) AUC-ROC of SA-SVM + stacking on Test 1.
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Figure 3. Continued

(C) AUC-ROC of SA-SVM + stacking on Test 2.

(D) AUC-ROC of SA-SVM + stacking on Test 3.

(E) AUC-ROC of SA-SVM + stacking on Test 4. Though GA-SVM + stacking showed the highest AUC-ROC, SA-SVM + stacking was regarded as the best model

since it achieved an AUC-ROC of only 0.02 behind with two fewer features, which made it easier to adopt in clinical settings. US, univariate screening; Lasso, least

absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination, SA-SVM, simulated annealing support vector

machine recursive; GA-SVM, genetic algorithm support vector machine recursive. DT, decision tree; ENet, efficient neural network; KNN, k-nearest

neighbors; LightGBM, light gradient boosting machine; LR, logistic regression; MLP, multilayer perceptron; RF, random forest; SVM, support vector machine;

XGBoost, extreme gradient boosting.
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Model evaluation

Up to now, we acquired 8 feature groups and 10 machine learning models. By combining each feature group with a machine learning

model, 80 combinations were reached. We first evaluated all possible joints by AUC-ROC (Figure 3A). Four test datasets were all evalu-

ated, and the mean AUC-ROC was obtained for model evaluation. Of all combinations, GA-SVM + stacking showed the highest 0.886

AUC-ROC. It is followed by SA+SVM + stacking with an AUC-ROC of 0.884. Simply pouring all features without selection into the KNN

model led to the worst AUC-ROC, which was only 0.755. However, when figuring out the best combination, AUC-ROC was not the

only concern. Though GA-SVM + stacking led SA+SVM + stacking by 0.002, it required more features (18 versus 16 features) as illustrated

in Figure 2. Taking the clinal convenience of usage into consideration, SA-SVM + stacking was regarded as the best combination since it

achieved an almost optimized AUC-ROC with few features. Performance the best model measured by AUC-ROC could be found through

Figures 3B–3E.

For further analysis, the calibration curve and DCA were evaluated for the SA-SVM + stacking model in all 4 test datasets. DCA aimed to

evaluate the clinical benefit of the chosen prediction models (Figure 4). In DCA, the x axis refers to the range of threshold probabilities from

0% to 100%, indicating where a clinician would decide that the benefit of treatment outweighs the harm. The y axis represents the net benefit

reflecting the benefit of predicting true positivesminus the harm of predicting false negatives. In all 4 test datasets, the curve of the predictive

SA-SVM + stacking model was spotted to be almost entirely above the ’Treat All’ and ’Treat None’ lines with a threshold of more than 90%,

indicating that the model could provide better guidance in decision-making than either extreme approach.

The calibration curve measures how well the probabilities of the event correspond to the actual outcome in real cases. It is represented

with the predicted probability midpoints on the x axis and the observed event rates on the y axis. In our analysis of all 4 test datasets, the line of

the model deviated from the line of perfect calibration when predicted probabilities were lower, suggesting underestimations of the event

risk (Figure 5). However, as the predicted probabilities increased, the model’s calibration line approached closer and nearly coincided with

perfect calibration, implying a more accurate prediction for a higher risk of blood transfusion after PLIF. Also, the Brier score was lower than

0.01 in all test datasets, indicating that the prediction of the SA-SVM + stacking model was overall accurate.
Explainable model interpretation

The Shapley additive explanations (SHAP) approach was adopted to make the SA-SVM + stacking model explainable by quantifying the

impact of each feature on the prediction. As illustrated in Figure 6, both category variables (Figure 6A) and continuous variables (Figure 6B)

were analyzed using the SHAP approach. For category variables, patients with a greater number of fusions, more than 3 years from symptom

onset to surgery, presence of lumbar stenosis, history of previous surgery, dysfunction in body movement before surgery, hypertension, and

smoking-free were more prone to blood transfusion in PLIF. Also, patients with a longer time from admission to surgery, aged, lower hemo-

globin, higher albumin, higher PT, lower platelet count, and lower fibrinogen were linked to a higher probability of blood transfusion.

The study further interpreted the model by ordering the features in a descending manner based on their contribution to the established

predictive model. As shown in Figure 6C, the top 2 leading features were the number of levels of fusion and days from admission to surgery.

