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Neuronal polarization and growth are developmental processes that occur during
neuronal cell differentiation. The molecular signaling mechanisms involved in these
events in in vivo mammalian brain remain unclear. Also, cellular events of the
neuronal polarization process within a given neuron are thought to be constituted of
many independent intracellular signal transduction pathways (the “tug-of-war” model).
However, in vivo results suggest that such pathways should be cooperative with one
another among a given group of neurons in a region of the brain. Lipid rafts, specific
membrane domains with low fluidity, are candidates for the hotspots of such intracellular
signaling. Among the signals reported to be involved in polarization, a number are
thought to be present or translocated to the lipid rafts in response to extracellular signals.
As part of our analysis, we discuss how such novel molecular mechanisms are combined
for effective regulation of neuronal polarization and growth, focusing on the significance
of the lipid rafts, including results based on recently introduced methods.
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INTRODUCTION

Brain development in mammals is believed to involve six steps, including: (1) segmentation of
brain regions; (2) neuronal differentiation from neural stem cells; (3) neuronal migration to
the appropriate locations; (4) neuronal polarity determination and axon growth as directed by
guidance molecules; (5) synaptogenesis; and (6) removal of excess synapses (Sanes et al., 2019).
Except for the last step, which depends on neuronal activity, the other steps appear to be regulated
by genetic mechanisms. In this review article, we focus on molecular aspects of the fourth step of
the above sequence of mammalian brain development.

More than 30 proteins have been characterized based on their involvement in neuronal
polarization at the single-cell level (Takano et al., 2019). While many of these proteins
likely contribute to neuronal polarization in similar ways, these molecules were discovered
in independent studies, and little is known about how these proteins might act in a coordinated
fashion. In this review, we focus on the potential role of lipid rafts in neuronal polarization and
axon growth (Igarashi, 2019).

LIPID RAFTS: WHAT IS IMPORTANT FOR SIGNALING?

Glycerophospholipids are major components of the plasmamembrane, andmembrane proteins are
incorporated in such lipids (Brown and London, 1998; Lorent and Levental, 2015). According to the
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classical model, such lipids have high fluidity, behaving
like a liquid, due to the unsaturated fatty acids bound
to these phospholipids; all of the membrane proteins thus
would be flowing in a ‘‘sea’’ of membrane lipids, freely
diffusing to anywhere within the membrane. In contrast to
such an idea (that the membrane structure is uniform), the
concept of the lipid rafts has been postulated. Namely, minor
components of the membrane lipids, including cholesterol
(sterol) and sphingolipids (sphingomyelin and glycolipids such
as gangliosides), are present in a concentrated and clustered form
in specific domains of the membrane. Biophysical properties of
these minor membrane lipids predict that the lipid raft domain
has much lower fluidity than that of the major components
(the glycerophospholipids; Lorent and Levental, 2015). These low
fluidity regions serve as anchors for specific membrane proteins
that reside therein, and the lipid rafts are thought to be ‘‘signaling
hotspots’’ for responding to extracellular signals (Lingwood and
Simons, 2010; Egawa et al., 2018).

Two types of membrane proteins are thought to be specifically
associated with lipid rafts: glycosylated phosphatidylinositol
(GPI)-anchored proteins (Saha et al., 2016) and palmitoylated
proteins. GPI-anchored proteins are located at the cell surface
and are attached to the plasma membrane with a GPI
anchor, but cannot directly interact with intracellular signaling
proteins; thus, GPI-anchored proteins require co-receptors
that possess transmembrane domains. GPI-anchoring sugar
chains are synthesized in the endoplasmic reticulum (ER)
and then undergo fatty acid modification at PI within
the Golgi apparatus before being sorted to the plasma
membrane (Saha et al., 2016). The resulting GPI-anchored
proteins have been observed to repeatedly undergo rapid
gathering and scattering within lipid rafts (Suzuki et al.,
2017; Figure 1).

