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Abstract: To exploit negatively interacting pairs of cancer somatic mutations in chemotherapy re-
sponses or synthetic cytotoxicity (SC), we systematically determined mutational pairs that had
significantly lower paclitaxel half maximal inhibitory concentration (IC50) values. We evaluated
407 cell lines with somatic mutation profiles and estimated their copy number and drug-inhibitory
concentrations in Genomics of Drug Sensitivity in Cancer (GDSC) database. The SC effect of
142 mutated gene pairs on response to paclitaxel was successfully cross-validated using human
cancer datasets for urogenital cancers available in The Cancer Genome Atlas (TCGA) database. We
further analyzed the cumulative effect of increasing SC pair numbers on the TP53 tumor suppressor
gene. Patients with TCGA bladder and urogenital cancer exhibited improved cancer survival rates
as the number of disrupted SC partners (i.e., SYNE2, SON, and/or PRY) of TP53 increased. The
prognostic effect of SC burden on response to paclitaxel treatment could be differentiated from
response to other cytotoxic drugs. Thus, the concept of pairwise SC may aid the identification of
novel therapeutic and prognostic targets.

Keywords: synthetic cytotoxicity; conditional synthetic lethality; paclitaxel; chemotherapy response;
urogenital cancer

1. Introduction

Despite the presence of targeted therapies and increasing number of genomic biomark-
ers, cytotoxic chemotherapy, which damages cells and causes rapid cell death, remains
the gold standard for most treatment of most cancers [1–4]. Paclitaxel, one of the most
commonly used cytotoxic agents, is a mitotic inhibitor used for chemotherapeutic treatment
of various cancers [5]. In recent years, several attempts have been made to identify biomark-
ers that affect paclitaxel responses in cancer cell lines and cancer patients using genetic
profiles such as mRNA expression and exome sequencing [6–8]. Unlike target-specific
drugs, cytotoxic drugs result in highly variable patient outcomes, making the prediction
of responsiveness challenging using genomic profiles, which can otherwise provide some
insights into nonspecific antiproliferative or cytotoxic effects [9].

Currently, several anticancer therapies exploit somatic mutations and oncogene over-
expression, independent of tumor dependence on specific oncogenic pathways for sur-
vival [10–13]. Although oncogene-targeting inhibitors are effective for some cancer patients,
not all cancer cells express these targets. As another treatment option, synthetic lethal
approach targets one of the negative genetic interactions in the second site, which function-
ally disrupts both the genes simultaneously, leading to cancer cell death [10,11]. Negative
genetic interaction-based approaches can be expanded for using chemotherapeutic agents
based on response data such as the half-maximal inhibitory concentration (IC50) or the half-
maximal effective concentration (EC50). Synthetic cytotoxicity (SC), a conditional synthetic
lethal interaction, increases the cytotoxicity of chemotherapeutic agents when functions of
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specific gene pairs are disrupted simultaneously. SC does not occur when only one gene is
disrupted. Interestingly, Li Xuesong et al. (2014) performed a series of yeast experiments,
including synthetic genetic and plate assays, to show that digenic disruption due to the
TEL1/ATM mutation leads to SC with camptothecin, a topoisomerase I inhibitor [14].

Many computational approaches that exploit the theory of synthetic lethality have
been used to identify new therapeutic targets [12,15,16]. For example, Jang et al. used
deep learning modeling to predict lethality based on an RNA regulatory network from
in vitro screening data [17]. Moreover, computationally inferred candidate synthetic lethal
pairs from various algorithms have already been organized, and a database has been
constructed [18]. However, to the best of our knowledge, none of the computational
approaches have taken advantage of the theory of SC that enhances chemotherapeutic
drug responses. The highly variable nature of chemotherapy responses prevents prediction
of personalized responses. Therefore, we hypothesize that in silico methods can identify
SC pairs to aid the development of novel anticancer therapies.