The following 4 contributing features included the time from symptom onset to surgery, age, hemoglobin, and albumin level before surgery.

As illustrated in Figure 6D, the clinical heatmap of the constructed model revealed both the distribution and influence of involved clinical

characteristics within the established model, enhancing the model’s interpretability and explainability.
Public-access web-based calculator

An interactive calculator has been developed to predict the likelihood of intraoperative blood transfusion in patients undergoing PLIF for

LDH. This user-friendly web-based calculator is publicly accessible and can be accessed at https://nicolazhang.shinyapps.io/TransFusion_

LDH_PLIF/ (Figure 7). Limited by the capacity of the website, it may take minutes to access the calculator. After that, users can input and

select relevant variables within the ‘‘LDH patients awaiting PLIF’’ category, and the predictions regarding the need for intraoperative blood

transfusion will be promptly displayed in the ‘‘Should intraoperative blood transfusion be prepared?’’ section.
DISCUSSION

As the world population steps into aging, LDHwill negatively affect more populations due to its degenerative nature. PLIF acts as a significant

approach in dealing with LDH, which can be further divided into open PLIF and MIS PLIF. Though MIS PLIF may have some advantages over
8 iScience 27, 111106, November 15, 2024
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Figure 4. Decision curve analysis of the SA-SVM + stacking model on 4 test datasets

In all test datasets, the curve of the predictive model was above the other two extreme lines with a threshold of more than 90%, suggesting that the SA-SVM +

stacking model provided better guidance in decision-making than either extreme approach.

(A–D) represents test datasets 1 to 4 respectively.
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open PLIF, there are conditions under which open PLIF is compulsory, especially in recurrent LDH or patients who cannot undergo MIS PLIF.

Complex LDH cases are more prone to experience open PLIF, its complexity may lead to intraoperative blood loss and require transfusion.

Predicting the need for blood transfusion during surgical procedures is critical. Previous studies combiningmachine learning and blood trans-

fusion focused on single-center data, or only adopt a singlemachine learning algorithm, lackingmulti-center evidence and advancedmachine

learning techniques.8,9 This study addresses this gap by developing a machine-learning model to predict intraoperative transfusion during

PLIF surgery, offering an approach to surgical planning.

Machine learning approaches have gained increasing popularity and have beenwidely used in themedical field, especially in the construc-

tion of predictive models.10–13 Also, machine learning has made revolutions in medicine, assisting medical diagnosis and drug develop-

ment.14–16 Advantages of machine learning over traditional biostatistical methods include the ability to deal with scaled data and flexibility

in handling diverse data types comprehensively.17 Despite a bunch of advantages, machine learning is also challenging in data preprocess-

ing, model construction, model explainability, and fit into clinical settings. Thus, in this multicenter retrospective study, we attempted to

develop a comprehensivemachine-learningmodel for predicting intraoperative blood transfusion in LDHpatients during PLIF. This approach

reflects the growing trend of using ensemble methods in clinical decision support systems, as stacking models outperform single algorithm

models in various medical research. Besides providing model interoperability to solve the black-box problem of machine learning, we step-

ped further by selecting the most optimizing model and enabled the research-to-bedside application by constructing a publicly accessible

web-based calculator.

The registeredmulticenter study collected data from 22 centers across China to enhance the representation. To optimize the performance

and potential in clinical application, we adopted an integrated method for model construction. 8 feature selections were utilized to ensure

that possible feature groups were included. Eight feature groups included those selected by Boruta, US, Lasso, SVM-RFE, SA-SVM, and GA-

SVM algorithm, raw features without selection, and the intersection of all feature groups. 9 basic machine learning models, which were DT,

ENet, KNN, LightGBM, logistic, MLP, RF, SVM, and XGBoost, and a stackingmodel were tested. To guarantee a high-quality comprehensive

machine learningmodel, a cross-grouping between feature selectionmethods andmachine learning algorithmswas performed, resulting in a

total of eighty combinations.
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Figure 5. Calibration curve of the SA-SVM + stacking model on 4 test datasets

The red line indicates the calibration of the SA-SVM + stacking model, with each point on the line depicting the observed event rate for the corresponding

predicted probability interval. The dotted line refers to perfect calibration, where predicted probabilities exactly match the observed event rates. The

proximity of the evaluated model’s calibration curve to this line is indicative of the model’s performance. The shaded area surrounding the calibration curve

provides the confidence interval.