Protein palmitoylation is an S-acylation modification
of clustered cysteine residues; this protein modification is
performed in the Golgi apparatus (Chini and Parenti, 2009;

Resh, 2016). For soluble proteins, palmitoylation simply endows
the targets with an affinity for the plasma membrane; for
transmembrane proteins, palmitoylation is believed to direct the
targets for sorting to the lipid raft domains (Stepanek et al., 2014;
Lorent and Levental, 2015). More than 20 palmitoyltransferases
have been identified in mammals, and each of these enzymes
is thought to have specific physiological substrates (Fukata
et al., 2016). Of the major palmitoylated proteins in the adult
brain, more than half are transmembrane proteins (Kang
et al., 2008). Previous work has demonstrated the significance
of palmitoylated transmembrane proteins in neurobiology
(Vallejo et al., 2017; Hayashi, 2020); the relationship of
palmitoylation to neuronal polarity will be addressed later in
this review article.

NEURONAL POLARIZATION AND THE
NEED FOR ITS RAPID DETERMINATION

The selection of the specific regions of a neuron where growth
cones form is an important problem; neuronal polarity is key
to the formation of the axon (a single output process) and
dendrites (multiple input processes; Laumonnerie and Solecki,
2018). Neuronal polarity determination has been classified into
five stages (Dotti et al., 1988), namely, stage 1: initiation of
the emergence of the minor process(es); stage 2: the growth
of the minor processes; stage 3: axon specification; stage 4:
dendritic specification; and stage 5: synaptogenesis. Among these
steps, the transition from stage 2 to stage 3 has been the
most intensively studied (Funahashi et al., 2020). Most of the
previous studies on the establishment of neuronal polarity have
examined cell-autonomous signaling pathways in individual
(single) cells in in vitro culture systems (Funahashi et al.,
2020). Based on these previous studies, a tug-of-war model
(Lalli, 2014) has been adopted to explain neuronal polarization.
This model (Figure 1) is based on the experimental facts
that although each neuron in dissociation culture (particularly

FIGURE 1 | The lipid raft domain. Lipid rafts are composed of sphingolipids such as glycolipids and sphingomyelin (SM), cholesterol, and glycosylated phospholipid
(GPI)-anchored or palmitoylated membrane proteins. Lipid rafts are thought to be interspersed among non-raft domains that are composed of the
glycerophospholipids and exhibit high fluidity. The lower fluidity of the lipid rafts is presumed to lead to retention and localized concentration of membrane proteins
that participate in signal transduction in response to extracellular signals.
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FIGURE 2 | Lipid rafts may be the site of signaling for the determination of the neuronal polarity. (A) The polarity of each neuron is probably not determined in an
inconsistent way (upper) but instead is synchronized in vivo by extracellular signals exchanged among neurons (lower). The lower mechanism is expected to shorten
the time for polarity determination compared to the upper one. (B) Glycoprotein M6a (GPM6a) is palmitoylated and sorted to the lipid rafts in the neuronal plasma
membrane. GPM6a is believed to be palmitoylated at cysteine clusters (located near the protein’s N-terminus) via a reaction catalyzed by the HIP14 or
ZHHC17 palmitoyltransferases; modification would occur within the Golgi apparatus, and GPM6a then would be inserted into the lipid raft domains (Butland et al.,
2014). Although the non-palmitoylated form of GPM6a is localized to non-raft domains of the plasma membrane, this form of GPM6a does not appear to mediate
biological effects in response to extracellular signals (Honda et al., 2017a). (C) Laminin induces the assembly of signaling molecules downstream of GPM6a around
lipid rafts, an event that contributes to the rapid determination of polarity (see Honda et al., 2017a). GPM6a, Rap2, and Tiam2 are present in the lipid rafts with Rufy3,
an adaptor protein that acts as a linker between GPM6a and Rap2-Tiam2 (Honda et al., 2017a,b). Tiam2 is a guanine nucleotide exchange factor (GEF) that
activates Rac and is expected to contribute to the rapid determination of polarity. Modified from Honda et al. (2017a).

when grown on artificial culture substrates) has an intrinsic
mechanism for neuronal polarization, at stage 2, each minor
neuronal process performs the inter-dependent interactions for
signaling in a tug-of-war. After spending a relatively long
time (∼48 h) at stage 2, the model explains that the sole
process that ‘‘wins’’ this ‘‘tug of war’’ requires rapid growth to
differentiate successfully into an axon at stage 3 (Lalli, 2014;
Guo and Cheng, 2015).