Here, we focused on the chemotherapeutic agent paclitaxel, and using Genomics of
Drug Sensitivity in Cancer (GDSC) cell line data, we identified SC mutational pairs that
increase the anticancer effect of paclitaxel via conditional synthetic lethality. Moreover, we
validated these findings using The Cancer Genome Atlas (TCGA) genome profiles and
clinical data. Among many identified candidate SC pairs, we tested the SC partner genes
of TP53, an important tumor suppressor gene with a high frequency of somatic mutation,
to validate SC and the prognostic effects in patients with bladder urothelial and uterine
corpus endometrial carcinoma included in TCGA.

2. Results
2.1. SC Network of Paclitaxel

We analyzed 407 GDSC cancer cell lines to identify somatic mutation profiles, copy
number estimations, and IC50 values for paclitaxel [19]. This led to the identification of
142 SC pairs of mutated genes (consisting of 95 genes) by integrating the mutational and
drug sensitivity profiles (Figure 1). A paclitaxel SC network was created by defining genes
as nodes and positive SC interactions as edges. The SC network consisted of three main
subnetworks and two singleton SC pairs with an average degree of 2.989 (Figure 2). The
size of a node represents a network degree. Of the 95 genes, AHNAK2 exhibited the highest
degree of 13, followed by PLEC and ANKRD30A, both with a degree of 12.

2.2. SC Gene Pairs Were Enriched for Cell Death and Chemical Responses

To investigate the characteristics of these SC interactions, functional enrichment
analysis was performed for the SC network genes with Gene Annotation Tool to Help
Explain Relationships (GATHER) network inference. Figure 3 illustrates the result of
functional enrichment analysis using Gene Ontology (GO) and the GATHER with network
inference. Notably, the three clusters were significant based on enrichment analysis. The
first cluster was enriched in terms related to cell proliferation and developmental processes.
The second cluster was enriched in GO terms for chemical responses. The third cluster was
enriched in the GO terms associated with cell death.
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Figure 1. Workflow scheme for inferring synthetic cytotoxicity. All cancer cell lines were divided into four groups and 

defined based on the disruption of two genes. A synthetic cytotoxic pair is defined when both disrupted genes have sig-

nificantly lower IC50 than those in the other three groups. 

Figure 1. Workflow scheme for inferring synthetic cytotoxicity. All cancer cell lines were divided into
four groups and defined based on the disruption of two genes. A synthetic cytotoxic pair is defined
when both disrupted genes have significantly lower IC50 than those in the other three groups.
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Figure 3. Functional enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene
ontology for 95 genes involved in synthetic cytotoxic interactions. These genes were significantly enriched in terms related
to cell death and response to chemical and biological processes.

2.3. SC Burden

An SC interaction was defined as a better response to paclitaxel (i.e., lower IC50 value)
when both genes in an interacting pair were disrupted (details in method section). By
counting the number of SC pairs, we classified the 407 samples into four SC burden groups
(i.e., Group 1 with no SC pair (N = 112), Group 2 with one to two SC pairs (N = 103),
Group 3 with three to nine SC pairs (N = 86), and Group 4 with more than nine SC pairs
(N = 106; Figure 4). As expected, the higher the SC burden, the lower the median log
IC50 value for paclitaxel (Group 1 = −1.953, Group 2 = −3.061, Group 3 = −3.808, and
Group 4 = −4.313). We determined statistical significance using the Kruskal–Wallis test
(p < 0.001). In the four SC burden groups, the frequency rankings of SC pairs counted in
patients are listed in Supplementary Table S1.
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Figure 4. In the four groups divided according to the number of synthetic cytotoxic pairs, groups
with more pairs had lower IC50 values. There were 112, 103, 86, and 106 samples in Group 1 to
Group 4, respectively.