(A–D) represents test datasets 1 to 4 respectively.
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The study recognized that simply containing all features may not contribute to the model, but even be harmful to model performance.

Applying feature selection approaches did help in improving the robustness of machine learning models. Among 80 combinations be-

tween feature groups and machine learning algorithms, the integrated stacking performed better than other basic models. The stacking

ensemble model is an integrated machine learning model composed of base learners or individual classifiers to form a meta-learner.18

In several previous studies, the robustness of stacking ensemble methods has been demonstrated to surpass that of individual basic

machine learning learners.19–21 The stacking model is gaining popularity and is even utilized for compound-protein binding affinity

prediction.22

In general, we aimed to build a model that is balanced between performance and computing cost, which performance is not the only

aspect we cared about. Computation cost was also taken into account, which could be represented as number of features in models in

this study. Although the GA-SVM + stacking has the highest AUC-ROC, SA-SVM was regarded as the optimized one for fewer features

and slightly compromised performance by 0.002. Developed in 2008 for parameter determination and feature selection in the SVM, the

goal of SA-SVM was to optimize parameter values while simultaneously identifying a subset of features that maintained the accuracy of

SVM23,24. The procedure of the SA-SVM approach could be accessed in the prior literature, in which the accuracy for classification was

also found to be ideal.25

For the evaluation in terms of DCA and calibration, our ensembled SA-SVM + stacking model performed well. The DCA curve of the

model mostly ran above the extreme cases with a threshold of more than 90%, revealing the model’s ability to guide clinical decision-mak-

ing. The observed calibration in test datasets suggested that while the SA-SVM + stacking model may not fit perfectly when the probability

of blood transfusion was low, it demonstrated reliable performance for higher probability predictions of events. The model’s reliability at

higher probabilities is valuable in clinical settings since patients with higher event risk may benefit more. Also, the overall low Brier score

validated the model’s utility, though the noted calibration imperfections shall be considered when adopting the predictive model into real-

world settings.
10 iScience 27, 111106, November 15, 2024



Figure 6. SHAP approach for model explainability and feature importance

(A) SHAP approach for category variables.

(B) SHAP approach for continuous features.

(C) Feature importance in descending order.

(D) Clinical heatmap of the integratedmodel. A clinical heatmap is a graphical representation tool used extensively inmedical research and clinical data analysis It

depicted the spread and influence of diverse clinical characteristics within the established comprehensive model, which aids in comprehending the

interconnections and contributions of various factors to the model’s predictive outcomes.
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The SHAP approach enabled our final SA-SVM + stacking model to be explainable. The most clinically relevant findings indicated that

intraoperative blood transfusion during PLIF for LDH patients was positively associated with the following factors: greater number of fusions,

delayed surgery (more than 3 years from symptom onset to surgery), longer time from admission to surgery, presence of lumbar stenosis,

history of previous surgery, preoperative dysfunction in body movement, older age, lower hemoglobin, higher albumin, and abnormal coag-

ulation parameters (higher PT, lower platelet count, and lower fibrinogen).
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Figure 7. Prediction made by the online calculator

The probability of intraoperative blood transfusion of the patient is 0.6713 from the comprehensive machine-learning model. Surgeons shall be prepared for

blood transfusion during surgery.
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These findings underscore the complexity of LDH, with the number of fusions, lumbar stenosis, previous surgery, and preoperative

dysfunction in body movement being indicative of surgical challenges that can lead to increased blood loss and require intraoperative blood

transfusion. For instance, complex adult deformity correction through multilevel spine fusion surgery is often linked with considerable blood

loss.26 A study found that lumbar spinal stenosis was associated with higher hidden blood loss in patients with rheumatoid arthritis.27 This

study suggests that performing surgery earlier may reduce the probability of requiring intraoperative blood transfusions, as delays can

complicate the disease, and more extensive surgical intervention would be needed.

Age was found to be an indicator. Older were more likely to require blood transfusion during PLIF, which aligns with previous research.28

However, another study recognized older age as a predictor for postoperative but not intraoperative blood transfusion.29 In older patients,

intraoperative transfusion was linked to a higher risk of postoperative delirium.30 Besides lower hemoglobin, preoperative coagulation status

is crucial, higher PT, lower platelet count, and lower fibrinogen correlate with an increased possibility of intraoperative blood transfusion.

