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Barrett's esophagus is considered a precancerous lesion of esophageal

adenocarcinoma (EAC). Long‐segment Barrett's esophagus, which is generally

associated with intestinal metaplasia, has a higher rate of carcinogenesis than

short‐segment Barrett's esophagus, which is mainly composed of cardiac‐type
mucosa. However, a large number of cases reportedly develop EAC from the

cardiac‐type mucosa which has the potential to involve intestinal phenotypes.

There is no consensus regarding whether the definition of Barrett's epithelium

should include intestinal metaplasia. Basic researches using rodent models

have provided information regarding the origins of Barrett's epithelium.

Nevertheless, it remains unclear whether differentiated gastric columnar

epithelium or stratified esophageal squamous epithelium undergo transdiffer-

entiation into the intestinal‐type columnar epithelium, transcommittment into the

columnar epithelium, or whether the other pathways exist. Reflux of duodenal

fluid including bile acids into the stomach may occur when an individual lies

down after eating, which could cause the digestive juices to collect in the fornix

of the stomach. N‐nitroso‐bile acids are produced with nitrites that are secreted

from the salivary glands, and bile acids can drive expression of pro‐
inflammatory cytokines via EGFR or the NF‐κB pathway. These steps may

contribute significantly to carcinogenesis.
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EPIDEMIOLOGY OF ESOPHAGEAL CANCER

Histological studies have revealed that the main epithelial
malignant tumors of the esophagus are esophageal squa-
mous cell carcinoma (ESCC) and esophageal adenocarci-
noma (EAC), which have different risk factors.1 The primary

risk factor for EAC is gastroesophageal reflux disease
(GERD).2–4 GERD is a major cause of reflux esophagitis,
which occurs when gastric acid, bile acids and other harmful
substances in gastric juice flow backward into the esopha-
gus,5 which is generally covered with stratified squamous
epithelium. Most esophageal cancers in Asian countries,
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including Japan, involve ESCC.6,7 In contrast, Western
countries have recently seen a sharp increase in the
prevalences of EAC and esophagogastric junction cancer.8

In the US, EAC accounts for approximately 60% of all
esophageal cancers, and ESCC had historically been
predominant, although EAC appears to have overtaken
ESCC in approximately 1995.7,9,10 This change may be
related to the sharp increase in the number of obese
individuals with a high‐fat diet and the resulting increase in
the prevalence of GERD.7,8,11,12 Japan has also seen an
increase in the prevalence of GERD, in conjunction with
increasingly Westernized dietary habits, a reduced rate of
Helicobacter pylori (H. pylori) infection and an expanding
elderly population.13–21 Thus, there are fears that the
prevalence of EAC will continue to gradually increase.22

DEFINITION OF BARRETT'S ESOPHAGUS

Barrett's epithelium is metaplasia from squamous epithelium
into columnar epithelium,23 with esophageal Barrett's epithe-
lium being known as Barrett's esophagus.24 Barrett's esopha-
gus is considered a precancerous lesion of EAC, although
there is no universally accepted definition of Barrett's esopha-
gus.25 The key factor in defining Barrett's esophagus involves
the presence of goblet cells, and there is no disagreement that
Barrett's esophagus involves a columnar epithelium. The
American definition of Barrett's epithelium only considers
intestinal metaplastic mucosa with goblet cells (Fig. 1a), which
has led to the use of the phrase ‘no goblets, no Barrett's’.26–28

In Germany, the histological diagnosis of Barrett's esophagus
still requires the proof of a specialized intestinal metaplastic
epithelium (columnar epithelium with goblet cells).29 In contrast,
the Japanese definition of Barrett's mucosa is ‘columnar
epithelium continuous from the stomach with or without
intestinal metaplasia’24 (Fig. 1b). The British Society of

Gastroenterology also defines this condition as ‘an esophagus
in which any portion of the normal distal squamous epithelial
lining has been replaced by metaplastic columnar epithelium
and includes a≥ 1 cm segment length criterion’, regardless of
whether goblet cells are present.30

WHERE IS THE ESOPHAGOGASTRIC JUNCTION?