2.4. TP53 SC Pairs

TP53 is a very important tumor suppressor gene with high mutational frequencies in
many cancers. TP53 forms SC pairs with three genes, spectrin repeat-containing nuclear
envelope protein 2 (SYNE2), negative regulatory element-binding protein (SON), and
PRY (Figure 2). SYNE2 helps maintain the structural integrity of the nucleus [20]. When
both TP53 and SYNE2 were disrupted, the response to paclitaxel was significantly better
compared with that of the other three cases (p < 0.05, Wilcoxon test; Figure 5a). The
reactome pathway database showed that related pathways for SYNE2 included the cell
cycle, mitosis, and meiosis. Additionally, SON promotes splicing of several cell cycle and
DNA-repair transcripts containing weak splice sites [21] (Figure 5b). GO analysis revealed
that SON may be involved in the cell cycle, mitotic cytokinesis, microtubule cytoskeleton
organization, mRNA processing, and RNA splicing. PRY forms a cytotoxic pair with TP53,
however, no biological process terms or pathways are known. However, this gene was
excluded from subsequent analysis because PRY gene disruption was not observed in
TCGA patients and was located on the Y chromosome (Figure 5c). Additionally, compared
to the 142 SC gene pairs, the PRY–TP53 pair had the least statistical significance.

2.5. Survival Analysis of Prognostic Subgroups of TP53 SC Network

Improved response to a chemotherapeutic agent is believed to aid the therapeutic
effect in patients. Thus, to validate the effect of SC in the TP53 network, we considered the
urogenital system in the TCGA database, including bladder urothelial (N = 406) and uterine
corpus endometrial (N = 545) carcinomas, which are commonly treated with paclitaxel
chemotherapy [22]. Clinical characteristics in both cancer patient groups are listed in
Table 1. We hypothesized that SC pairs and their increased burden would improve patient
prognoses. We constructed a gene disruption matrix using somatic mutation and copy
number estimation data available from TCGA. To confirm whether the accumulation of SC
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pairs in TP53 subnetworks was related to patient prognosis, we divided the patients into
two groups according to the presence or absence of TP53 disruption. We only analyzed the
SC interactions of SYNE2 and SON with TP53, as no PRY mutations were identified in the
TCGA database.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 5. (a–c) Three genes that exert a synergistic effect on TP53 responses to paclitaxel. When the 

SYNE2, SON, and PRY genes digenically disrupt TP53, the IC50 value of paclitaxel decreases sig-

nificantly. 

2.5. Survival Analysis of Prognostic Subgroups of TP53 SC Network 

Improved response to a chemotherapeutic agent is believed to aid the therapeutic 

effect in patients. Thus, to validate the effect of SC in the TP53 network, we considered the 
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When the SYNE2, SON, and PRY genes digenically disrupt TP53, the IC50 value of paclitaxel
decreases significantly.
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Table 1. Patient characteristics of TCGA validation dataset, bladder urothelial carcinoma and uterine
corpus endometrial carcinoma.

Clinical Variables
Bladder Cancer Uterine Cancer

TP53 (+) TP53 (−) TP53 (+) TP53 (−)

N 212 194 199 272

Age 63.73 (9.87) 63.01 (11.87) 61.98 (9.88) 58.31 (11.24)