However, it seems unlikely that the signaling leading to
polarization of neurons occurs spontaneously under in vivo
conditions (Namba et al., 2014). For in vivo mammalian brain
development, each neuron within a group would have to
acquire polarity simultaneously, and then also grow an axon
simultaneously in the same direction, a series of events that seems
far more complicated than the simple tug-of-war mechanism.
Namely, in vivo, stage 2 (a stage of undecided polarity) cannot
persist for an extended interval, and the transition from stage
2 to stage 3 (a stage of defined polarity) cannot proceed in
a disorderly fashion. It is difficult to imagine that intrinsic
factors alone would be expressed in vivo in a large number
of the neurons just before stage 3 in a manner that would
permit (despite the restricted time course) synchronization
of the polarization with the axon growth direction (Namba
et al., 2014). The mechanisms of stage 3 itself (rapid axon
growth) sometimes appear to conflict with those proposed
for the transition from stage 2 to stage 3 (Takano et al.,
2019; Figure 2A).

Thus, there appears to be a role for extrinsic factors in
inducing polarity determination within the neuronal population.
Candidates for such signals have been identified (Takano et al.,
2019), and include extracellular matrix components such as
laminin (LN), a protein that is highly abundant in the developing
brain (Esch et al., 1999; Randlett et al., 2011; Johnson et al.,
2012; Honda et al., 2017a,b; Serjanov et al., 2018). LN facilitates
neuronal polarity determination, as demonstrated by the ability

of exogenously supplied LN to permit neurons to ‘‘skip’’ stage
2 of development (Honda et al., 2017a,b).

NEURONAL POLARIZATION RELATED TO
LIPID RAFTS

Signaling Molecules for Polarization in
Lipid Rafts
Among the many proteins involved in neuronal polarization
(Takano et al., 2019), more than 10 species that are present
upstream of the signaling have been reported to be present
in lipid rafts or to be translocated to lipid rafts when the
corresponding signals are activated (Table 1). These results
suggest that those molecules are likely to function in polarization
signaling as the concentrated forms in lipid rafts.

Neuronal polarization is known to depend on the positioning
of the Golgi apparatus, and thus, the biochemical mechanisms
in that organelle should have important effects on this event
(Villarroel-Campos et al., 2016; Tortosa and Hoogenraad,
2018; Caracci et al., 2019). Although such biochemical
processes are not completely understood, one essential
modification performed in the Golgi apparatus is protein
palmitoylation, which regulates the trafficking of proteins
for axon specification (Rodríguez-Asiain et al., 2011; Tortosa
et al., 2017; Tortosa and Hoogenraad, 2018). In mammals,
protein palmitoyltransferases (PATs, the enzymes responsible
for this reaction) are concentrated in the cis-Golgi and catalyze
S-palmitoyl acylation of cysteine residues in target proteins
(Ernst et al., 2019). Such fatty acylation of soluble proteins is
believed to recruit these proteins to the plasma membrane. This
modification also is employed for membrane proteins, although
the purpose of palmitoylation of such proteins (which are already
membrane-associated) is less apparent. Notably, however, in
various cells (including the neuron), palmitoylation increases
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TABLE 1 | Proteins reported to localize to lipid rafts or to be translocated to lipid
rats in response to extracellular stimuli.