In the UK, a ≥ 1‐cm segment of columnar epithelium fulfills
the definition of Barrett's esophagus,30 with Barrett's
epithelium being classified based on its length into short‐
segment Barrett's esophagus (SSBE; a< 3‐cm segment)
and long‐segment Barrett's esophagus (LSBE; a ≥ 3‐cm
segment).24 Thus, the distance from the esophagogastric
junction is key to defining and classifying Barrett's esopha-
gus, although this must be based on the precise location of
the esophagogastric junction. In Western countries, the
esophagogastric junction is endoscopically defined as the
upper margin of the gastric mucosal folds (the oral margin of
the longitudinal folds of the greater curvature of the
stomach), whereas in Japan the esophagogastric junction
is defined as the lower end of the palisade vessels.31–35 The
histological requirements of this definition are the presence
of (i) esophageal gland ducts in the mucosal layer or proper
esophageal glands in the submucosal layer within the area of
columnar epithelium;36,37 (ii) squamous islands in the
columnar epithelium;38 and (iii) a double‐layer muscularis
mucosae.37 Recently, palisade vessels have also been
reported as a new histologic marker of esophageal origin.39

LENGTH OF BARRETT'S ESOPHAGUS AND
CARCINOGENESIS

In the US, 5.6% of adults have LSBE and 10 to 15% of adults
have SSBE.12,40 In Japan, the rates are approximately 17.9%

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Figure 1 Definition of Barrett's esophagus. (a) Intestinal metaplasia with goblet cells. (b) Columnar epithelium without goblet cells. The
American and German definition of Barrett's epithelium only considers intestinal metaplastic mucosa with goblet cells (a). In contrast, the
Japanese and British definition of Barrett's mucosa does not require goblet cells (b). However, in the British Society of Gastroenterology
includes a ≥ 1 cm segment length criterion.
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(1.2–59.0%) for SSBE and approximately 0.4% (0.2–1.4%) for
LSBE,41 with SSBE also being more common in other Asian
countries.42–44 Barrett's esophagus is thought to have an
annual carcinogenesis rate of 0.15 to 0.65%.45,46 Other reports
have also examined the carcinogenesis risk of Barrett's
esophagus, with some reports attributing similar risks to SSBE
and LSBE47 and other recent reports indicating the LSBE has a
greater carcinogenesis risk than SSBE.48,49 One recent report
from Japan focusing on follow‐up of patients with LSBE
revealed a carcinogenesis rate of approximately 1.2% per year
(3 cancers/251 cases/year; 12 cases per 1000 people),50

which is higher than the reported rates from other countries.
This discrepancy may be related to the small sample size of the
Japanese study, although it could also be attributed to the
different diagnostic criteria for adenocarcinoma in Japan and
Western countries. The Vienna classification was published by
a global group of gastrointestinal pathologists to unify the
diagnostic criteria for tumors of the gastrointestinal tract,51

although it is practically difficult to achieve this unification. For
example, some intramucosal atypical gland‐forming lesions are
diagnosed as EAC in Japan, even in cases that would be
diagnosed as low‐grade or high‐grade dysplasia in Western
countries. This difference is related to Western countries
defining carcinoma as involving invasion, while the Japanese
definition is based on nuclear and structural atypia. Therefore,
in Western countries, most mucosal lesions with nuclear or
structural atypia (except poorly‐differentiated adenocarcinoma
or undifferentiated tumors, such as signet ring cell carcinoma)
would be classified as dysplasia and not cancer.