Survival
Alive 151 145 178 252
Dead 61 49 21 45

Gender
Male 153 149 0 0

Female 59 47 199 272

Stage
I 0 2 98 189
II 63 67 20 25
III 74 64 63 50
IV 75 59 18 8

The survival effect (overall survival) was analyzed according to the presence or
absence of individual co-mutations to examine gene-induced synergistic effects in combina-
tion with TP53 on individual patient prognosis (Figure 6). Patients with bladder urothelial
carcinoma were divided into four groups according to the mutations in SYNE2 and TP53.
There were 48 patients with mutations in SYNE2 and TP53, 88 patients with mutations in
SYNE2, 150 patients with mutations in TP53, and 184 patients with wild-type versions of
both genes (Figure 6a). Cox regression with Firth’s penalized likelihood method was used
for patients with mutations in SYNE2 and TP53, as this was the reference group. Compared
with the group with mutations in SYNE2 and TP53, the hazard ratio and p-value of wild-
type, TP53 mutant, and SYNE2 mutant groups were 2.40 and 0.047, 2.67 and 0.021, and
2.68 and 0.092, respectively. In the TP53 and SON pair, there were no significant differences
between each group, however, the hazard ratio of each group was greater than 1. The
same method was applied to patients with uterine corpus endometrial carcinoma. When
the TP53 and SYNE2 mutant groups were referenced, the TP53 group had a p value of
0.094 and a hazard ratio of 2.70. The SYNE2 and wild-type groups were not significantly
different, however, the hazard ratio was greater than 1. With the SON and TP53 mutant
group as the reference, the hazard ratios of the wild-type group were 4.51 (p = 0.184) and
8.43 (p = 0.033), respectively, for the TP53 mutant group, and 9.54 (p = 0.041) for the SYNE2
mutant group.

Figure 7 illustrates the Kaplan–Meier curves for the patients with bladder urothelial
(Figure 7a,b) and uterine corpus endometrial (Figure 7c,d) carcinoma, according to the
cumulative disruption of SYNE2 and SON with (Figure 7a,c) and without (Figure 7b,d) TP53
mutation. Red lines represent wild-type SYNE2 and SON, green lines indicate a mutation
in one of the genes, and blue lines indicate disruption of both genes. While the TP53
mutations (Figure 7a,c) were noted in both cancer types, accumulation of SYNE2 and SON
SC pairs showed better prognosis according to the results of Cox regression with Firth’s
penalized likelihood method (p < 0.05). However, patients without the TP53 mutation
(Figure 7b,d) did not show any difference in prognosis due to cumulative disruption of
SYNE2 and SON (p > 0.05). There were no differences in cumulative disruption of SYNE2
and SON in the TP53 nondisrupted group. The number of patients analyzed over time are
listed in the risk table under the Kaplan–Meier graph.
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Figure 6. Survival curves according to the events of pair genes constituting synthetic cytotoxicity. (a) Patients with
disruption in TP53 and SYNE2 mutations in bladder cancer. (b) Disruption in TP53 and SON mutations in bladder cancer.
(c) Patients with disruption in TP53 and SYNE2 mutations in uterine cancer. (d) Disruption in TP53 and SON mutations in
uterine cancer.

To confirm the statistical significance of the SC burden with the pathologic stage,
multivariate Cox proportional hazard analysis was performed (Supplementary Table S2).
Patients without TP53 mutations did not show statistically significant results for survival
analysis, regardless of stage significance. Only TP53 mutant patients with an SC burden
consistent with the univariate analysis showed significant results for survival analysis. In
TP53 mutant bladder cancer, the p value of the SC burden was 0.031 and the hazard ratio
was 0.397, while in TP53 mutant uterine cancer, the p value of the SC burden was 0.035 and
the hazard ratio was 0.237.
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2.6. Robustness of Synthetic Cytotoxic Pairs in Chemotherapy Agents

To assess the robustness of the synthetic cytotoxic pairs to paclitaxel, we tested whether
the responses to other drugs were significantly different according to the pair burden. A
total of 142 SC pairs were divided into four groups according to the burden, and the distri-
bution of cytotoxic agent response was confirmed. Differences in the IC50 values according
to the burden were visualized as boxplots for eight drugs: bleomycin, docetaxel, doxoru-
bicin, epothilone B, etoposide, gemcitabine, pyrimethamine, and vinorelbine (Figure 8).
Differences in IC50 values are indicated by the p value for the Wilcoxon test above the
boxplot. Our results suggest that the paclitaxel SC pairs can help distinguish the response
of other cytotoxic agents.
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3. Discussion