Insufficient clotting ability would inevitably lead to increased blood loss, elevating the need for transfusion.

Albumin level reflects the nutrition status of individuals. Surprisingly, a higher albumin was associated with an increased probability of

transfusion in our study. A previous study in the cardiac field reported lower pre-operative albumin as a significant predictor of intraoperative

blood transfusion.31 Low albumin levels have been linked to worse outcomes in PLIF, with hypoalbuminemia associated with extended hos-

pital stays.32 Intraoperative blood loss independently predicted the need for albumin infusion following PLIF.33 In our study, low albumin

levels led to less intraoperative blood transfusion, which may result from preoperative preparation for patients in worse overall conditions.

More research is needed to further understand the behind-screen mechanism.

Though smoking did not emerge as a contributing factor to intraoperative blood transfusion, it is linked to greater blood loss and

increased transfusion needs in lumbar spinal surgery.34 Hypertension patients were also found to be more prone to transfusion during

PLIF, negatively impacting recovery rates.35 Moreover, a meta-analysis revealed that a history of smoking or hypertension was associated

with adjacent segment degeneration (ASD).36 Though sometimes intraoperative blood transfusion indicates complex surgical procedures
12 iScience 27, 111106, November 15, 2024
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and poor patient conditions, it can be beneficial for patient outcomes. Patients receiving transfusion had better outcomes when their hemo-

globin were maintained within the range of 7.5–11.5 g/dL compared to extreme values.37

In this study, we employed machine learning techniques to predict intraoperative blood transfusion during PLIF surgery, ensuring model

explainability through SHAP and optimizing for clinical use by developing a web-based calculator. Future research could explore validating

thismodel in different populations or regions, since patient characteristics andmedical practicesmay vary. Additionally, othermetrics beyond

blood transfusion could be explored using machine learning approaches to make full use of the clinical utility of predictive models.

Conclusion

In our study, we successfully constructed a comprehensive machine learning model for intraoperative blood transfusion prediction for LDH

patients in open PLIF surgery through a registered multicenter-based experience from China. The model was evaluated on a variety of test

datasets and showed robust performance. The SHAP approach guarantees the established model with explainability and could prompt us-

age in real-world conditions. A publicly accessible web calculator was set up to enable clinical usage.

Limitations of the study

The loading speed of the online calculator is slow due to the complexity of the integrated machine learning model. This may require pre-

loading action or will lead to delays in clinical settings. Future work should aim to optimize the model for quicker performance and explore

advanced approaches to improve clinical utility.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Clinical trial

Clinical trial identifier ClinicalTrials.gov ID: NCT05867732

Software and algorithms

R (v4.3.2) R CRAN https://cran.r-project.org/

Codes and datasets Zenodo https://zenodo.org/records/13954463

caret R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/caret/index.html

randomForest R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/randomForest/index.html

nnet R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/nnet/index.html

DALEX R package (4.3.2) R CRAN https://cran.r-project.org/web/packages/DALEX/index.html

rms R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/rms/index.html

glmnet R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/glmnet/index.html

ggplot2 R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/ggplot2/index.html

fastshap R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/fastshap/index.html

tidymodels R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/tidymodels/index.html

stacks R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/tidymodels/index.html

bonsai R package (v4.3.2) R CRAN https://cran.r-project.org/web/packages/bonsai/index.html

ComplexHeatmap R package (v4.3.2) Bioconductor https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A total of 6241 patients from 22 hospitals across China diagnosed with lumbar disc herniation and treated with PLIF were included. Among all

participants, there were 3050 (49%) females and 3191 (51%) males. In the machine learning model construction, they were randomly divided

into the training set (3,055) and 4 test sets, containing 1,031, 814, 623, and 718 participants respectively.
Patients selection

In this multi-center retrospective study registered with ClinicalTrials.gov (ID: NCT 05867732), inclusion criteria included: 1. Patients diagnosed

with LDH by imaging and examinations and accompanied by clinical symptoms; 2. Patients who have received PLIF treatment; 3. Complete

clinical records; 4. Blood test results prior to surgery, including blood routine, coagulation parameters, and liver and kidney function; and 5.

Patients without other obvious surgical complications. Exclusion criteria included: 1. Patients without LDH; 2. Patients not treated with PLIF; 3.