A. Receptors and cell adhesion molecules
TrkB (Assaife-Lopes et al., 2010; Mandyam et al., 2017)
IGF-1R (Sural-Fehr et al., 2019)
Neuropilin/Plexin complex (Dang et al., 2012)
Integrin (Decker et al., 2004)
Thy-1 (Ledesma et al., 1998)
B. Protein kinases
CaMKI (Davare et al., 2009)
Glycogen synthase kinase-3 (Sui et al., 2006)
SAD-B (Rodríguez-Asiain et al., 2011)
Akt (Bryant et al., 2009)
Fyn (Ko et al., 2005)
C. Other intracellular signaling molecules
PI3K (Zheng et al., 2014)
Wnt-Dvl (Frizzled; Haack et al., 2015)
Ras/Rap (Zhang et al., 2018)
Rac1 (Fujitani et al., 2005; Grider et al., 2009; Köster et al., 2014; Lee et al., 2016)
V-ATPase (Kanda et al., 2013; Makdissy et al., 2018)

The proteins involved in polarization are listed above.

recruitment of such transmembrane proteins to lipid rafts
(Linder and Deschenes, 2007; Hayashi, 2020). Palmitoylation
is thought to modify the membrane trafficking of the target
proteins, possibly by changing the curvature of the sorting
vesicles carrying these proteins (Ernst et al., 2019).

In the adult rodent brain, more than 20 species of major
palmitoylated proteins have been identified; more than half are
transmembrane proteins, a class that includes Glycoprotein M6a
(GPM6a; Kang et al., 2008).

GPM6a Signaling in Response to LN
GPM6a, a potential regulator of neuronal growth, is a major
membrane protein of the growth cone (Nozumi et al., 2009);
specifically, GPM6a is a four-transmembrane-domain protein
that is known to be highly expressed in differentiated neurons
(Möbius et al., 2008). This gene product is a major palmitoylated
protein in the adult brain (Kang et al., 2008). Although GPM6a’s
exact roles remained unclear, we suspected that this protein
might be a signal transducer for LN-dependent signaling.
Notably, inhibition of GPM6a palmitoylation abolished
LN-dependent determination, indicating that the trafficking of
this protein to lipid rafts is essential to GPM6a’s mechanism
of action (Honda et al., 2017a,b), even though GPM6a, being
an intrinsic membrane protein already localizes to the plasma
membrane (Ito et al., 2018).

Using proteomics, a GPM6a-Rufy3-Rap2a-Tiam2 complex
was identified in lipid rafts (Honda et al., 2017a). Rufy3 (also
called Singar 1; Mori et al., 2007) and Tiam2/STEF both are
known to be involved in neuronal polarization. Tiam2, a Rac
guanine nucleotide exchange factor (GEF), determines the site
of axon extension via the rapid accumulation of the GTP-bound
form of Rac1 (Nishimura et al., 2005). This accumulation of
GTP-Rac1 may be useful for organizing multiple otherwise-
unrelated signaling molecules that contribute to polarization.
For example, the activation of Rac1 by positive feedback in vivo
is probably essential to speedy polarization (Acevedo and
González-Billault, 2018; Dupraz et al., 2019; Takano et al., 2019);
proximity to members of the Tiam family (proteins that serve

as Rac GEFs) would facilitate this process. It is physiologically
conceivable that Rap2 (Bruurs and Bos, 2014), a member of the
Ras GTPase family that is highly palmitoylated (Uechi et al.,
2009; Baumgart et al., 2010), is present in lipid rafts, such that
the presence of activated Tiam2 in the lipid rafts contributes to
polarization (Honda et al., 2017a,b).

Rufy3 is (in in vitro experiments) a multiple adapter protein
for small GTPases (Fukuda et al., 2011) and has been shown
to bind to activated Rap2 (Kukimoto-Niino et al., 2006; Honda
et al., 2017a,b). Rufy3 also is involved in neuronal polarity (Mori
et al., 2007), for which the only identified related signaling
molecule was PI-3-kinase (PI3K; Mori et al., 2007). In in vivo
signaling, lipid rafts may connect GPM6a to Rap2-Tiam via
Rufy3; indeed, GPM6a can induce the translocation of Rufy3 to
lipid rafts (Honda et al., 2017a,b).

