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Abstract

A sample of 260 Mycobacterium tuberculosis strains assigned to the Euro-American family was studied to identify
phylogenetically informative genomic regions of difference (RD). Mutually exclusive deletions of regions RD115, RD122,
RD174, RD182, RD183, RD193, RD219, RD726 and RD761 were found in 202 strains; the RDRio deletion was detected
exclusively among the RD174-deleted strains. Although certain deletions were found more frequently in certain spoligotype
families (i.e., deletion RD115 in T and LAM, RD174 in LAM, RD182 in Haarlem, RD219 in T and RD726 in the ‘‘Cameroon’’
family), the RD-defined sublineages did not specifically match with spoligotype-defined families, thus arguing against the
use of spoligotyping for establishing exact phylogenetic relationships between strains. Notably, when tested for katG463/
gyrA95 polymorphism, all the RD-defined sublineages belonged to Principal Genotypic Group (PGG) 2, except sublineage
RD219 exclusively belonging to PGG3; the 58 Euro-American strains with no deletion were of either PGG2 or 3. A
representative sample of 197 isolates was then analyzed by standard 15-locus MIRU-VNTR typing, a suitable approach to
independently assess genetic relationships among the strains. Analysis of the MIRU-VNTR typing results by using a
minimum spanning tree (MST) and a classical dendrogram showed groupings that were largely concordant with those
obtained by RD-based analysis. Isolates of a given RD profile show, in addition to closely related MIRU-VNTR profiles, related
spoligotype profiles that can serve as a basis for better spoligotype-based classification.
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Introduction

Comparative genomic studies have shown that the Mycobacte-
rium tuberculosis complex has evolved through irreversible genetic

events that occurred in ancient common progenitor strains [1–2].

Due to the virtual lack of horizontal genetic exchange between M.
tuberculosis strains [2–3], mutations, deletions, and transpositions

of chromosomal regions are considered the major forces driving

M. tuberculosis genome evolution.

In the last decade, by whole-genome comparison of global

samples of M. tuberculosis strains, a number of phylogenetically

informative deletions of large genomic sequences have been

identified [4,5]. Large sequence polymorphisms (LSPs), together

with additional, previously reported, phylogenetic markers, such as

the regions of difference (RD) TbD1 and RD9 [6], the 7-bp

deletion in the pks 15/1 locus [7], and the katG463/gyrA95 single

nucleotide polymorphism (SNP) [5], allowed the recognition of six

main phylogeographical lineages, i.e., Indo-Oceanic, East Asian,

East African-Indian, Euro-American, West African 1 and West

African 2 lineage, resulting from the evolution of the M.
tuberculosis complex members in association to their host

populations [5,9–11]. In parallel, the discovery of the Direct

Repeat (DR) locus polymorphism, based on the presence/absence

of short spacer sequences connecting the DR sequences, and the

development of the spacer oligonucleotide typing (spoligotyping)

methodology [12], introduced a further tool for genetic analysis of

the M. tuberculosis complex that soon became the most practiced

typing system used in studies of genetic diversity [13]. In general,

the polymorphisms probed by RD deletion analysis and

spoligotyping turn out to be largely congruent, as they reflect

the clonal population structure of the M. tuberculosis complex

[5,14–16], so that the spoligotype families are generally regarded

as sublineages within the LSP-defined main lineages [17]; in

certain cases, however, spoligotype homoplasy, i.e. identical

molecular pattern of the DR locus in strains belonging to different

evolutionary lineages, likely resulting from convergent evolution,

has been reported [17–23].

The Euro-American lineage, that is the prevalent lineage in

Europe and in the Americas and is also widespread across different

regions of Africa and the Middle East, includes strains belonging to

Principal Genotypic Groups (PGG) 2 and 3, according to the
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katG463/gyrA95 polymorphism classification [8]. The Euro-

American lineage consists of 10 distinct sublineages, each defined

by a large sequence deletion, named RD115, RD122, RD174

(that recently has been demonstrated to co-segregate with the so-

called deletion RDRio [24–25]), RD182, RD183, RD193, RD219,

RD724, RD726 and RD761, and an 11th group including strains

with no RD deletion (the so-called H37Rv-like) [5]. By spoligotyp-

ing, the Euro-American lineage, is characterized by deletion of

spacers 33–36 in the DR locus [17,26] and consists of the major

families T, Haarlem (H), Latin American-Mediterranean (LAM),

S and X, including a total of 34 subfamilies.

