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ABSTRACT

Objective: Automated clinical phenotyping is challenging because word-based features quickly turn it into a

high-dimensional problem, in which the small, privacy-restricted, training datasets might lead to overfitting.

Pretrained embeddings might solve this issue by reusing input representation schemes trained on a larger

dataset. We sought to evaluate shallow and deep learning text classifiers and the impact of pretrained embed-

dings in a small clinical dataset.

Materials and Methods: We participated in the 2018 National NLP Clinical Challenges (n2c2) Shared Task on co-

hort selection and received an annotated dataset with medical narratives of 202 patients for multilabel binary

text classification. We set our baseline to a majority classifier, to which we compared a rule-based classifier and

orthogonal machine learning strategies: support vector machines, logistic regression, and long short-term

memory neural networks. We evaluated logistic regression and long short-term memory using both self-trained

and pretrained BioWordVec word embeddings as input representation schemes.

Results: Rule-based classifier showed the highest overall micro F1 score (0.9100), with which we finished first in

the challenge. Shallow machine learning strategies showed lower overall micro F1 scores, but still higher than

deep learning strategies and the baseline. We could not show a difference in classification efficiency between

self-trained and pretrained embeddings.

Discussion: Clinical context, negation, and value-based criteria hindered shallow machine learning approaches,

while deep learning strategies could not capture the term diversity due to the small training dataset.

Conclusion: Shallow methods for clinical phenotyping can still outperform deep learning methods in small im-

balanced data, even when supported by pretrained embeddings.
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INTRODUCTION

Background and significance
Clinical narratives stored in electronic health records show consider-

able variability in format and quality, with their natural language some-

times being described as idiosyncratic.1 On the one hand, structured

data in electronic health records are often created for administrative

purposes only and are thus biased toward those diagnoses and proce-

dure codes relevant for billing. On the other hand, semantic tagging of

unstructured clinical texts, generally considered the most detailed source

of information, is not commonly used and requires prospective plan-

ning.2 Nevertheless, there is an increasing demand to unlock unstruc-

tured data to foster primary and secondary uses.3

One of such secondary uses would be to support observational

research such as cohort, cross-sectional, and case-control studies.4 A
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system that analyzes the content of clinical narratives to recruit

patients according to selection criteria could help mitigate sampling

bias (eg, by creating a matched control group in a case-control study

or by drawing both case and control groups from large cohorts).5

To process such data for secondary uses, natural language proc-

essing (NLP) techniques must be employed to structure the meaning

behind human language into a computer-readable representation.

However, researchers cannot easily reuse NLP models from the gen-

eral domain on clinical text due to significant linguistic differences,

especially its tendency toward brevity, often characterized as tele-

graphic style.

A common challenge in building such systems for the clinical do-

main is the lack of public corpora of annotated clinical narratives

due to privacy concerns. While the availability of huge data silos in

the general domain sparked the big data revolution by using com-

plex neural networks to model the diversity of the human language

with human-like accuracy, the same has not yet happened in small

data scenarios, in which models have commonly been trained from

scratch. To address that, there has been a rise of interest in transfer

learning methods to reuse models trained on large collections in re-

stricted settings with minimal annotation effort.

Transfer learning
One can transfer knowledge from a larger dataset using various

approaches, depending on whether the source and target labels are

available and what is reused.6 One common approach is the so-

called feature representation transfer, in which an input representa-

tion scheme learned in an unsupervised way in a large corpus is

reused in a small annotated dataset.6 Nonetheless, Goodfellow et al7

argue that the popularity of this approach has declined, because

deep learning achieves human-level performance when large labeled

datasets are available and Bayesian methods outperform pretraining

on small data.

In the NLP area, Mikolov et al8 eased feature representation

transfer with the release of the word2vec embeddings, trained on

around 100 billion words from a Google News corpus. However,

clinical text typically shows a low coverage rate in this model due to

rare words and misspellings, which has driven the search for alterna-

tive input representation schemes.9

Bojanowski et al10 proposed enriching word vectors with sub-

word information to take morphology into account. In parallel, Jou-

lin et al11 released fastText, an efficient implementation of

multinomial logistic regression to allow large-scale linear text classi-

fication, in clear contrast to the trend of deep learning approaches.

More recently, the National Center for Biotechnology Information

used fastText to train word embeddings on around 30 million docu-

ments from PubMed and the MIMIC-III (Medical Information Mart

for Intensive Care)12 clinical dataset and released BioWordVec.13,14

Taken together, these resources may help address clinical idiosyn-

crasies that hinder transfer learning from big data to the clinical do-

main.

Clinical text classification
Clinical text classification, also referred to as text-based patient phe-

notyping,15–17 aims at automatically assigning a finite set of labels

to raw clinical text.18,19 Historically, several strategies have been

employed to address this problem, from rule-based systems, known

to provide near-optimal results,20 to systems based on machine

learning (ML), including support vector machines (SVMs),18 naive

Bayes,21 and decision trees.21–24 More recently, approaches based

on deep learning have been studied, including long short-term mem-

ory (LSTM) using hand-engineered features,25 as well as convolu-

tional neural networks (CNNs) with rule-extracted trigger phrases26

and word2vec embeddings.27

When introducing BioWordVec, Chen et al14 showed that CNNs

trained with fastText embeddings obtained from PubMed and

MIMIC-III improved results of a clinical text classification task

when compared with models trained with embeddings from each

corpus separately or without embeddings at all, even though no

comparison was made to embeddings trained on the target dataset.