BARRETT'S EPITHELIUM: HISTOLOGICAL TYPE AND
CARCINOGENESIS

The designation Barrett's esophagus arises from Barrett's
report describing ‘part of the foregut, distal to the cricophar-
yngeal sphincter, which is lined by squamous epithelium’.52

The report also notes that ‘He commented on earlier reports
describing patients with ulcerations in a tubular organ that
grossly appeared to be the esophagus but had a distal,
ulcerated portion lined by columnar epithelium’.53 At the
time, it was considered a form of the stomach that was
congenitally present in the esophagus, which was referred to
as ‘short esophagus’.52,53 The term ‘Barrett's esophagus’
was not initially used. Various reports subsequently provided
histological images of Barrett's esophagus, with Paul et al.54

presenting images from 11 cases of Barrett's esophagus in
1976, which they concluded showed three types of columnar
epithelium in the lower esophagus: atrophic gastric mucosa
(now ‘oxyntic mucosa’), junctional mucosa (now ‘cardiac‐
type mucosa’), and specialized columnar epithelium (‘in-
testinal metaplasia’). This report conflicts with the current
American diagnostic criteria for Barrett's epithelium, which

emphasize intestinal metaplasia, while reports from the
1980s implicated intestinal metaplasia in the development of
Barrett's esophagus and various epithelial cancers, although
intestinal metaplasia was considered essential to the
definition of Barrett's esophagus (a precancerous
lesion).55–60 As intestinal metaplasia is often seen as a
histological type of LSBE, intestinal metaplasia could also be
considered essential for carcinogenesis in the US. However,
the concept that intestinal metaplasia is required for cancer
to develop has become a sort of dogma in the US. The
choice of the word “dogma” can be better understood by
considering the example of gastric carcinogenesis. It is
common knowledge that gastric cancer is often caused by
Helicobacter pylori infection, which causes superficial
gastritis to become chronic active gastritis, and chronic
atrophic gastritis subsequently results in intestinal metapla-
sia leading to gastric cancer (especially differentiated gastric
cancer).61,62 In the US, research revealed that intestinal
metaplasia was commonly found in the background mucosa
of gastric cancer, before the discovery of H. pylori, which led
to the belief that intestinal metaplasia was a precancerous
lesion leading to gastric cancer.63,64

IS IT TRUE THAT ‘ONLY INTESTINAL METAPLASIA
RESULTS IN CANCER’?

The process of esophageal and gastric carcinogenesis
raises questions regarding the hypothesis that ‘only intestinal
metaplasia results in cancer’. For example, Hattori's 1985
study investigated mucous granules from gastric cancer cells
occurring in hyperplastic polyps without any intestinal
metaplasia and revealed that gastric cancer developed from
intrinsic gastric glands.65 We also recently reported that
gastric cancer is also observed developing with hyperplastic
polyps in the background and proved the genomic change in
this intramucosal lesion.66 Subsequent research has aimed
to study the mucous phenotypes of gastric cancer and its
background mucosa.67–71 In this context, gastric cancer
reportedly occurs from intrinsic gastric glands that have
atrophied with sufficiently intense inflammation to cause
intestinal metaplasia.72 It means that intestinal metaplasia is
not always a ‘precancerous’ lesion but a ‘paracancerous’
lesion. In our recent report, we found that early intramucosal
gastric cancer lesions possessed gastric mucous pheno-
types and that there is a proliferative zone with a polarity of
differentiation in mucous phenotypes that is similar to the
intrinsic gastric glands.73 Thus, it does not appear that
intestinal metaplasia is a major oncogenic pathway for
gastric cancer. This gland‐forming differentiated adenocarci-
noma with gastric mucous phenotype is finally gaining global
recognition, and even the widely accepted 2011 WHO
system classifies gastric phenotype neoplasia.74

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Barretts's carcinogenesis 321



SOME EACS DEVELOP FROM GASTRIC‐TYPE
MUCOSA

An analysis of EACs reported in 2009, using German cases,
revealed that small EACs do not exclusively develop from
intestinal metaplasia, and can develop from gastric cardiac‐
type mucosa.75 A report from the UK has also stated that
intestinal metaplasia is not a universally‐present component
of oncogenesis.76 Columnar metaplasia without goblet cells
can involve abnormal DNA. Results from the other studies of
EAC also revealed that these tumors were often gastric
phenotype.77,78 These results confirm that EAC develop-
ment is not restricted to the intestinal metaplasia. Columnar
metaplasia without goblet cells also reportedly has the
potential to involve intestinal phenotypes.79–82 In German
cases, approximately 60% of Barrett's mucosa on the
background of EAC in the lower esophagus was cardiac‐
type mucosa without goblet cells, although the glands often
had intestinal phenotypes (versus pure gastric phenotypes)
with the expression of intestinal phenotypes claudin 3 and
claudin 4.77 Epidemiological data indicate that LSBE, which
is often associated with intestinal metaplasia, has a higher
carcinogenesis rate than SSBE, and that cases with a
background of intestinal metaplasia often have intense
inflammation and severe reflux esophagitis. Thus, Barrett's
epithelium involving intestinal metaplasia is likely to involve
more intense reflux‐based irritation, and it might be under-
stood that Barrett's epithelium with intestinal metaplasia
involves a higher risk of carcinogenesis than if intestinal
metaplasia was absent.