Human Neuropsychiatric Diseases and
Polarization
GPM6a is known to be a good endogenous substrate of
HIP14/Zdhhc17, a palmitoyl acetyltransferase (protein palmitoyl
acyltransferase; PAT) implicated inHuntington disease, a human
hereditary neurodegenerative disease (Butland et al., 2014;
Figure 2B).

Also, GPM6a, Rufy3, Rap2, and Tiam2 (Figure 2C) all have
been implicated in studies of important psychiatric diseases,
including analyses of human patient neuropathologies and
murine models (Funk et al., 2012; Bhattacherjee et al., 2017;
Ma et al., 2018; Aberg et al., 2020). Notably, genome-wide
association study (GWAS) identified the genes encoding GPM6a
and Rufy3 as loci associated with an elevated risk of human
schizophrenia and depression, respectively (Ma et al., 2018;
Aberg et al., 2020). Since these diseases are thought to be partly
due to the genetic lability of some genes in brain development,
such results suggest that GPM6a and downstream molecules
have physiological roles in the development of neurons and
that GPM6a in lipid rafts may be involved in a key step of
neuronal morphogenesis.

MEMBRANE RECYCLING MECHANISMS
IN LIPID RAFTS; NEWLY OBSERVED
USING SUPER-RESOLUTION
MICROSCOPY

Technical Merits and Power of
Super-Resolution Microscopy for Analysis
of Membrane Trafficking
To better understand the role of membrane trafficking in axonal
growth, the precise relationship between both cytoskeletal and
membrane components must be clarified. Live imaging has
greatly contributed to the understanding of such mechanisms
(Igarashi et al., 1996; Tamada and Igarashi, 2017; Dubey et al.,
2018; Meka et al., 2019). However, live imaging of growing
axons has remained a challenge: the vesicles and cytoskeleton
in the growth cone are highly crowded, meaning that each
labeled structure overlaps with others, impeding discrimination
among the various components. Additionally, for conventional
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confocal microscopy, the diffraction limit of optical microscopy
(∼200 nm) has precluded precise analyses of vesicles and
cytoskeletal structures in growth cones (Igarashi et al., 2018;
Schermelleh et al., 2019).

Recently, several types of super-resolution microscopy
have been developed (Hauser et al., 2017; Igarashi et al.,
2018; Schermelleh et al., 2019). These methods employ
fluorescence microscopy devices to observe intracellular
molecules, permitting researchers to overcome the optical
diffraction limit and achieve resolutions of 50–100 nm. These
new techniques not only make it possible to observe smaller
objects but also facilitate the analysis of densely distributed
materials such as vesicles and cytoskeletal components in
the growth cone (Nozumi and Igarashi, 2018). Also, super-
resolution microscopy provides three-dimensional images and
so is superior to confocal microscopy in this context (Igarashi
et al., 2018).

One super-resolution technique, structured illumination
microscopy (SIM), can visualize the fine structure of cells
by calculating the interference (moiré) patterns induced by
irradiation with striped-pattern excitation light (Gustafsson,
2008). Using SIM, lateral and axial dimensions of approximately
100 and 300 nm (respectively) can be visualized, making super-
resolution microscopy useful for tracking molecular dynamics
and movements in live-cell imaging (Demmerle et al., 2017;
Richter et al., 2018).

Membrane Recycling in Lipid Rafts
Contributes to Axon Growth
Although biochemical evidence for the existence of the lipid rafts
accumulated until 2010, the idea of the lipid rafts remained a
hypothesis. This challenge remained because the visualization
of the lipid raft domains remained impossible up to that
time. However, the development of super-resolution microscopy
permitted the observed lipid rafts in various cell types, leading to
the wider acceptance of this concept (Owen et al., 2012). There
are several styles of super-resolution microscopy that use distinct
probes; each of these methods has successfully permitted the
visualization of lipid rafts (Tobin et al., 2014; Chen et al., 2015;
Hartley et al., 2015; Stahley et al., 2016; Gao et al., 2017; Schlegel
et al., 2019; Angelopoulou et al., 2020). These new results have
contributed to models suggesting possible roles for lipid rafts in
multiple cellular pathways (Raghunathan and Kenworthy, 2018).