Roberts28 evaluated the impact of word2vec embeddings trained on

multiple corpora (including the target dataset) by applying LSTM

and CNN models to 2 downstream tasks: a concept recognition task

and a multiclass text classification task, respectively. He showed

that models with embeddings trained on several corpora outper-

formed models with embeddings trained on a single collection but

did not consider embeddings with subword information.

2014 i2b2/UTHealth shared task track 2
To promote NLP research in the health domain, the National Center

for Biomedical Computing has been organizing since 2006 the Infor-

matics for Integrating Biology and Bedside (i2b2) challenges (https://

www.i2b2.org/). The 2014 i2b2/UTHealth shared task track 2 ex-

plored the problem of clinical text classification in small data and

asked participants to classify patients according to 8 heart disease

risk factors (diabetes mellitus, cardiovascular disease [CAD], hyper-

tension, hyperlipidemia, obesity, smoking, family history, and

medication).

Participating teams explored several strategies, from rule-based

systems to hybrid systems, with different combinations of features

and machine learning algorithms.29 The abundance of hybrid sys-

tems led the organizers to conclude there was no consensus about

which approaches were better suited for the task. They also found

that pseudo-tables encoded in text and CAD indicators were espe-

cially hard for most of the teams, resulting in comparatively low F1

scores.

The best team in 2014 obtained an overall micro F1 score of

0.9276 by reannotating two-thirds of the training corpus and then

training SVM models associated with custom-built lexica to classify

triggers for each risk factor.30 Documents were preprocessed to

identify section headers, negation markers, modality words, and

other output from the ConText tool,31 but did not use other syntac-

tic and semantic cues. They also showed that such fine-grained

annotations could have helped other automated systems.

Kotfila and Uzuner32 performed a systematic comparison of fea-

ture spaces, weighting schemes, kernels, and training data sizes re-

garding the efficiency of SVM classifiers trained on the same data.

They reported that minimal feature spaces (only lowercased alpha-

betic tokens) performed as well as combinations with lexically nor-

malized tokens and semantic concepts extracted via MetaMap;33 tf-

idf was not a significant factor to determine efficiency (compared

with a count-based weighting scheme); and linear kernels were not

statistically significantly worse than radial kernels. Finally, they con-

cluded that larger corpora might not be necessary to achieve high ef-

ficiency with SVM models.

In 2018, the Department of Medical Informatics of the Harvard

Medical School assumed the organization of what is now called National

NLP Clinical Challenges (n2c2) (https://n2c2.dbmi.hms.harvard.edu).
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The first track focused on the problem of cohort building for clinical

trials and framed it as a multilabel binary text classification task.

Research problem
It is challenging to automatically classify clinical text because

word-based features quickly turn this task into a high-dimensional

problem. On top of that, large corpora are seldom shared due to

ethical concerns, while training complex models on small datasets

may lead to overfitting. Pretrained embeddings might solve this is-

sue by reusing unsupervised input representation schemes trained

on a larger dataset and fine-tuning them using a small annotated

dataset.

Therefore, considering (1) previous satisfactory results with shal-

low methods11,32 that challenge approaches based on deep learning

and (2) the recent availability of pretrained embeddings with sub-

word information in the clinical domain14 that supports training

deeper models in small data scenarios, we decided to participate in

the 2018 n2c2 shared task track 1 and use its data to contribute

results that may help elucidating these topics. To the best of our

knowledge, this is the first study to assess the BioWordVec

pretrained embeddings in a text classification task apart from the

original work.

Objective
We sought to evaluate shallow and deep learning text classifiers and

the impact of pretrained embeddings with subword information in a

small clinical dataset.

Hypothesis
We hypothesize that shallow strategies for text classification outper-

form deep learning strategies in small clinical datasets and that

pretrained embeddings increase classification efficiency in the clini-

cal domain.

MATERIALS AND METHODS

Data
We participated in the 2018 n2c2 shared task track 1 and received a

small training dataset (70%) with 202 annotated files (patients) con-

taining 887 medical narratives written in English. Two months

afterward, we received an extra test set (30%) with 86 new patients

(377 narratives) so that we could run our systems and send our

results.

Each file had a sequence of 2-5 narratives and was annotated at

the patient level with “met” or “not met” for 13 criteria (see

Table 1). Of the 13 criteria, 6 were highly imbalanced in the dataset

(1 class with <10% of the 202 training samples), 1 semibalanced

(with “met” only in approximately 20% of the samples), and the

remaining 6 balanced (minority class with at least one-third of the

examples). Moreover, 2 criteria were value-dependent: Hba1c and

Creatinine.

Evaluation metrics
Participating teams were evaluated using precision, recall, and F1

score across the thirteen criteria and the 2 possible classification out-

puts: “met” and “not met.” Overall F1 was the simple mean of the

individual F1 scores for the classes “met” and “not met.” The final

metric used for ranking was overall micro F1 score in the test set.