In this paper we report the genotypic characterization of a

collection of Euro-American strains recently isolated in Tuscany,

Italy, a region with a low prevalence of tuberculosis (TB), but

where, due to the immigration from high-prevalence TB countries

[27], the ethnic diversity of TB patients provides an opportunity to

study a global sample of Euro-American strains. In particular, the

purposes of this paper are: (i) to identify the deletions of specific

large genomic sequences in M. tuberculosis isolates assigned to the

spoligotype families included in the Euro-American lineage; (ii) to

determine the polymorphism of DNA minisatellites of these

isolates by the 15-locus Mycobacterial Interspersed Repetitive

Units - Variable Number of Tandem Repeats (MIRU-VNTR)

assay, a high-throughput typing tool that is becoming the

international gold standard for typing of M. tuberculosis isolates

offering a discriminatory power that practically equals that of

IS6110 RFLP typing system [28]; (iii) to gain new insights into the

previously proposed phylogeny of the Euro-American lineage.

Materials and Methods

M. tuberculosis study strains
A set of 260 M. tuberculosis strains were selected from a

collection of 780 strains of the Euro-American lineage isolated in

Tuscany, Italy, during a 4-year period, from the same number of

TB patients living in Tuscany, Italy, and admitted to 10 major

community hospitals in the region. Study strains were selected

taking care, whenever possible, to respect the proportion between

Italian-born and foreign-born patients and to include strains from

as many different patient’s countries of birth as possible. One

hundred fifty five isolates were from Italian-born patients, 105

from patients born in a total of 26 different countries.

Spoligotyping
Spoligotyping analysis of isolates was performed basically as

described by Kamerbeek et al. [12] using genomic DNA extracted

from the bacteria grown on ADC-supplemented Middlebrook

7H9 or Lowenstein-Jensen medium by the cetyltrimethylammo-

nium bromide (CTAB) method. The study strains were assigned to

the spoligotype families on the basis of the spoligotype profiles

defined in the last released publicly available spoligotype

SITVITWEB database [29] and included 73 T isolates, 29

Haarlem isolates, 121 LAM isolates (which also comprise 10

isolates defined in this paper "LAM-like", as their spoligotype

profiles are not present in the SITVITWEB database, although

they show the typical spacer deletions of the LAM family), 16

Cameroon isolates (referred to in the SITVITWEB database as

LAM10_CAM), 8 S isolates, and 136 isolates.

Determination of RD deletions
A PCR-based method using specific primers was used to

determine the presence or absence of the regions RD115, RD122,

RD174, RD182, RD183, RD193, RD219, RD724, RD726 and

RD761 [5]. All PCR reactions were performed in 0.5 ml-

microcentrifuge reaction tubes in a final volume of 50 ml

containing 10 mM Tris-HCl (pH 8.3), 2.0 mM MgCl2, 50 mM

KCl, 0.1% Triton X-100, 5% DMSO, 0.5 mM each primer,

0.2 mM deoxynucleoside triphosphates, 1.25 U Taq polymerase

(Dynazyme) and 2.0 ml bacterial DNA extracted as described

above. PCR amplification was performed for one 2-min cycle at

95uC and 35 cycles of 30 sec at 94uC, 1 min at 64uC and 3 min at

72uC. The PCR products were visualised on 1–2% agarose gels

stained with ethidium bromide.

Isolates bearing the RD174 deletion were also tested for the

RDRio deletion by a multiplex PCR assay, as described by Gibson

et al. [30].

Mycobacterial Interspersed Repetitive Units - Variable
Number of Tandem Repeats (MIRU-VNTR) typing

MIRU-VNTR typing was performed by PCR amplification of

the following 15 loci, as described by Supply et al. [28]: 424, 577,

580, 802, 960, 1644, 1955, 2163, 2165, 2401, 2996, 3192, 3690,

4052, and 4156. The PCR fragments were analyzed by gel

electrophoresis using 2% NuSieve agarose (Cambrex Bio Science

Rockland). For each locus, sizes of amplicons were estimated by

comparison with 20 bp and 100 bp markers (Superladder-low;

GenSura, CA, USA) and the numbers of repetitive units were

calculated on the basis of conventions previously reported [31].