Here, we propose a method for the identification of SC pairs that increase the sensitiv-
ity to chemotherapeutic agents, when functions of two genes are disrupted simultaneously.
Unlike target-specific drugs, cytotoxic drugs result in highly heterogeneous responses
making it difficult to predict patients’ responsiveness [1]. Machine learning has been
used to predict drug responses based on genetic profiles [23–26]. However, most drugs
with good prediction performance are target-specific, while most drugs with poor pre-
diction performance are cytotoxic [9]. Additionally, the identification of biomarkers for
predicting responses to cytotoxic agents that cause mutations or copy number changes
in the GDSC database has been challenging [27]. As part of our investigation of negative
genetic interactions, we proposed a methodology for inferring SC from a genetic profile to
deduce gene pairs that can distinguish responses to a specific cytotoxic agent. The synthetic
cytotoxic pair we identified in this study showed a prognostic value in the real patient
TCGA database. Moreover, we showed that SC against paclitaxel can robustly differentiate
responses to other cytotoxic agents.

Cytotoxic agents remain widely used despite the existence of various cancer thera-
peutic strategies such as targeted therapies and immunotherapy [23]. Cytotoxic agents are
inevitably prescribed if targeted therapy is unavailable or if a patient has advanced-stage
cancer [1]. Additionally, due to unpredictable therapeutic effects, most cytotoxic agents
are often used in combination therapies [28,29]. In selecting a combinatory cytotoxic agent,
our method can be utilized as an alternative method of personalized medicine based on
an individual’s genetic profile. Selection of an anticancer treatment strategy according
to an individual gene mutation and dose adjustment can improve patient prognoses and
minimize side effects.

Several studies have used machine learning to predict the response to cancer drugs [29–33].
This advanced predictive model successfully predicts drug responses based on genomic
data. Meanwhile, our simple methodology approach based on an existing concept of SC is
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also advantageous. Due to the selection of a large number of features (genes) compared to
a small data sample and the difference between the cell line and the primary tumor, the
machine learning for a complex predictive model (such as deep learning and XGBoost)
may be prone to overfitting. However, our approach has been successful with other
chemotherapy agents and been verified using patient data from TCGA.

Our SC inference method was designed to predict response to cytotoxic agents. Most
cytotoxic agents target complex and heterogeneous processes such as cell cycle and mi-
tosis [34,35]. Paclitaxel is a mitotic inhibitor that rapidly kills dividing cancer cells [5].
Notably, the synthetic cytotoxic genes identified in this study were associated with cell
death and responses to chemicals, despite neither being markers for drug responses. More-
over, both SYNE2 and SON, which form important SC interactions with TP53, are involved
in the cell cycle [20,21]. Although a single defect in a gene involved in the cell cycle can-
not be used to predict drug response, SC, which increases the dimension of the genetic
profile, can be used to predict responses to cytotoxic agents reflecting the composition
of the complex cell cycle. Studies showing that the tumor mutational burden does not
predict cytotoxic chemotherapy responses further support this observation [36,37]. This
pair-wise approach can help to identify novel biomarkers and improve the prediction
based on a single biomarker, more so, since tumors are heterogeneous and have polyclonal
drug-resistant properties [38].

The GDSC database provides a mutational profile for 1001 cell lines and IC50 values
for 265 drugs. TCGA is also a large database that provides multiomics data along with
the clinical information of real patients. We have shown that although the two databases
are built for different purposes, the information available on them can be linked in a
complementary manner [39]. We identified a novel biomarker using the concept of SC
and the information available on the GDSC database and verified the effect on patient
prognosis using the TCGA database.

The TP53 mutation is an important biomarker for tumor recurrence, progression,
and prognosis in urogenital cancer [40,41]. Although the TP53 is an important predictive
biomarker, developing an exploitative therapeutic strategy has been difficult. However,
SC exploits the highly mutated TP53 in an unconventional way that allows for the de-
velopment of novel therapeutic strategies by exploiting other genes. For response to
paclitaxel, both SON and SYNE2 genes were found to increase the drug cytotoxicity when
disrupted with the TP53 gene. Likewise, identification of a novel negative genetic inter-
action based on frequently mutated genes (e.g., KRAS) may aid the development of new
cancer therapeutic strategies.