We additionally considered “met” and “not met” as positive and

negative outcomes, respectively, and thus also report overall accu-

racy per criterion.

Preprocessing
We preprocessed input text as follows: (1) removal of spurious

whitespaces (as defined by the Java programming language), (2) sen-

tence detection using a customized rule-based algorithm that deals

with common abbreviations and artificial new lines, (3) tokenization

by the Unicode Text Segmentation algorithm (http://unicode.org/

reports/tr29/) as implemented by Lucene 7.5.0 (https://lucene.

apache.org/), (4) lowercasing, (5) stop words removal using the

SMART34 system’s list of 524 common words, and (6) punctuation

removal.

Word embeddings
We used the BioWordVec (https://github.com/ncbi-nlp/BioSentVec)

embeddings with subword information pretrained on PubMed and

MIMIC-III as available online. To evaluate its impact, we also

trained word embeddings from scratch in the target dataset (n2c2)

using fastText with the same hyperparameters: window size of 20,

learning rate of 0.05, negative sample size of 10, and maximum

length of word n-grams set to 6.

Methods
Table 2 shows an overview of the assessed strategies. We evaluated

only orthogonal (nonhybrid) strategies to ease comparison among

methods. Our baseline was a majority classifier, which always

assigns the dominant class seen in training data. We also built a

rule-based classifier (RBC) to better understand the data and the

noise present therein. We then trained ML-based classifiers using

Table 1. Overview of the target classification criteria in the 2018

n2c2 shared task track 1

Criterion Balance Description

Abdominal Balanced History of intra-abdominal

surgery.

Advanced-cad Balanced Presence of advanced cardiovascu-

lar disease.

Alcohol-abuse Imbalanced Current weekly alcohol use over

recommended limits.

Asp-for-mi Semibalanced Use of aspirin to prevent myocar-

dial infarction.

Creatinine Balanced Serum creatinine above the normal

limit.

Dietsupp-2mos Balanced Use of dietary supplements in the

last two months.

Drug-abuse Imbalanced Drug abuse.

English Imbalanced The patient can speak English.

Hba1c Balanced Glycated hemoglobin levels be-

tween 6.5% and 9.5%.

Keto-1yr Imbalanced Ketoacidosis in the last year.

Major-diabetes Balanced Major complication due to

diabetes.

Makes-decisions Imbalanced The patient can make decisions by

himself.

Mi-6mos Imbalanced Myocardial infarction in the last

six months.

Balanced criteria had the minority class with at least one-third of samples;

the semibalanced criterion Asp-for-mi had “met” in around 20% of samples

and imbalanced criteria had 1 class with <10% of the training samples.
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SVMs, logistic regression (LR), and long short-term memory

(LSTM) recurrent neural networks. Additionally, we explored both

self-trained (SELF) and pretrained embeddings (PRE) with subword

information for approaches using word embeddings as the input rep-

resentation scheme (LR and LSTM). We contributed the results of

RBC, SVMs, and a variant of LSTM (described in Supplementary

Appendix A) as official runs for participation at the n2c2 shared

task.

Our extensible Java framework is available on GitHub at https://

github.com/bst-mug/n2c2 under the open-source Apache License

version 2.

Rule-based classifier

We developed a rule-based approach using both regular expressions

and textual markers, extended in 4 criteria (Advanced-cad, Asp-for-

mi, Major-diabetes, and Mi-6mos) with negation and context detec-

tion. For the value-dependent criteria Creatinine and Hba1c, we

extracted the corresponding value using a regular expression and

compared it to manually defined thresholds, namely 1:4

< creatinine < 10 and 6:5 � hba1c � 9:5. For the remaining cri-

teria, we manually identified typical text snippets from the training

set (such as “elevated creatinine”) that, when found, would classify

a patient for a given criterion. We enriched these text markers with

negative “lookaround” regular expressions to invalidate the marker

when it referred to (1) a negated context (eg, “denies ischemia”), (2)

drug allergies (“allergy to aspirin”), (3) distant history (“STEMI in

2008”); or (4) family history (“FH with NSTEMI”).

Support vector machines

We explored SVMs trained on a bag-of-words representation of the

input documents using tf-idf (term frequency – inverse document

frequency). As text is typically linearly separable,18 we then applied

SVM with a linear kernel. We used the Weka35 3.8.2 framework

with a LibSVM36 wrapper to train the SVM classifier. We could not

significantly improve the overall micro F1 score in the training set by

using any of the following: (1) cost hyperparameter optimization37

(default: 1), (2) a lower number of features to avoid overfitting (de-

fault: 1000), or (3) L2 normalization on the SVM objective function.

Thus, we kept the default values wherever possible.

Logistic regression

LR is a linear machine learning method that is equivalent to a

single-layer perceptron (a single-layer feedforward neural network)

with a logistic function as output instead of a step function. We

trained LR using fastText with 100 epochs, learning rate of 0.50,

window size of 5, cross entropy loss function, and a single thread to

make results reproducible. We represented the input text as the aver-

age of either self-trained word embeddings (SELF-LR) or pretrained

BioWordVec embeddings (PRE-LR).