MIRU-VNTR profile is expressed as a string of 15 numbers, each

representing the number of tandem repeats (TR) at a given VNTR

position, in the order given above. MIRU-VNTR data were

analyzed by the MIRU-VNTRplus web application available at

www.miru-vntrplus.org [32–33].

Allelic diversity and genetic distance analysis
The allelic diversity (h) of the VNTR loci was calculated using

the equation h = 1 – S xi
2 {n/(n – 1)} where n is the number of

isolates and xi the frequency of the ith allele at the locus [34].

The genetic relationships among the MIRU-VNTR-typed

isolates were analyzed by constructing a minimum spanning tree

(MST), an undirected network in which all the MIRU-VNTR

profiles within the population studied are linked together with the

smallest possible linkages between nearest neighbours, by the

MIRU-VNTRplus web application available at www.miru-

vntrplus.org.

A dendrogram of genetic relationships was generated using the

unweighted pair group method with arithmetic averages (UP-

GMA), by the MIRU-VNTRplus web application available at

www.miru-vntrplus.org.

Principal Genotypic Groups
The Principal Genotypic Groups (PGG) of study strains, defined

on the basis of katG463 and gyrA95 allele polymorphism [8], were

determined by a real-time PCR assay by the LightCycler

instrument (Roche Applied Science, Germany), as previously

reported [35].

Results and Discussion

1. RD deletions among Euro-American M. tuberculosis
isolates

A collection of 260 M. tuberculosis isolates of the Euro-

American lineage assigned to the spoligotype-defined families T,

Haarlem, LAM, Cameroon, S and X was studied by PCR to

determine the presence or absence of regions RD115, RD122,

RD174, RD182, RD183, RD193, RD219, RD724, RD726 and

RD761. LAM isolates bearing the RD174 deletion were also

Genomic Variability of M. tuberculosis Euro-American Strains
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tested for the RDRio deletion that it is known to co-segregate with

the RD174 deletion [24–25].

Mutually exclusive RD deletions were found in each of 202

strains; no deletion was found in the remaining 58 strains (the so-

called H37Rv-like strains). Deletion of RD724, typical of strains

from Central Africa [5], was not found in the study set. Table 1

reports the distribution of the RD deletions among the

spoligotype-defined families. In particular, deletion RD115 was

found almost exclusively in isolates assigned to the spoligotype

families T (15/53, 28.3%) and LAM (37/53, 69.8%). Deletion

RD174 was found in 40 isolates, 39 of which (97.5%) belonging to

the LAM family; these RD174-deleted LAM isolates and, as

controls, 25 randomly selected LAM isolates without the RD174

deletion were also tested for the RDRio deletion. As expected, the

RDRio deletion was detected exclusively among the RD174-

deleted strains; in particular, as shown in Table 1, 37 out of 39

(94.9%) RD174-deleted isolates also showed the RDRio deletion.

These results are partially in agreement with the data recently

reported by Mokrousov and colleagues [36], showing the presence

of RDRio deletion in all the RD174-deleted strains and the

mutually exclusive occurrence of RD174/RDRio and RD115

deletion among the LAM family strains. Deletion RD182 was

highly prevalent in the Haarlem family (27/32, 84.4%), but was

also found in isolates assigned to LAM (3/32, 9.4%) and S (2/32,

6.3%) families. Deletion RD219 was found in a consistent

proportion of isolates assigned to the T family; isolates bearing

deletion RD219 were 91.3% (42/46) T and 8.7% (4/46) LAM.

Noteworthy, deletion RD726 was highly prevalent (15/19, 78.9%)

in isolates of the "Cameroon" family [37–38], reported in the

SITVITWEB database as LAM10_CAM; the deletion was also

found in 4 LAM isolates with spoligotype profiles similar to those

typical of the LAM10_CAM (Cameroon) family, as they showed

either one-spacer difference or deletion of spacers 21–24, instead

of 23–25, typical of "Cameroon" strains [38] (data not shown).

Notably, in three cases of these ‘‘Cameroon-like’’ strains, the

isolates were from patients born in West Africa (Senegal, Nigeria,

Ivory Coast), i.e., the geographic area of the typical Cameroon

strains; the fourth one was an Italian-born patient. Deletion of

RD726 can be reasonably considered a specific marker of the

Cameroon family. Finally, certain RD deletions were found in a

small number of isolates; in particular, deletions RD183 and

RD193 were detected exclusively in isolates assigned to the X

spoligotype family (3 and 7 isolates, respectively); similarly,

deletion RD761 was found in a single isolate, assigned to the

LAM family.