RELATIONSHIP BETWEEN BARRETT'S EPITHELIUM
AND GASTRODUODENAL REFLUX

A previous report in 1979 indicated that Barrett's esophagus
developed after total gastrectomy in humans, which suggested

that gastric acid reflux was not necessary for Barrett's
esophagus to occur.83 It is now widely accepted that reflux of
both gastric acid and bile acids must be involved for Barrett's
epithelium to occur.84 To evaluate the histogenesis of Barrett's
epithelium, many researchers, including our group, have used
rat models of surgically induced gastroduodenal reflux that
causes reflux of duodenal fluid, including bile acids, with or
without gastric juice, into the esophagus85–88 (Fig. 2). These
models have revealed that, even in the absence of carcino-
genic agents, Barrett's epithelium with intestinal metaplasia
developed 10 to 20 weeks after surgery, and dysplasia and
EAC could be observed after approximately 40 weeks85–88

(Fig. 3). Thus, reflux of duodenal fluid, including bile acids, is
essential for Barrett's epithelium with goblet cells to occur. In
contrast, reflux of gastric juice without duodenal fluid only
induces light esophagitis and does not appear to produce
Barrett's esophagus with intestinal metaplasia.77 In vitro
experiments have indicated that exposure to bile acids can
induce the expression of CDX1 and CDX2, which are
transcription factors that are involved in the production/
maintenance of the intestinal epithelium.89–91 Therefore, bile
acid reflux has been implicated as being involved in the
occurrence of Barrett's esophagus with intestinal metaplasia.

DEVELOPMENT OF BARRETT'S EPITHELIUM

Many hypotheses have been reported regarding the cells
from which Barrett's mucosa originates. These include
(i) the columnar epithelium being directly produced from
the esophageal squamous epithelium87,89,90 (Fig. 4a);
(ii) the gastric mucosa77,91 (Fig. 4b); (iii) the esophageal
gland duct92 (Fig. 4c); (iv) the esophagogastric junction
mucosa93 (Fig. 4d); (v) the fetal remnant94 (Fig. 4e,f); (vi)
bone marrow cells95 (Fig. 4g); and (vii) wound repair.96

Most of these hypotheses have been developed based on
results from rat‐ or mouse‐based models. The genetic

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Figure 2 Various rat reflux models of Barrett's esophagus leading to adenocarcinoma. F, forestomach; G, glandular stomach; T, treitz
ligament. (a) Esophago‐jejunostomy after total gastrectomy.86,87 (b) Esophago‐jejunostomy without gastrectomy.87,88 (c) The esophagogastric
junction was side‐to‐side anastomosed to a loop of jejunum.93
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changes have typically been evaluated in mice, because of their
well‐understood genome. However, mice and rats differ
anatomically from humans, as they lack esophageal glands,
which makes it impossible to determine whether Barrett's
mucosa develops from these glands. Furthermore, rats lack a
gall bladder, and the surgically induced model causes
continuous bile reflux based on the absence of a gallbladder.
Pigs have also been used to study whether the esophageal
glands are involved in the occurrence of EAC from Barrett's
epithelium. It is impossible to definitively identify the correct
theory and research in this field is expected to continue. In the

following sections, we will introduce the process based on the
findings from our rat gastroduodenal reflux models.77,87,88 There
are at least two ways for Barrett's epithelium to develop.77

Development from the basal layer of the esophageal
squamous epithelium

In the rat reflux models, columnar epithelium was observed in
the basal layer of the squamous epithelium, which involved
regenerative changes caused by inflammation at locations

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Figure 3 Neoplastic lesions developed in rat reflux models. (a) Dysplasia. (b) Mucinous adenocarcinoma.