Long short-term memory

We explored a deep learning approach based on a recurrent neural

network composed of LSTM cells,38 a type of architecture that is

generally used to model time series events,25 but can also be used to

model natural language for domain-specific tasks.39,40 Our network

had a single LSTM layer with 64 cells and a RNN output layer with

sigmoid activation and cross entropy loss function. We employed

the Deeplearning4j (https://deeplearning4j.org) 0.9.1 framework to

model the LSTM neural network. We used Adam41 for gradient-

based optimization with a learning rate of 0.02 and trained the net-

work for 25 epochs with a dropout rate of 50% to prevent overfit-

ting. Similar to LR, we represented the input text as a sequence of

either self-trained word embeddings (SELF-LSTM) or pretrained

BioWordVec embeddings (PRE-LSTM).

RESULTS

Tables 3 and 4 depict overall F1 score and accuracy per criterion, on

the test set of the proposed methods when compared with the base-

line, a majority classifier. We present detailed results by target class

in Supplementary Appendix B.

Baseline
As expected, individual F1 scores for the majority classifier did not

exceed 0.5000, but due to an imbalance among target classes (the

most extreme example being Keto-1yr), accuracy and overall micro

F1 scores reached high values, thereby setting the baseline at F1 ¼
0.7608 and A¼0.7648.

Rule-based classifier
With respect to individual F1 scores and accuracies, the RBC showed

better efficiency than the baseline for every criterion except Alcohol-

abuse, on which the RBC had a single false positive due to a missed

negation. Rules improved Dietsupp-2mos the most, with absolute

accuracy (F1) increase of 0.4070 (0.5800). Imbalanced criteria such

as Alcohol-abuse and Makes-decisions presented the worst F1

scores; however, owing to micro-averaging, such criteria did not sig-

nificantly affect the overall efficiency. Conversely, we observed the

lowest accuracies in the criteria Advanced-cad, Creatinine, and Ma-

jor-diabetes.

Support vector machines
Considering individual F1 scores, SVMs performed equal or better

than the baseline on each criterion; however, considering individual

accuracies, SVMs performed worse than the baseline for Asp-for-mi

due to an increase in false negatives (shown as a decrease in recall

for “met” and precision for “not met” in Supplementary Table B3).

Imbalanced criteria such as English, Alcohol-abuse, and Makes-deci-

sions presented the lowest F1 scores. Considering accuracy, Die-

tsupp-2mos had the lowest results, followed by Abdominal and

Hba1c.

Table 2. Overview of the evaluated methods and their

characteristics

Acronym Classification method Word embeddings

Baseline Majority N/A

RBC Rule-based classifier N/A

SVM Support vector machine N/A

SELF-LR Logistic regression Self-trained

PRE-LR Logistic regression Pretrained

SELF-LSTM Long short-term memory Self-trained

PRE-LSTM Long short-term memory Pretrained

Pretrained word embeddings were obtained from BioWordVec.

N/A: not applicable.
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Logistic regression
Both SELF-LR and PRE-LR showed equal or better F1 scores than

the baseline for all criteria (except Drug-Abuse for PRE-LR); consid-

ering accuracy, SELF-LR (PRE-LR) had better results on 4 (6)

criteria: Advanced-cad, Creatinine, Dietsupp-2mos, and Major-dia-

betes (Abdominal, Advanced-cad, Creatinine, Dietsupp-2mos,

Hba1c, and Major-diabetes); slightly worse results on 3 (2) criteria:

Abdominal, Asp-for-mi, and Hba1c (Asp-for-mi and Drug-abuse);

and was in a tie in the remaining 6 (5) criteria. Similar to SVM, im-

balanced criteria had the lowest F1 scores and Hba1c showed the

lowest accuracy results for both SELF-LR and PRE-LR.

Long short-term memory
With respect to individual F1 scores, SELF-LSTM (PRE-LSTM)

showed worse results than the baseline in the criteria Drug-Abuse

and Mi-6mos (Alcohol-Abuse, Drug-Abuse, Makes-decisions, and

Mi-6mos). Conversely, with respect to the accuracy, SELF-LSTM

(PRE-LSTM) showed better accuracy results than the baseline in the

criteria Advanced-cad, Dietsupp-2mos, Hba1c, and Major-diabetes

(Advanced-cad and Major-diabetes). As expected, SELF-LSTM

(PRE-LSTM) mostly improved F1 score for balanced criteria, with

Dietsupp-2mos (Major-diabetes) showing the most substantial abso-

lute increase in F1 score: 0.2518 (0.2102).

DISCUSSION

The results in the previous section showed that RBC had the highest

classification efficiency, followed by shallow methods (SVM and

LR), which had similar scores among themselves and above the

baseline. Apart from overall macro F1 score, the deep learning

method (LSTM) showed results worse than the baseline. We could

not show however a significant difference in classification efficiency

of using pretrained word embeddings when compared with embed-

dings trained on the n2c2 dataset.

We further analyzed false positives and false negatives to obtain

deeper insights about the data, discuss our limitations, and propose

future work.