In all, although certain deletions were found more frequently in

certain spoligotype families (i.e., deletion RD115 in T and LAM,

RD174 in LAM, RD182 in Haarlem, RD219 in T family), the

classification based on large sequence deletions, that are unique

event polymorphisms and robust phylogenetic markers, shows a

general lack of concordance with the classification proposed by

spoligotyping. This reinforces the existing doubts on the ability of

spoligotyping alone to reveal exact phylogenetic relationships

between M. tuberculosis strains, particularly those of the evolu-

tionary recent TbD1–/PGG2/3 Euro-American lineage [17,39–

41].

2. Principal Genotypic Groups (PGG) of RD-defined
sublineages

When tested for katG463/gyrA95 polymorphism, the strains of

all the RD-defined sublineages, with the exception of the strains of

the sublineage RD219, belonged to PGG2. The 46 strains with the

RD219 deletion belonged to PGG3. The remaining 58 H37Rv-

like strains were either of PGG2 or PGG3.
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3. MIRU-VNTR analysis of Euro-American M. tuberculosis
isolates

We then determined the genetic diversity of our sample of Euro-

American isolates by analysing the polymorphism of MIRU-

VNTR loci, using the conventional 15-locus assay, in order to see

whether this analysis fits better with the overall evolutionary

picture provided by RD deletion and katG463/gyrA95 polymor-

phisms. In M. tuberculosis, in fact, the evolution of the MIRU-

VNTR loci is estimated to occur at an average mutation rate of

1024 per year per locus [15], a property that makes MIRU-

VNTR loci suitable for phylogenetic analysis and classification,

especially when complemented by other robust phylogenetic

markers. For this purpose, a set of 197 of the 260 clinical isolates,

including 28 isolates with deletion RD115, 40 with deletion

RD174, 26 with deletion RD182, 3 with deletion RD183, 7 with

deletion RD193, 10 with deletion RD726, 1 with deletion RD122,

42 with deletion RD219 and 40 with no deletion, were analyzed

for the 15 locus-based MIRU-VNTR polymorphism as described

by Supply et al. [28].

3.1 Allelic diversity of isolates. We first considered the

allelic variability of each MIRU-VNTR locus of the whole strain

collection, independently of the RD-defined sublineages. As

summarized in Table 2, the number of alleles at each MIRU-

VNTR locus ranged between 4 (for loci MIRU 16, ETR-A,

VNTR 47, MIRU 31) and 9 (for locus QUB-26). The allelic

diversity (h) was in general high (0.38#h#0.83), with the

exception of locus MIRU 04 that showed 2 repeat units in

94.4% of isolates, yielding h = 0.10, which indicates that locus

MIRU 04 is highly conserved in the Euro-American isolate

collection. However, when the RD-defined lineages were consid-

ered individually it became evident that certain MIRU-VNTR loci

were highly conserved in certain lineages and variable in others

(data not shown).

3.2 Genetic relationships among the isolates. The genetic

relationships among the 197 MIRU-VNTR-typed isolates were

then visualized by constructing a MST, illustrated in Figure 1,

constructed by the MIRU-VNTRplus web application available at

www.miru-vntrplus.org. In our collection, 166 isolates showed

unique MIRU-VNTR profiles and clusters of 2–3 isolates with

identical MIRU-VNTR profiles were detected in a few cases;

notably, three clusters of isolates yielding identical MIRU-VNTR

profiles included isolates differing in RD deletions, which suggests

the possibility of homoplasy also at the MIRU-VNTR level, as

shown by others [42–43].

In general, our MST analysis shows that isolates bearing a given

RD deletion tend to be grouped together, thus reflecting their

minimal allelic variation when mutually compared and supporting

a common recent ancestor; the isolates with no deletion (i.e., the

H37Rv-like isolates) were scattered along the whole tree.