However, it is important to note that differences in the cancer microenvironment may
affect drug responses and thus, the available cell line data. Additionally, the whole exome
sequencing pipeline of TCGA and variant calling using single nucleotide polymorphism
(SNP) arrays result in differences in the coverage area. For example, the PRY, which forms
SC with TP53, was not found in the TCGA database. The difference in these platforms also
affects the subsequent results of the analysis. Our results were analyzed by increasing the
dimension of a single genetic biomarker. Thus, genes with low mutational frequencies are
unlikely to produce significant results in SC. We analyzed the prognosis of the SC network
in TCGA bladder and uterine cancer, focusing on the TP53 gene due to its high frequency.
However, the patients’ prognosis to paclitaxel is not related only to the different mutational
pairs but is the result of a complex network and compensatory mechanisms. Rather than
the burden of the SC pair, more research on advanced approaches using the network should
be conducted. Therefore, we need to do more research on advanced approaches using
the SC network in the future. There may also be tissue-specific properties that cannot be
accounted for in mutation profiles. Given that this method is data intensive, it was not
possible to analyze specific tissue types alone. Moreover, patients listed on TCGA were not
exclusively prescribed paclitaxel; nevertheless, in uterine cancer, paclitaxel was the most
used drug. Therefore, it cannot be guaranteed that the prognostic effect of the SC burden
is to the responsiveness of paclitaxel alone. In TCGA database, paclitaxel was the most
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prescribed drug for uterine cancer; moreover, we confirmed the predictive power of the SC
burden, which predicts the response of other chemotherapy agents.

Herein, we identified synthetic cytotoxic gene pairs that led to an increase in the
cytotoxicity of the chemotherapeutic agent, paclitaxel, when the functions of two genes
were disrupted simultaneously. Of these, the TP53 subnetwork of synthetic cytotoxic pairs
could differentiate among prognoses of patients with uterine, bladder, and urogenital
cancer found in the TCGA. However, the paclitaxel SC pairs showed significantly different
responses compared to response to other cytotoxic chemotherapies. Thus, cytotoxic drug
biomarkers and SC pairs may be useful to facilitate a better-informed prescription of
cytotoxic chemotherapeutic agents, associated with responses that are difficult to predict.

4. Materials and Methods
4.1. Cancer Cell Line Data

We downloaded molecular profiles of 1001 cancer cell lines from the COSMIC cell line
project (https://cancer.sanger.ac.uk/cell_lines, version 83) [42], including the Affymetrix
SNP6 array for somatic mutation profiles and copy number alterations preprocessed
by the Caveman, Pindel, and PICNIC algorithms [43–45]. Only variants located in the
cDNA region were used. The variants were filtered out based on the data from the
NHLBI GO Exome Sequencing Project (frequency < 0.00025) and the 1000 Genomes project
(frequency < 0.0014) to remove sequencing artifacts and germline variants [46]. SNPs with
minor allele frequency were removed.

4.2. Gene Disruption in Cancer Cell Line Project

Variant Effect Predictor (VEP) provided by Ensembl was used to annotate the SIFT
score and consequence information for each variant [47,48]. Copy number estimation
was derived from the PICNIC algorithm. Homozygous gene deletions were defined as
dysfunctional. For drug response data, the natural log IC50 values for all paclitaxel-treated
cell lines were downloaded from the GDSC (http://www.cancerrxgene.org/) [19,27]. There
were 407 samples with copy number estimation, somatic mutation profiles, and IC50 values
for paclitaxel. The log IC50 values ranged from −6.68 to 2.17, with a median of 3.117 ± 1.91.