Table 3. Overall F1 score per criterion on the test set of the evaluated strategies when compared with the baseline, a majority classifier

Criterion Baseline RBC SVM SELF-LR PRE-LR SELF-LSTM PRE-LSTM

Abdominal 0.3944 0.8720 0.6028 0.5681 0.5959 0.4930 0.5146

Advanced-cad 0.3435 0.7902 0.7281 0.7109 0.6838 0.5865 0.4788

Alcohol-abuse 0.4911 0.4881 0.4911 0.4911 0.4911 0.4911 0.4881

Asp-for-mi 0.4416 0.7095 0.6063 0.5962 0.6060 0.4948 0.4416

Creatinine 0.4189 0.8071 0.6532 0.7180 0.7399 0.4788 0.5322

Dietsupp-2mos 0.3385 0.9185 0.5814 0.6150 0.6261 0.5903 0.4640

Drug-abuse 0.4911 0.6910 0.4911 0.4911 0.4881 0.4850 0.4881

English 0.4591 0.8644 0.4591 0.4591 0.4591 0.5253 0.5176

Hba1c 0.3723 0.9382 0.6267 0.5393 0.5770 0.4682 0.5137

Keto-1yr 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

Major-diabetes 0.3333 0.8369 0.7555 0.7518 0.7420 0.4883 0.5435

Makes-decisions 0.4911 0.4911 0.4911 0.4911 0.4911 0.4911 0.4881

Mi-6mos 0.4756 0.8752 0.6815 0.4756 0.4756 0.4658 0.4691

Overall (macro) 0.4270 0.7525 0.5899 0.5698 0.5751 0.5045 0.4953

Overall (micro) 0.7608 0.9100 0.8035 0.8017 0.8063 0.7362 0.7377

Overall F1 score is the simple mean of the F1 scores for the classes “met” and “not met.”

PRE-LR: pretrained logistic regression; PRE-LSTM: pretrained long short-term memory; RBC: rule-based classifier; SELF-LR: self-trained logistic regression;

SELF-LSTM: self-trained long short-term memory; SVM: support vector machine.

Table 4. Overall accuracy per criterion on the test set of the evaluated strategies when compared with the baseline, a majority classifier

Criterion Baseline RBC SVM SELF-LR PRE-LR SELF-LSTM PRE-LSTM

Abdominal 0.6512 0.8837 0.6512 0.6279 0.6628 0.5233 0.6047

Advanced-cad 0.5233 0.7907 0.7326 0.7209 0.6977 0.5465 0.5465

Alcohol-abuse 0.9651 0.9535 0.9651 0.9651 0.9651 0.9535 0.9651

Asp-for-mi 0.7907 0.8605 0.7558 0.7674 0.7791 0.7442 0.7791

Creatinine 0.7209 0.8372 0.7209 0.7674 0.7907 0.5698 0.6395

Dietsupp-2mos 0.5116 0.9186 0.5814 0.6163 0.6279 0.6047 0.4651

Drug-abuse 0.9651 0.9651 0.9651 0.9651 0.9535 0.9651 0.9651

English 0.8488 0.9419 0.8488 0.8488 0.8488 0.8372 0.8488

Hba1c 0.5930 0.9419 0.6512 0.5814 0.6047 0.6047 0.5465

Keto-1yr 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Major-diabetes 0.5000 0.8372 0.7558 0.7558 0.7442 0.5349 0.5465

Makes-decisions 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651

Mi-6mos 0.9070 0.9651 0.9302 0.9070 0.9070 0.9070 0.9070

Overall 0.7648 0.9123 0.8095 0.8068 0.8113 0.7504 0.7522

Overall accuracy is calculated with “met” and “not met” being considered as positive and negative outcomes, respectively.

PRE-LR: pretrained logistic regression; PRE-LSTM: pretrained long short-term memory; RBC: rule-based classifier; SELF-LR: self-trained logistic regression;

SELF-LSTM: self-trained long short-term memory; SVM: support vector machine.
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False positives and negatives analysis
A high textual diversity compared with the amount of available bal-

anced training data contributed to setting the limits of our

approaches. For example, although in our context “chest pain”

could be considered a synonym for angina (and thus a predictor for

Advanced-cad), it was commonly used in negated sentences such as

“denies [. . .] chest pain,” “negative for [. . .] chest pain,” and “chest

pain free.” To keep our methods orthogonal, we did not explore the

impact of rule-based or automated negation detection.

Similarly, context also played a role. For instance, “renal trans-

plant” was a common indicator for an intra-abdominal surgery (and

thus a predictor for Abdominal); we found, however, that its mean-

ing was sometimes changed by nearby words, as in the excerpt

“postponing her renal transplant.” Even though a bag-of-bigrams

approach might have helped, training such a model would have

needed more data due to the larger dimensionality.

A specific case of context is family history. It showed more

prominently in the selection criteria Makes-decisions (in which

“dementia” would have been an important feature if it had not been

used in sentences such as “Father had dementia”) and Mi-6mos (in

which “MI” was an indicator for myocardial infarction not only for

the patient but also for relatives, such as in the sentence “father died

of MI”).