In the neuron, however, such an approach had not
been applied, given the elevated density of cholesterol and
sphingolipids, particularly gangliosides, in neural membranes.
Only recently has the development of 3D-SIM-type super-
resolution microscopy permitted imaging of the dynamic
endocytotic processes of the lipid raft domains in the growth
cone (Nozumi et al., 2017).

3D-SIM depends on the use of D4 (a molecule derived from
bacterial theta toxin that shows specific binding to membrane
cholesterol); a fusion of green fluorescent protein (GFP) to
D4 (GFP-D4) can be used as a probe for labeling cholesterol
(Ohno-Iwashita et al., 2004; Ishitsuka et al., 2011). By combining
this probe and super-resolution microscopy, we succeeded in
visualizing neuronal membrane lipid rafts (Nozumi et al., 2017).

FIGURE 3 | Membrane trafficking in the growth cone, as revealed by
super-resolution microscopy. F-actin-dependent endocytosis occurs in the
peripheral (P-) domain of the growth cone. The leading edge protrudes as
filopodia, which have dense F-actin bundles (red lines). F-actin-bundling for
filopodial formation induces endorphin-mediated endocytosis (EME; ;
Nozumi et al., 2017). EME depends on F-actin located in the Z-axis direction
(see Igarashi et al., 2018). GPM6a (the symbol “m” in blue), distributed in the
lipid rafts, is endocytosed through EME. The EME-dependent vesicles move
in a retrograde direction to the central (C-) domain of the growth cone ( ).
Classical clathrin-mediated endocytosis (CME) mainly occurs at the bottom of
the growth cone membrane (GCM; ).

These lipid rafts showed movements similar to those seen
for GPM6a itself and clathrin-independent endocytosis at the
leading edge. Thus, we infer that the lipid rafts are associated
with F-actin bundling at the leading edge, where these structures
undergo highly dynamic movements as part of axonal growth
(Figure 3).

Several studies revealed that the impaired endocytosis of
the lipid raft domains induced abnormal neuronal signaling,
suggesting that lipid rafts are critical for endocytotic signaling
pathways (Laudati et al., 2016; Nogueira-Rodrigues et al.,
2016). Biochemically, these signaling events were thought to be
clathrin-dependent (Qiu et al., 2011); however, super-resolution
live-imaging of GPM6a- and cholesterol-dependent endocytosis
in the growth cone revealed that these events were clathrin-
independent (Nozumi et al., 2017) and dynamin and endophilin
dependent. Dynamin is a GTPase that contributes to membrane
cleavage and endocytosis (De Camilli et al., 1995). Endophilin
is a BAR-domain protein that regulates membrane curvature
(Kjaerulff et al., 2011; Gallop, 2020). The characteristics of
these endocytotic events somewhat resemble ‘‘fast (or ultrafast)
endocytosis,’’ a process seen at presynaptic terminals (Watanabe
et al., 2014, 2018; Wu et al., 2014; Boucrot et al., 2015; Renard
et al., 2015; Watanabe and Boucrot, 2017; Milosevic, 2018).

PHOSPHORYLATION AT STAGE 3 FOR
AXON GROWTH

At stage 3, lipid rafts are thought to still be involved in
axon formation via signaling in response to axon guidance
molecules, including events such as protein phosphorylation
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FIGURE 4 | JNK activity in the axon and its substrates for axonal growth. JNK is activated in the developing neurons (Hirai et al., 2011; Yamasaki et al., 2011;
Coffey, 2014). (A) JNK-dependent substrates are sorted to the distal axon and the growth cone. Phosphorylated segments of GAP-43 (peptides pS96 and pT172)
and MAP1B (peptides pS25 and pS1201) are sorted to the plasma membrane and the microtubules in the growth cone of the distal axon, respectively. These
substrate proteins are phosphorylated by JNK in the cell bodies before undergoing anterograde axonal transport or are phosphorylated by JNK proximal to the
growth cone area [see (A)]. See Kawasaki et al. (2018) and Ishikawa et al. (2019). (B) JNK may be distributed within the growing axons in one of three patterns: (Ba)
only in the cell bodies, (Bb) only in the growth cone, or (Bc) in the whole neuron. Our experimental results indicate that (Ba) or (Bc) are more likely
(Kawasaki et al., 2018).