Figure 4 Various candidate lesions about development of Barrett's epithelium. (a,c–e,g) HE stainings. (b) CDX2. (f) CK7 Visualization of
immunochemical staining was performed using 3,3′‐diaminobenzadine (DAB). (a) Inflamed esophageal squamous epithelium. (b) Gastric
mucosa (cardiac‐type mucosa) focally positive for CDX2 expression has the potential for intestinal differentiation. (Brown is the color of
positive cells). (c) Esophageal gland duct. (d) Esophagogastric junction mucosa. (e,f) Twenty‐two‐week‐old human fetal esophagi. The
epithelium has cilia, and it is positive for CK7. (f) Bone marrow.
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distant from the anastomosis (Fig. 5). This process cannot be
attributed to transdifferentiation (i.e., completely differentiated
squamous epithelium differentiating into columnar epithelium)
and must be attributed to transcommitment, in which stem cells
located in the basal layer of the stratified squamous epithelium
change their direction of differentiation from squamous to
columnar epithelium. In a review on reflux esophagitis by
Souza, an alternative concept to the conventional theory of
‘reflux esophagitis is an acid burn’ is proposed. According to
this concept, ‘the reflux of acid and bile salts does not destroy
epithelial cells directly, but rather induces them to secrete pro‐
inflammatory cytokines’. Columnar epithelium that exists in the
squamous epithelial basal layer is thought to develop as a
result of cytokine sizzle.97 One recent report has described a
non‐neoplastic cell line established from the esophageal
stratified squamous epithelium of a patient with GERD who
experienced bile acid reflux for approximately 5min daily over a
30‐week period. That cell line exhibited expression of TAp63,
CDX2 and SOX9, similar to cell lines established from Barrett's

epithelium, as well as similar morphological changes.98 They
suggested that the non‐neoplastic cell line, which was derived
from a biopsy specimen of a patient with GERD, may be
derived from preterminal parent cells that retain the proliferative
capacity and may not represent true ‘fully terminally differ-
entiated’ epithelial cells. Considering their precursor‐like
properties, this behavior is more synonymous with reprogram-
ming or transcommitment rather than transdifferentiation.98

They claimed that these biphenotypic progenitors may be the
precursors for the Barrett's columnar epithelium.98

Development from the cardiac‐type mucosa

This section addresses the development of cardiac‐type
mucosa, which is commonly associated with SSBE in Japan.
Results from our animal models, which mimic human
gastroduodenal reflux through the esophagogastric junction
(Fig. 6), have suggested that cardiac‐type mucosa forms
Barrett's mucosa by spreading to the oral side, which
replaces the place where esophageal stratified squamous
epithelium is missing because of erosion or ulceration77

(Fig. 7). This is so‐called ‘creeping theory’, which involves
stem cells around the missing epithelium gradually spread-
ing to cover the defect without overt proliferative activity.
Thus, if reflux esophagitis is not treated (e.g., by using a
proton pump inhibitor (PPI)), there is a persistent cause of
the defect in the esophageal mucosa. Furthermore, with
sustained reflux, the cardiac glands spread to the oral side
faster than the oral‐side squamous epithelium can repair the
defect. The squamous epithelium is also more vulnerable to
gastric acid or bile than the gastric columnar epithelium,
which makes it impossible to restore the missing epithelium if
there is sustained reflux. In contrast, endoscopic images
from cases treated using a PPI had frequently revealed signs
that the defect sites from before PPI therapy were repaired
by stratified squamous epithelium. Therefore, it appears that

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Figure 5 Histological image of a site distant from the anastomotic
region in a rat model that underwent esophago‐jejunostomy. Several
columnar epithelia have developed within the squamous epithelium,
as shown on the right side of the figure, while complete Barrett's
epithelium (arrow) can be seen on the left side of the figure.