Another common source of errors for our strategies were value-

based criteria such as Hba1c and Creatinine. To handle numbers in

ML strategies without rule-based normalization, we would have

needed (1) a large amount of data to capture all values and (2) a

nonlinear approach to model both a low and a high threshold. Con-

versely, we also needed to define a clear classification threshold for

rule-based approaches, for which we found inconsistent examples in

the training set (eg, creatinine in serum for values close to 1.4 mg/dL).

Limitations
It is known that rule-based approaches do not generalize well and

present a maintenance burden. To avoid that, we kept our markers

to the bare minimum and used regular expressions only when

needed. Together with automated negation and context detection,

we believe our method could be reused in other English-speaking

institutions with minimal effort. Meanwhile, our shallow

approaches (SVM and LR) are language and domain independent;

therefore, their reuse in other institutions could be even simpler.

Likewise, we selected features for the SVM classifier based on

word frequency only. A better approach would have been to employ

output-based or statistical-based methods such as chi-square and in-

formation gain. The lack of feature selection may have been the rea-

son the criterion Dietsupp-2mos had the lowest SVM results: there

is a vast quantity of dietary supplements, often unique in the collec-

tion. Nevertheless, our LR approach used a 200-dimensional word

vector as input representation, a vector space which should keep se-

mantically-close words nearby, and similarly showed low results for

the mentioned criteria.

Furthermore, we did not completely investigate the impact of

text normalization. Even though our ML-based methods employed

basic tokenization, lowercasing, and stemming, we did not resolve

short forms nor misspellings. Our manual data inspection and the

high RBC results showed that these were not crucial issues in this

dataset, but other domains and languages might require further

preprocessing.

Finally, some documents had pseudo-tables for laboratory data,

from which we could not extract the proper pieces of information.

Our manual analysis of training data showed, however, that physi-

cians would usually emphasize abnormal laboratory results in the

text and thus we could capture it using straightforward strategies. In

a real clinical setting, structured data may be directly accessible

from laboratory systems and thus constitute a better exploratory

avenue.

Future work
Future work might explore the dependence between criteria (eg, an

episode of myocardial infarction in the last 6 months would trigger

not only Mi-6mos, but potentially also Advanced-cad and Asp-for-

mi). Experienced NLP researchers might also experiment with sen-

tence parsing to unlock the meaning behind sentences such as “BUN

and creatinine were 32 and 1.2.”

We opted for independent strategies to ease method comparison

and promote interpretability in the shared-task scenario. A real sys-

tem could benefit from a hybrid approach, using (1) an ensemble of

methods (eg, weighted linear combination of signals provided by

each approach), (2) stacking strategies (eg, SVM trained on top of

count features extracted by the rule-based approach), or (3) a mixed

approach (eg, RBCs for imbalanced and value-based criteria and

ML-based classifiers for more balanced and complex criteria).

Finally, recent developments in transfer learning that allow reuse

of full NLP models trained on large data may help the clinical do-

main more than input pretraining alone. Special attention should be

devoted to Google’s BERT42 and Universal Sentence Encoder,43

built on top of the ULMFiT44 and the ELMo45 models, with

pretrained models released not only for the general domain but quite

recently also for the clinical domain, the so-called ClinicalBERT.46

CONCLUSION

We participated in the 2018 n2c2 shared task track 1 and used its

dataset to evaluate shallow and deep learning strategies and the im-

pact of recently released pretrained embeddings for multilabel text

classification in small clinical data. We also built a rule-based classi-

fier to provide us with a deeper understanding of the underlying

data. We submitted to the shared task the results of 3 orthogonal

strategies (RBC, SVM, and a variant of LSTM) to support method

comparison. We also contributed our extensible Java framework to

the community under an open-source license.

Our rule-based classifier showed the highest overall micro F1

score of 0.9100, with which we finished first in the shared task.

Shallow strategies showed lower overall micro F1 scores (SVM:

0.8035, SELF-LR: 0.8017, PRE-LR: 0.8063), but still higher than

the deep learning strategy (SELF-LSTM: 0.7362, PRE-LSTM:

0.7377) and the baseline (0.7608) set to a majority classifier. We

could not show however a significant difference in classification effi-

ciency of using pretrained word embeddings when compared with

embeddings trained on the n2c2 target dataset.

Together with the inter-rater agreement scores released by the

task organizers, our top-ranking RBC contributed to practical upper

bounds for each selection criteria, which might guide other research-

ers with directions for further improvement. It also provides the

community with a reliable method for clinical phenotyping, which

can also be reused in a fine-grained way and thus allow further

experiments with deep learning approaches.

We also discussed that clinical context, negation, and value-

based criteria hindered shallow machine learning approaches. Even

though pretrained word embeddings could not alleviate these issues,
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we see potential in novel transfer learning techniques that allow re-

use not only of feature representation schemes but also full classifi-

cation models, thus bridging the gap between big and small data.

Taken together, our study suggests that rule-based and shallow

methods for clinical phenotyping can still outperform deep learning

methods in small imbalanced data, even when augmented with

pretrained embeddings with subword information.