(Guirland et al., 2004; Hérincs et al., 2005; Kamiguchi, 2006).
It has been reported that cholesterol is more enriched in the
growth cone at early stages than at later stages (Chauhan
et al., 2020), suggesting the importance of the lipid rafts in
this process. GAP-43 (growth-associated protein of 43-kDa), a
neuronal growth-associated membrane protein also is known
to be a lipid raft resident in the developing brain (Denny,
2006; Tong et al., 2008; Sekino-Suzuki et al., 2013; Kalinowska
et al., 2015; Forsova and Zakharov, 2016). Recently, using
phosphoproteomics of the growth cone, the most frequently
phosphorylated site (among all of the identified growth cone
membrane (GCM) proteins) was identified as S96 of GAP-43
(Kawasaki et al., 2018). The responsible kinase was identified
as JNK, an enzyme whose activity also is dependent upon
signaling in lipid rafts (Makdissy et al., 2018). Originally,
JNK was postulated to be the transducer of apoptotic signals
in multiple cell types (Hibi et al., 1993; Bogoyevitch et al.,
2010); in neurons, this pathway was shown to induce axon
degeneration (Shin et al., 2012). Three isoforms of the kinase
(JNK1, 2, and 3) have been long been known to be related to
cell death; recently, however, there is accumulating evidence
that JNK has positive roles in neuronal development in the
brain (Waetzig et al., 2006; Tararuk et al., 2006), including
neurogenesis (Amura et al., 2005; Xu et al., 2014; Lim et al., 2015),
neuronal migration (Kawauchi et al., 2003; Westerlund et al.,
2011; Myers et al., 2014, 2020; Kawauchi, 2015), polarization
(Slater et al., 2013), and axon growth and guidance (Oliva
et al., 2006; Shafer et al., 2011; Feltrin et al., 2012; Qu et al.,
2013; Sun et al., 2013). As has been hypothesized for other
kinases (e.g., PKA, Akt, GSKβ, Cdk5, and Rho), JNK activation
and phosphorylation of other substrates (Kawasaki et al., 2018;
Ishikawa et al., 2019) is physiologically necessary for axon
growth in the developing brain (Yamasaki et al., 2011). Protein
phosphorylation is an important regulatory mechanism in cell
development and homeostasis (Humphrey et al., 2015). At
stage 3, rapid axon growth requires a signaling trigger, and
protein phosphorylation is the most likely mediator of such
a trigger.

Pin1 is a member of the peptidyl-prolyl isomerases (PPIases),
a class of proteins that bind phosphorylated S/T-P motifs and
catalyze the cis/trans-isomerization of P-containing peptides.
This reaction switches the conformation and thereby the
function(s) of the substrate proteins, including activity, protein-
protein interaction, stability, and subcellular localization (Yaffe
et al., 1997; Lu et al., 1999; Park et al., 2012; Litchfield et al.,
2015). Pin1 is enriched in the brain and has been shown (by
proteomics) to be present in the growth cone (Nozumi et al.,
2009; Estrada-Bernal et al., 2012; Igarashi, 2014; Chauhan et al.,
2020). The protein is known to activate protein kinases that
participate in phosphorylation cascades (Litchfield et al., 2015).
Indeed, JNK is directly kept activated by Pin1 (Park et al.,
2012; Litchfield et al., 2015), suggesting that JNK activation via
Pin1 likely occurs in the developing neuron and the growth cone
from stages 1 to 3.