Figure 6 Surgical procedure of the rat model which mimics human gastroduodenal reflux: F, forestomach; G, glandular stomach; T, treitz
ligament. Surgery proceeds from left to right. The final phase is shown on the extreme right. Firstly, we removed the forestomach which does
not exist in the human stomach. Then, the esophagus was connected with the glandular stomach. The gastrointestinal tract is sectioned where
the red double line is drawn in the second figure from the right and then anastomosed. In the final phase, the reflux of gastric fluid that contains
duodenal fluid occurs from the glandular stomach to the esophagus (yellow arrow).
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replacement of the missing mucosal epithelium by stratified
squamous epithelium or columnar epithelium depends on
the local environment, which is related to the presence or
absence of sustained reflux.

Summary of the development of Barrett's mucosa

Based on the results of studies that used rat reflux models, at
least two pathways are involved in the development of Barrett's
esophagus. We believe SSBE development can be explained
by spreading of a cardiac‐type mucosa to the oral side due to
wound repair, while LSBE development can be explained by the
presence of progenitor cells or stem cells in the basal layer of the
esophageal stratified squamous epithelium transcommitment, as
a result of cytokine sizzle. These two pathways may be
simultaneously involved in human cases. A developmental
process that involves the esophageal glands may also exist that
cannot be verified using rats, which have no esophageal glands.

BARRETT'S CARCINOGENSIS

Effects of a high‐animal‐fat diet

Although Humans who have developed Barrett's esophagus
reportedly had greater bile acid reflux in the esophagus,99 it
remains unclear which bile acids are involved in carcinogenesis
from Barrett's esophagus. Nehra et al.99 have reported that
significant amounts of taurine‐conjugated bile acids were
detected in the esophagi of patients who had developed
Barrett's esophagus. In the US, the increase in the incidence
of Barrett's esophagus is reportedly linked to the consumption of
a high‐fat diet,8 and our rat model has shown that a high‐fat diet
consisting mainly of tallow increases the proportion of taurine‐

conjugated bile acids.100 The pH in the stomach and the acid
dissociation constant of each bile acid need to be considered.
The pKa value of taurine conjugates is strikingly lower at
approximately 1.8 to 1.9 and taurine conjugates do not form
deposits,101 even in cases with bile acid reflux into the stomach.

Activation of NF‐κB

In vitro experiments also indicated that taurine‐conjugated bile
acids activate Src, EGFR and ERK, thereby causing colorectal
cancer cells to proliferate.102 Activation of nuclear factor kappa‐
light‐chain‐enhancer of activated B cells (NF‐κB), which is
reportedly overexpressed after exposure to bile acids, has also
been implicated in carcinogenesis from Barrett's esophagus.103

It has also been reported that acid and bile acids caused
activation of NF‐κB.104,105 Bile acids are known to increase
CDX1 and CDX2 expression and promote differentiation into
intestinal epithelium.89,106–110 CDX2 is targeted by the NF‐κB
pathway,111,112 and two putative NF‐κB binding sites have been
identified in the CDX2 promoter.113 Therefore, digestive juice
reflux induces the production of cytokines that are involved in
Barrett's carcinogenesis. This carcinogenic process is likely
initiated by a factor that is produced in the patient's body, and we
will cover some potential factors below.

Production and stabilization of N‐nitroso‐bile acids

N‐nitroso‐compounds have been implicated in the occurrence
of gastric cancer,114 and endogenous N‐nitroso‐bile acids are
one kind of nitroso compounds. Although bile acid itself is not
mutagenic, N‐nitroso‐bile acids are mutagenic and are pro-
duced if nitrite or nitrate and bile acid are present in acidic
conditions. Based on our reflux models, we found that
administration of L‐thioproline (which plays a role in capturing
nitrite) suppressed the occurrence of esophageal or gastric
cancer, which indirectly shows that N‐nitroso‐bile acids are
involved in the occurrence of esophageal and gastric
cancers.115,116 DNA adducts originating from N‐nitroso‐bile
acids have also been detected in the glandular stomach from
our gastric cancer model.117,118 Furthermore, N‐nitroso‐bile
acids reportedly stabilize under acidic conditions.119 These
findings suggest that N‐nitroso‐bile acids appear to be involved
in the occurrence of EAC from Barrett's esophagus in patients
with healthy acid‐secreting stomachs.