FUNDING

MO is funded by the Brazilian National Research Council - CNPq (project

number 206892/2014-4).

AUTHOR CONTRIBUTIONS

MO analyzed false positives/negatives and implemented the code

framework and the rule-based, support vector machine, and logistic

regression approaches. AK analyzed the data, implemented zoning,

and presented the work at the conference. MK implemented the

long short-term memory and the bidirectional long short-term mem-

ory approach. ZK analyzed false positives/negatives, revised the

manuscript, and gave overall clinical feedback.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENTS

We thank our group leader, Stefan Schulz, and Alexandra Pomares for the ar-

ticle revision. This work is part of the IICCAB (Innovative Use of Information

for Clinical Care and Biomarker Research) project within the K1 COMET

Competence Center CBmed, funded by the Austrian Federal Ministry of

Transport, Innovation and Technology; the Austrian Federal Ministry of Sci-

ence, Research and Economy; the Austrian state of Styria (Department 12,

Business and Innovation); the Styrian Business Promotion Agency; and the Vi-

enna Business Agency. The COMET program is executed by the Austrian Re-

search Promotion Agency.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting informa-

tion from textual documents in the electronic health record: a review of re-

cent research. Yearb Med Inform 2008; 17: 128–44.

2. Hebal F, Nanney E, Stake C, et al. Automated data extraction: merging

clinical care with real-time cohort-specific research and quality improve-

ment data. J Pediatr Surg 2017; 52 (1): 149–52.

3. Safran C, Bloomrosen M, Hammond WE, et al. Toward a national frame-

work for the secondary use of health data: an American medical informat-

ics association white paper. J Am Med Inform Assoc 2007; 14 (1): 1–9.

4. Mann CJ. Observational research methods. Research design II: cohort,

cross sectional, and case-control studies. Emerg Med J 2003; 20 (1): 54–60.

5. Geneletti S, Richardson S, Best N. Adjusting for selection bias in retro-

spective, case–control studies. Biostatistics 2008; 10 (1): 17–31.

6. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data

Eng 2010; 22 (10): 1345–59.

7. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA:

MIT Press; 2016.

8. Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word repre-

sentations in vector space. arXiv 2013 Sep 7 [E-pub ahead of print].

9. Arnold S, Gers FA, Kilias T, et al. Robust named entity recognition in idio-

syncratic domains. arXiv 2016 Aug 24 [E-pub ahead of print].

10. Bojanowski P, Grave E, Joulin A, et al. Enriching word vectors with sub-

word information. Trans Assoc Comput Linguist 2017; 5: 135–46.

11. Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text clas-

sification. In: Proceedings of the 15th Conference of the European Chap-

ter of the Association for Computational Linguistics: Volume 2, Short

Papers; 2017: 427–31. https://www.aclweb.org/anthology/papers/E/E17/

E17-2068/ Accessed May 3, 2019.

12. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible

critical care database. Sci Data 2016; 3 (1): 160035.

13. Zhang Y, Chen Q, Yang Z, et al. BioWordVec, improving biomedical

word embeddings with subword information and MeSH. Sci Data 2019; 6

(1): 52.

14. Chen Q, Peng Y, Lu Z. BioSentVec: creating sentence embeddings for bio-

medical texts. arXiv 2019 Jun 19 [E-pub ahead of print].

15. Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to

identifying patient phenotype cohorts using electronic health records. J

Am Med Inform Assoc 2014; 21 (2): 221–30.

16. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health

records. J Am Med Inform Assoc 2013; 20 (1): 117–21.

17. Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyp-

ing: challenges, recent advances, and perspectives. J Am Med Inform

Assoc 2013; 20: e206–11.

18. Joachims T. Text categorization with support vector machines: learning

with many relevant features. In: N�edellec C, Rouveirol C, eds. Machine

Learning: ECML-98. Berlin: Springer; 1998: 137–42.

19. Lewis DD, Schapire RE, Callan JP, et al. Training algorithms for linear

text classifiers. In: Proceedings of the 19th Annual International ACM

SIGIR Conference on Research and Development in Information

retrieval-SIGIR ’96. Zurich: ACM Press; 1996: 298–306.

20. Chiticariu L, Li Y, Reiss FR. Rule-based information extraction is dead!

Long live rule-based information extraction systems! In: Proceedings of

the 2013 Conference on Empirical Methods in Natural Language Process-

ing. Seattle: Association for Computational Linguistics; 2013: 827–32.

http://www.aclweb.org/anthology/D13-1079 Accessed January 11, 2019.

21. Wilcox A, Hripcsak G. Classification algorithms applied to narrative

reports. Proc AMIA Symp 1999; 1999: 455–9.

22. Khan A, Baharudin B, Lee LH, et al. A review of machine learning algo-

rithms for text-documents classification. J Adv Inf Technol 2010; 1: 4–20.

23. Yang Y. An evaluation of statistical approaches to text categorization. Inf

Retr 1999; 1 (1/2): 69–90.

24. Schütze H, Hull DA, Pedersen JO. A comparison of classifiers and docu-

ment representations for the routing problem. In: Proceedings of the

18th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval. New York: ACM; 1995:

229–37.