To directly visualize the MIRU-VNTR-based genetic relation-

ships among the strains of each RD-defined Euro-American

sublineage, a MST was constructed for each sublineage and the

number of clonal complexes, arbitrarily defined as sets of strains

yielding MIRU-VNTR profiles with a maximal of three locus

Figure 1. Minimum spanning tree based on MIRU-VNTR profiles of a set of 15 loci (424, 577, 580, 802, 960, 1644, 1955, 2163, 2165,
2401, 2996, 3192, 3690, 4052, and 4156) of M. tuberculosis clinical isolates bearing deletions RD115, RD122, RD 174, RD182, RD183,
RD193, RD219 and RD726 (respectively indicated in different colours in the legend at the right side of the figure) and in isolates
with no deletion (dark grey). Each small-size circle represents a single isolate; larger circles represent clusters of 2 or 3 isolates, depending on the
circle size, with identical MIRU-VNTR profiles; larger circles with more than one colour represent clusters including 2 or 3 isolates with identical MIRU-
VNTR profiles but differing in RD deletions. The length of the lines is not proportional to the number of allelic variation between the isolates; an on-
line supplemented file (Figure S1) is provided to visualize the allelic differences on the connecting lines.
doi:10.1371/journal.pone.0107150.g001
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differences, was determined. These results, integrated by data on

the katG463/gyrA95 polymorphism and spoligotype profiles, are

summarized in Figure 2. In particular, Sublineage RD182: The

RD182-defined sublineage shows two distinct clonal complex,

including 19 and 2 isolates, respectively, all belonging to PGG2.

The first clonal complex consists of strains assigned to the Haarlem

spoligotype subfamilies H1 and H3; the 2 strains of the second

clonal complex were assigned to the S spoligotype family.

Sublineage RD174: The RD174-defined sublineage is charac-

terized by a single large clonal complex including 36 strains. Such

strains, all belonging to PGG2, were assigned to LAM spoligotype

family (LAM1, LAM4, LAM5, LAM9 and LAM11_ZWE) with

the exception of 2 isolates with undetermined spoligotype profiles

(not shown). The 37 RD174-deleted isolates bearing the RDRio

deletion were distributed among all the LAM subfamilies and also

included 2 strains of undetermined spoligotype profile. The 3

RD174-deleted strains without the RDRio deletion were assigned

to S, U and LAM5 spoligotype families, and only one of these

(LAM5) was included in the clonal complex.

Sublineage RD115: The RD115-defined sublineage consists of

two distinct clonal complexes, including 13 and 8 isolates,

respectively, all belonging to PGG2. The first clonal complex

includes strains of the spoligotype families T1 and T-Tuscany, and

one LAM9 strain. The second clonal complex includes strains

assigned to LAM spoligotype family (LAM1, LAM5, LAM9).

The distribution of LAM spoligotype families among different

RD sublineages, particularly RD174 and RD115, supports the

genetic inconsistencies of LAM spoligotype classifications, as also

previously suggested [41].

Sublineage RD726: The RD726 lineage yielded 2 distinct

clonal complex, each including 3 isolates, all belonging to PGG2,

with spoligotype profiles typical of the Cameroon family, with the

exception of one LAM9 isolate included in the first clonal

complex; three of the strains outside of the complexes had

Figure 2. Description of the five major RD-defined sublineages of the Euro-American lineage based on katG463/gyrA95, 15-locus
MIRU-VNTR and spoligotype polymorphism. For each RD-defined sublineage, a MST was constructed; the length of the lines is not
proportional to the number of allelic variation between the isolates; an on-line supplemented file (Figure S2) is provided to visualize the allelic
differences on the connecting lines. The RD deletion and the Principal Genotypic Group (PGG), defined by katG463/gyrA95 polymorphism, are
reported at the left of each MST. Dark and light blue circles represent strains included in clonal complexes defined by a maximum of three locus
differences; white circles represent strains outside the clonal complexes. Larger circles represent clusters of 2–3 isolates. At the right of each MST, the
15-locus MIRU-VNTR profile(s) of the central node strain(s) and the prevalent spoligotype patters (i.e, shared by at least 2 isolates) are provided;
spoligotype patterns are shown in the conventional binary format; the spoligotype families, assigned to isolates on the basis of SITVITWEB database
[29], are also shown at the right.
doi:10.1371/journal.pone.0107150.g002
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spoligotype profiles typical of the Cameroon family and one

showed an undetermined spoligotype profile.

Sublineage RD219: The RD219-defined sublineage is charac-

terized by a single large clonal complex including 37 isolates,

assigned to the T spoligotype family (T1, T2, T4, T-Tuscany),

with the exception of one isolate with undetermined spoligotype

profile. Notably, all RD219-deleted strains belong to PGG3.