Why have the prevalence of EAC and esophagogastric
junction cancer increased in tandem?

A report has indicated that the American prevalence of EAC
and esophagogastric junction cancer have increased in

© 2019 The Authors. Pathology International published by the Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

Figure 7 Cardiac‐type mucosa around the esophagoglandular‐
stomach anastomosis developed in the rat reflux model. The right
side of the figure is an oral side. Expansion of intrinsic gastric car-
diac glands occurs to cover the defect of squamous epithelium
during wound repair (arrow).
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tandem.8 The increasing American prevalence of EAC and
esophagogastric junction cancer seem to be related to
GERD. Even healthy individuals experience regurgitation of
duodenal fluid into the stomach after eating,120 and the
amount regurgitated increases in patients with GERD
reportedly. Thus, lying down after eating can result in the
duodenal fluid, which contains bile acids, remaining in the
stomach (e.g., during sleep).121 Suzuki et al.122 have
reported that the cardia has the highest concentration of
nitrates originating from food, which maximizes the luminal
generation of N‐nitroso‐compounds from dietary nitrate at
the most proximal cardiac region of the acidic stomach.
Because the accumulated reflux fluid would contain en-
dogenous N‐nitroso‐bile acids from the stomach, chronic
inflammation and carcinogenesis could then occur in the
esophagogastric junction or esophagus. Fig. 8 shows this
process from the left oblique position, based on a roughly
sagittal cross‐section that is parallel to the major axis of the
esophagogastric junction from the esophagus. The esopha-
gus descends from the oral side to the caudal side along the
left side of the aorta, but then proceeds to the right ventral
side slightly cranial to the diaphragmatic hiatus, which allows

it to pass ventral to the aorta and enter the abdominal cavity
near the body’s midline, where it transitions into the stomach.
If the individual lies down immediately after eating, the food
remains in the stomach and collects in the fornix on the
dorsal side. When transient lower esophageal sphincter
relaxations occur in this state, the esophagogastric junction
and lower esophagus would be exposed to these liquids.
It is also theoretically possible that the liquids include
N‐nitroso‐bile acids, which may play a role in the initiation
of carcinogenesis. Thus, the prevalence of EAC and
esophagogastric junction cancer has increased in tandem.

CONCLUSION

Barrett's epithelium involves metaplasia of the squamous
epithelium into columnar epithelium, which could be described
as an adaptation in a microenvironment.123–125 The micro-
environment is decided by mainly bile acids and gastric acid in
gastric juice flow backward into the esophagus. Bile acids are
known to promote differentiation into intestinal epithelium by
increasing the CDX1 and CDX2 expression. Although
Barrett's epithelium with intestinal metaplasia involves a
higher risk of carcinogenesis than if intestinal metaplasia
was absent, cardiac‐type mucosa which has the potential to
involve intestinal phenotypes can be a risk of EAC. Digestive
juice reflux including the high concentration of bile acids
induces the production of cytokines, such as NF‐κB, has been
implicated in carcinogenesis from Barrett's esophagus. This
carcinogenic process is likely initiated by the production of N‐
nitroso‐bile acids, which is mutagenic and promoted by
sustained chronic inflammation.
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Figure 8 The mechanism of EAC and esophagogastric junction
cancer development: A, aorta; L, liver; P, pancreas; S, stomach; f,
food remnants. The figure is the schema from the left oblique po-
sition of the patient with GERD. The right side of the figure is a head
side, and the left side is caudal. If the individual lies down im-
mediately after eating, the food remains in the stomach and collects
in the fornix on the dorsal side. The ventral side of the food remnants
also includes a component that contains liquid or sludge‐like di-
gestive juice, which would also include duodenal fluid including bile
acids. The accumulated reflux fluid (arrow) would contain en-
dogenous N‐nitroso‐bile acids, and carcinogenesis could then occur
in the esophagogastric junction or esophagus.
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