25. Lipton ZC, Kale DC, Elkan C, et al. Learning to diagnose with LSTM re-

current neural networks. arXiv 2017 Mar 21 [E-pub ahead of print].

26. Yao L, Mao C, Luo Y. Clinical text classification with rule-based features

and knowledge-guided convolutional neural networks. BMC Med Inform

Decis Mak 2019; 19 (S3): 71.

27. Karimi S, Dai X, Hassanzadeh H, et al. Automatic diagnosis coding of ra-

diology reports: a comparison of deep learning and conventional classifi-

cation methods. In: BioNLP. 2017: 328–32.

28. Roberts K. Assessing the corpus size vs. similarity trade-off for word

embeddings in clinical NLP. In: Proceedings of the Clinical Natural Lan-

guage Processing Workshop (ClinicalNLP). 2016: 54–63. https://aclweb.

org/anthology/papers/W/W16/W16-4208/ Accessed June, 25 2019.

29. Stubbs A, Kotfila C, Xu H, et al. Identifying risk factors for heart disease

over time: overview of 2014 i2b2/UTHealth shared task Track 2. J

Biomed Inform 2015; 58: S67–77.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 11 1253

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz149#supplementary-data
https://www.aclweb.org/anthology/papers/E/E17/E17-2068/
https://www.aclweb.org/anthology/papers/E/E17/E17-2068/
http://www.aclweb.org/anthology/D13-1079
https://aclweb.org/anthology/papers/W/W16/W16-4208/
https://aclweb.org/anthology/papers/W/W16/W16-4208/


30. Roberts K, Shooshan SE, Rodriguez L, et al. The role of fine-grained anno-

tations in supervised recognition of risk factors for heart disease from

EHRs. J Biomed Inform 2015; 58: S111–9.

31. Harkema H, Dowling JN, Thornblade T, et al. Context: an algorithm for

determining negation, experiencer, and temporal status from clinical

reports. J Biomed Inform 2009; 42 (5): 839–51.

32. Kotfila C, Uzuner €O. A systematic comparison of feature space effects on

disease classifier performance for phenotype identification of five diseases.

J Biomed Inform 2015; 58: S92–102.

33. Aronson AR. Effective mapping of biomedical text to the UMLS Metathe-

saurus: the MetaMap program. Proc AMIA Symp 2001; 2001: 17–21.

34. Salton G. The SMART Retrieval System—Experiments in Automatic Doc-

ument Processing. Upper Saddle River, NJ: Prentice-Hall; 1971.

35. Hall M, Frank E, Holmes G, et al. The WEKA data mining software: an

update. SIGKDD Explor Newsl 2009; 11 (1): 10–8.

36. Chang C-C, Lin C-J. LIBSVM. ACM Trans Intell Syst Technol 2011; 2

(27): 1–27.

37. Hsu C-W, Chang C-C, Lin C-J. A practical guide to support vector classifi-

cation. http://citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.224.

4115&rep¼rep1&type¼pdf Accessed November 28, 2018.

38. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput

1997; 9 (8): 1735–80.

39. Gao S, Young MT, Qiu JX, et al. Hierarchical attention networks for in-

formation extraction from cancer pathology reports. J Am Med Inform

Assoc 2017; 25: 321–30.

40. Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in

electronic health records. Proc Conf 2016;2016:473–82. https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC5119627/ Accessed May 10, 2017.

41. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv

2017 Jan 30 [E-pub ahead of print].

42. Devlin J, Chang M-W, Lee K, et al. BERT: pre-training of deep bidirec-

tional transformers for language understanding. In: Proceedings of the

2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers). 2019: 4171–86. https://aclweb.org/anthology/

papers/N/N19/N19-1423/ Accessed June 29, 2019.

43. Cer D, Yang Y, Kong S, et al. Universal Sentence Encoder. arXiv 2018

Apr 12 [E-pub ahead of print].

44. Howard J, Ruder S. Universal language model fine-tuning for text classifica-

tion. In: Proceedings of the 56th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers). 2018: 328–39. https://

www.aclweb.org/anthology/papers/P/P18/P18-1031/ Accessed May 3, 2019.

45. Peters M, Neumann M, Iyyer M, et al. Deep contextualized word repre-

sentations. In: Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics, Human Lan-

guage Technologies, Volume 1 (Long Papers). 2018: 2227–37.

46. Alsentzer E, Murphy J, Boag W, et al. Publicly available clinical BERT

embeddings. In: Proceedings of the 2nd Clinical Natural Language Proc-

essing Workshop. 2019: 72–8. https://aclweb.org/anthology/papers/W/

W19/W19-1909/ Accessed June 29, 2019.

1254 Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 11

http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi&equals;10.1.1.224.4115&rep&equals;rep1&type&equals;pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119627/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119627/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://www.aclweb.org/anthology/papers/P/P18/P18-1031/
https://aclweb.org/anthology/papers/W/W19/W19-1909/
https://aclweb.org/anthology/papers/W/W19/W19-1909/

	ocz149-TF1
	ocz149-TF2
	ocz149-TF3
	ocz149-TF4
	ocz149-TF5
	ocz149-TF6
	ocz149-TF7