Sublineages RD193 and RD183: The MIRU-VNTR analysis

of the RD193-defined sublineage showed two distinct clonal

complexes, including 3 and 2 isolates, respectively, all belonging to

PGG2. The first clonal complex consists of strains assigned to the

63 spoligotype subfamily; the second one includes strains assigned

to the 61 spoligotype subfamily. Two strains outside of the

complexes were also assigned to 61 spoligotype subfamily. The

RD183-defined sublineage consists of 3 strains, all belonging to

PGG2 and with spoligotype profiles62, grouped in a single clonal

complex.

H37Rv-like isolates: The H37Rv-like isolates, i.e., isolates with

no deletion, constitute a genotypically heterogeneous group that

includes isolates of PGG2 or 3. If analyzed by MST according to

the criteria reported above, six different MIRU-VNTR clonal

complexes are detected; by spoligotyping, the H37Rv-like group

includes isolates assigned to T, LAM, Haarlem, X and S families.

A dendrogram based on combined MIRU-VNTR and

spoligotyping profiles was then constructed using the UPGMA

method (Figure S3); for each isolate, data on RD deletions, SIT

number and spoligotype subfamily are also included. This analysis

emphasizes that isolates bearing a certain RD deletion tend to be

clustered in the dendrogram, and show, in addition to closely

related MIRU-VNTR profiles, related spoligotype profiles that

define the families/subfamilies of the spoligotype-based classifica-

tion. For example, the isolates bearing deletion RD219 constitute

a discrete group of related strains, all belonging to spoligotype

family T, and segregate at one side of the dendrogram together

with H37Rv-like isolates of spoligotype family T. Similarly, isolates

bearing deletions RD182, RD174 and RD726 cluster in discrete

groups of strains, each one with closely related MIRU-VNTR

profiles and spoligotypes typical, respectively, of the Haarlem,

LAM, and Cameroon (LAM10_CAM) families. Conversely,

isolates bearing the RD115 deletion cluster in two groups distant

in the dendrogram, each one including isolates with related

MIRU-VNTR profiles, but with spoligotype profiles typical of T

and LAM isolates, respectively.

Concluding Remarks

Our analysis of a global sample of Euro-American isolates,

based on robust phylogenetic markers such as katG463/gyrA95

SNP and deletions of large RD genomic sequences, provides a

framework of the genomic diversity of the M. tuberculosis strains

that constitute the Euro-American lineage. The analysis of the

polymorphism of the MIRU-VNTR loci is largely concordant

with that obtained by RD-based analysis, as isolates of a given RD

profile show closely related MIRU-VNTR profiles that might also

serve as a basis for better spoligotype-based classification,

especially when complemented by other robust phylogenetic

markers. Moreover, as evolution of the MIRU-VNTR loci is

estimated to occur at slow mutation rates [15], making them

suitable for inferring long-term evolutionary histories, MIRU-

VNTR analysis can provide a suitable tool for phylogenetic

analysis of the Euro-American lineage.

Supporting Information

Figure S1 Printout of MST shown in Figure 1 in which
the numbers of allelic differences are shown on the
connecting lines. Each empty circle represents a single isolate;

dark and light blue circles represent clusters of 3 or 2 isolates,

respectively, with identical MIRU-VNTR profiles.

(PDF)

Figure S2 Printouts of the MSTs shown in Figure 2 in
which the numbers of allelic differences are shown on
the connecting lines. Each empty circle represents a single

isolate; dark and light gray circles represent clusters of 3 or 2

isolates, respectively, with identical MIRU-VNTR profiles.

(PDF)

Figure S3 Dendrogram based on combined MIRU-
VNTR and spoligotyping data from 197 Euro-American
M. tuberculosis isolates bearing deletions RD115,
RD122, RD 174, RD182, RD183, RD193, RD219 and
RD726 or with no deletion. The dendrogram was generated

using the UPGMA method by the MIRU-VNTRplus web

application available at www.miru-vntrplus.org. The columns 1

to 6 on the right of the dendrogram represent respectively: 1)

isolate ID code (boxed); 2) RD deletion; 3) the SIT (Spoligotype

International Type) number; 4) the spoligotype subfamily; 5) the

VNTR profiles expressed as a string of 15 numbers, each

representing the number of tandem repeats (TR) at a given

VNTR position, in the order stated in the paper; 6) the spoligotype

binary profile, given as black and white boxes indicating the

presence and absence, respectively, of the specific spacer at

position 1 to 43 in the DR locus.

(PDF)
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