Accompanied by other obvious comorbidities or malignant tumors; 4. Lack of necessary medical records (>5% missing).
Basic and clinical characteristics

The basic characteristics, clinical conditions, and blood test results before surgery were collected. Basic characteristics included age, smok-

ing, and hypertension. Clinical conditions included the number of levels of fusion, time from symptom onset to surgery, time from admission

to surgery, lumbar spinal stenosis, function before surgery, previous surgery, American Society of Anesthesiologists (ASA) classification. Blood

test results before surgery contained hemoglobin, albumin, activated partial thromboplastin time (APTT), prothrombin time (PT), white blood

cell (WBC), platelet count, and fibrinogen.
Data preprocessing and variable selection

To address the issue of missing data, we employed the random forest approach to fill in the gaps. We then utilized multiple feature selection

techniques, including Boruta, univariate screening (US), least absolute shrinkage and selection operator (Lasso), support vector machine

recursive feature elimination (SVM-RFE), simulated annealing support vectormachine recursive (SA-SVM), and genetic algorithm support vec-

tor machine recursive (GA-SVM). Furthermore, we tested all features without any selection as well as the intersection of features selected by

the before-mentioned six methods.

The Boruta algorithm was chosen for variable selection based on its adaptability in handling missing values and noises in data. Boruta

algorithm acts as a wrapper around the Random Forest classification algorithm and has been recognized for its robustness in dealing with
16 iScience 27, 111106, November 15, 2024

http://ClinicalTrials.gov
http://ClinicalTrials.gov
https://cran.r-project.org/
https://zenodo.org/records/13954463
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/nnet/index.html
https://cran.r-project.org/web/packages/DALEX/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/fastshap/index.html
https://cran.r-project.org/web/packages/tidymodels/index.html
https://cran.r-project.org/web/packages/tidymodels/index.html
https://cran.r-project.org/web/packages/bonsai/index.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html


ll
OPEN ACCESS

iScience
Article
complex data from real-world scenarios.38 Lasso regression, another feature selection technique used in predictive modeling for machine

learning, has been widely adopted for variable selection.39–41 Its objective is to identify the factors and their associated regression weights

that result in a model optimized for minimum prediction error.42

The US was implemented following a cross-validation based on the SVM. Initially, an SVM model was developed and then trained using

5-fold cross-validation. The feature selection of the 5 SVMmodels were selected through the US. RFE, SA, andGAwere based on SVM aswell.

RFE is a wrapper-type feature selection algorithm. It operates by including all features from the training dataset first and eliminating them

successively until the desired number of features are left. SA, a leading stochastic search method,43 has been reported to be beneficial in

determining parameters and selecting features.23 GA was created as a strategy for optimization and has been shown to be more efficient

than traditional feature selection methods.44

Machine learning model construction and evaluation

The dataset was divided into a training set and four test sets based on different regions. Basic machine learning models were constructed

using 10-fold cross-validation, We developed ten machine learning algorithms, including decision tree (DT), efficient neural network

(ENet), k-nearest neighbors (KNN), light gradient boostingmachine (LightGBM), logistic regression (LR), multilayer perceptron (MLP), random

forest (RF), SVM, extreme gradient boosting (XGBoost), and Lasso meta-model based stacked ensemble model. The nine individual models

were constructed using the tidymodels R package.

The comprehensive stackingmodel was built using the stack R package. First, the training set is divided into several groups (usually 5 or 10).

A basic model, such as DT, is then fitted on 4/5 or 9/10 and used to predict the left group. The process is repeated for each group. Subse-

quently, the basic model is applied to the entire training dataset and predictions are made on the test set. This process was repeated for all

other basic models. The predictions from all basic models were used to create an ensemble model, which was then applied to the test set.

We combined 8 different feature groups, including 6 groups using different feature selection methods, all original features, and the inter-

section of features. We used 10 machine learning models and tested the performance on 4 external evaluation datasets. Performance was

evaluated comprehensively by the area under the curve of the receiver operating characteristic (AUC-ROC), calibration curve, and decision

curve analysis (DCA). AUC-ROC indicated the accuracy of prediction, the calibration curve could reflect calibration ability, and DCA provided

insights into the decision boundary in real-life settings. Finally, the model with the best balance of performance and computational efficiency

was selected to create a web-based calculator for predicting blood transfusion after PLIF.