4.3. Somatic Mutation Profiles in Primary Tumors

We downloaded the somatic mutation data from the TCGA GDC Data Portal
(https://portal.gdc.cancer.gov/) [22]. Variant calls from the MuTect2 pipeline were used
in this study [24]. The information needed for further analysis of the somatic mutations
was annotated using VEP. We only focused on somatic mutations in TCGA tumor-normal
matched samples in urogenital, bladder urothelial, and uterine corpus endometrial carcino-
mas [25,26]. We used 406 and 471 patients with bladder and uterine cancer, respectively, for
clinical variables and somatic mutation profiles. In accordance with the NCCN guidelines,
patients with bladder and uterine cancer were treated with paclitaxel.

4.4. Building Binary Disruption Gene Matrix

The somatic mutation profile and copy number alterations were used to determine
the disruption of the gene. A gene with intolerant missense mutations (SIFT < 0.05) or loss
of function (nonsense, frameshift, start loss, or splice site region mutation) was classified
as a disrupted gene. From the copy number alteration data, when gene deletions were
homozygous, they were defined as disrupted genes. Finally, a disruption binary matrix
composed of genes and samples was constructed.

4.5. Identification of Synthetic Cytotoxic Interactions

The workflow scheme for our analysis process is illustrated in Figure 1. For all
possible combinations of gene pairs, the Wilcoxon test was used to evaluate the differences
in paclitaxel IC50 values. We divided the samples into four groups according to the presence
of loss of function mutations for two genes (i.e., one group with loss of function in both

https://cancer.sanger.ac.uk/cell_lines
http://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/
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genes, two groups with loss of function in each gene independently, and a group with
wild-type versions of both genes). Tests were performed on genes disrupted in more than
5% of samples. The test was performed only if there were at least 2.5% of the samples
in each group. For each gene pair, the Wilcoxon test was performed three times for the
group in which both genes were disrupted and in the other three groups. For the gene
pair, a synthetic cytotoxic pair was defined when the group with a disruption in two genes
showed significantly lower IC50 values than the other groups, based on a Wilcoxon test
and p value of 0.05.

4.6. Synthetic Cytotoxic Network for Paclitaxel

Genes defined as SC pairs were analyzed using the igraph software package [49]. The
synthetic cytotoxic network was visualized using the Gephi program [50]. For network
visualization, each gene node was colored by the modularity class deduced by the Louvain
method community detection algorithm [51]. Since TP53 is an important tumor suppressor
gene that is highly mutated in various cancer types, we prioritized analyzing the genes
that form SC with TP53.

4.7. Functional Enrichment Test

To confirm the function of the inferred gene pairs, we used the gene ontological
biological process term and the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way [52,53]. GATHER is an online tool for functional enrichment analysis that interprets
through enriched functions in input genes (https://changlab.uth.tmc.edu/gather/gather.
py) [54]. This tool integrates gene function, ontology, and pathways to provide an interpre-
tation of genomic data analysis results with network inference. Enrichment analysis was
performed with the latest version of GO and KEGG pathway using R package; Bioconduc-
tor’s RDAVIDWebService version 3.12 was used for genes included in the SC network with
GATHER network inference genes [55].

4.8. Prognostic Effect of SC in TCGA Datasets

To validate SC effects for gene pairs computationally inferred from the cell line
database derived from GDSC, we confirmed the prognostic effect in the real patient
database from TCGA for the SC pairs that improved the response to paclitaxel. It was
difficult to test the significance of genes with low mutation frequencies. Therefore, we only
performed survival analysis for TP53 synthetic cytotoxic subnetwork gene pairs. Patients
were divided into two groups, with and without TP53 mutations. For each group, patients
were subdivided according to the burden of the mutation forming SC with TP53. Finally,
Cox regression with Firth’s penalized likelihood method was used based on the burden of
the mutation, and the hazard ratio of the burden was compared between the TP53 mutant
and nonmutant groups to confirm the prognostic effect of the SC pair [56].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/3/1097/s1, Table S1: Lists the count of SC pairs made up by patients. In each group, patients
were clustered based on the number of SC pairs, and the order of fewer SC pairs was first. Table S2:
A multivariate Cox proportional hazard analysis of SC burden with pathologic stage.
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