Recent advances have yielded phosphoproteomics, a powerful
method for comprehensive and quantitative identification of
the in vivo phosphorylation sites used in a given system (von
Stechow et al., 2015; Invergo and Beltrao, 2018). Our application
of this technique to GCM proteins (Ellis et al., 1985) led to the
identification of more than 30,000 phosphopeptides representing
∼4,600 different phosphorylation sites in ∼1,200 proteins
(Kawasaki et al., 2018; Igarashi et al., 2020). The phosphorylation
of several frequently phosphorylated sites, including the S96 and
T172 peptides of GAP-43 and the S25 and S1201 peptides of
microtubule-associated protein 1B (MAP1B), is JNK dependent
(Kawasaki et al., 2018; Ishikawa et al., 2019; Figure 4A).
GAP-43 and MAP1B are classical axon growth markers and are
highly phosphorylated (Skene, 1989; Riederer, 2007; Holahan,
2017). However, a subset of these frequently phosphorylated
sites [e.g., peptide S41 of GAP-43, which is phosphorylated by
PKC (Denny, 2006)] were not detected by phosphoproteomic
analysis of the GCM. It remains unclear whether JNK is
activated only in the cell bodies of the developing neuron,
or in the axons or the growth cone at stage 3. If activation
occurs in the cell bodies, JNK-phosphorylated substrates
would have to undergo anterograde axonal transport to the
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growth cone; alternatively, if activation occurs in the axon
or growth cone, JNK would catalyze local modification of
substrates (Figure 4B).

Selected groups of C. elegans neurons have been found
to require JNK and its upstream kinase (DLK, also referred
to as MAP3K) for the regeneration of their axons (see
review by Shimizu and Hisamoto, 2020); notably, a lack
of JNK resulted in abnormal axonal growth (Tank et al.,
2011). Thus, elevated JNK activity appears to be needed for
axon maintenance in a wide range of organisms. However,
the proteins located downstream of JNK in the C. elegans
pathway (Chen et al., 2011) appeared to be totally different
from the highly phosphorylated substrates identified in
our phosphoproteomic analysis, and the JNK-dependent
phosphorylated sites, which were analyzed using bioinformatic
tools, appeared to be conserved only within components
of the analogous vertebrate pathway (Igarashi and Okuda,
2019). Thus, while the need for JNK activity in axon
growth/regeneration is conserved between model invertebrates
and the mammalian central nervous system, JNK kinase appears
to target distinct substrates and phosphorylation sites in these
systems (Igarashi and Okuda, 2019).

CONCLUSIONS

In the context of mammalian neuronal polarization based on
membrane trafficking, the molecular characterization of lipid
rafts based on current detergent-resistant membrane fractions
may not be sufficient to understand the hotspots of neuronal
signaling. One of the new techniques addressing this issue is
enzyme-mediated activation of the radical source (EMARS),
which provides specific labeling of lipid rafts (Kotani et al.,
2018). Given that only small amounts of proteins are collected
after EMARS labeling, this method is still under development;
nonetheless, the efficient nature of this labeling procedure holds
promise for further expansion of its application.

We may re-examine the signaling pathways for polarity
determination in neurons, each of which was previously
examined by independent experiments. Portions of these
pathways may be related to each other, and others may be
proceeded independently and in parallel. Some of the earliest
experiments are currently thought to be inappropriate for
determining RNAi specificity, or for application to in vivo

neuronal development of the brain. Also, in retrospect, several
of the earlier experiments in this field would not have been able
to discriminate effects in neuronal polarization from those in
rapid axon growth. As mentioned above, the tug-of-war model
developed based on in vitro results cannot simply be extended to
in vivo polarization, given that neurons in vivo need to initiate
growth in a synchronized fashion and to extend their axons in a
single consistent direction.

Such re-examination also may require new methods.
For example, phosphoproteomic analysis and super-resolution
microscopy are expected to be powerful tools for characterizing
the role of trafficking mechanisms in neuronal polarization.
Although neuronal polarization and axonal growth appear to be
relatively simple, understanding of these events has been more of
a challenge than understanding other developmental stages; this
difference may reflect the fact that considerably larger numbers
of the proteins are involved in these processes, as proteomic and
phosphoproteomic analyses have revealed.
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