Explainable machine learning approaches

Explainability was an issue for machine learningmodels since the workingmechanism and the correlation between the input and output were

unclear to users. To avoid the black-box nature of machine learning models, we applied the Shapley Additive Explanations (SHAP) approach

tomake the final optimizedmodel interpretable through the SHAPpackage in R. To be specific, SHAP is a game theoretic approach to explain

the output of machine learning models.45 SHAP interpretation was found to be in accordance with existing methods and applied to real data

in hospitals.46

Ethics approval and consent to participate

Our study was approved by the institutional review board of all participating institutions (main institution ethical number: 2022-IRB-04).

METHOD DETAILS

The Boruta algorithm was chosen for variable selection based on its adaptability in handling missing values and noises in data. Boruta algo-

rithm acts as a wrapper around the RandomForest classification algorithm and has been recognized for its robustness in dealingwith complex

data from real-world scenarios. Lasso regression, another feature selection technique used in predictive modeling for machine learning, has

been widely adopted for variable selection. Its objective is to identify the factors and their associated regression weights that result in amodel

optimized for minimum prediction error.

The US was implemented following a cross-validation based on the SVM. Initially, an SVM model was developed and then trained using

5-fold cross-validation. The feature selection of the 5 SVMmodels were selected through the US. RFE, SA, andGAwere based on SVM aswell.

RFE is a wrapper-type feature selection algorithm. It operates by including all features from the training dataset first and eliminating them

successively until the desired number of features are left. SA, a leading stochastic searchmethod, has been reported to be beneficial in deter-

mining parameters and selecting features. GA was created as a strategy for optimization and has been shown to be more efficient than tradi-

tional feature selection methods.

Boruta algorithm

Boruta algorithmcreates copies of all features in the dataset called shadow features and randomizes them to remove any associations with the

target variable. It applies a random forest classifier to the dataset, extended with these shadow features. The algorithmmeasures the impor-

tance of each original feature compared to the best of the shadow features, usually based on the Z score of feature importance. Features that

are statistically more important than the best shadow feature are deemed important. The process is iteratively repeated until all features are

either confirmed or rejected as important or the algorithm reaches a specified limit of iterations.
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US

In the US feature selection, each feature is tested individually to assess its impact on the target variable. The selection process often involves

statistical tests like t-tests for continuous data or chi-squared tests for categorical data to determine the significance of each feature. Features

that meet a certain statistical significance threshold are selected, while others are discarded.
SA-SVM

Initialization starts with a random set of features. The cost function evaluation is performed by evaluating the performance of the SVMwith the

current feature set using a cost function. After that, it generates a ‘‘neighbor’’ solution by slightly altering the feature set, adding or removing

features for instance. Evaluation is again performed on this new set using the same cost function. Referring to the acceptance criterion, it

decides whether to move to the new set based on the cost and a probabilistic function. Repeat the above process until convergence criteria

are met.
GA-SVM

The GA-SVM algorithm starts with a population of random feature sets. Each feature set is evaluated using the SVMmodel. It selects feature

sets for reproduction based on accuracy. Crossover andmutation are performedby applying genetic operators like crossover (mixing features

of two sets) and mutation (randomly altering features) to create a new generation. The evaluation, selection, and genetic operation steps are

repeated until a stopping criterion is met.
Lasso

Lasso adds a regularization term to the regression model that penalizes the absolute size of the regression coefficients. During the training

process, less important features’ coefficients are shrunk toward zero. Features whose coefficients becomeexactly zero are eliminated from the

model, effectively performing feature selection.
SVM-RFE

The SVM-RFE algorithm first trains an SVMmodel on the dataset. It ranks features based on the absolute value of their coefficients in the SVM

model and removes the least important features, which are those with the smallest coefficients. Re-train the SVMmodel with the reduced set

of features and repeat the ranking and elimination steps. Continue this process until the desired number of features is reached or another

stopping criterion is met.
QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis in this study was conducted using R (version 4.3.2). Statistically significant was considered as a p-value less than 0.05. The tidy-

models R package was utilized for individual model construction and the stack R package was used for the comprehensive stacking model.
ADDITIONAL RESOURCES

This was registered with ClinicalTrials.gov (ID: NCT05867732).
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