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Abstract

Many attempts to relate animal foraging patterns to landscape heterogeneity are focused on the analysis of foragers
movements. Resource detection patterns in space and time are not commonly studied, yet they are tightly coupled to
landscape properties and add relevant information on foraging behavior. By exploring simple foraging models in
unpredictable environments we show that the distribution of intervals between detected prey (detection statistics) is
mostly determined by the spatial structure of the prey field and essentially distinct from predator displacement statistics.
Detections are expected to be Poissonian in uniform random environments for markedly different foraging movements (e.g.
Lévy and ballistic). This prediction is supported by data on the time intervals between diving events on short-range foraging
seabirds such as the thick-billed murre (Uria lomvia). However, Poissonian detection statistics is not observed in long-range
seabirds such as the wandering albatross (Diomedea exulans) due to the fractal nature of the prey field, covering a wide
range of spatial scales. For this scenario, models of fractal prey fields induce non-Poissonian patterns of detection in good
agreement with two albatross data sets. We find that the specific shape of the distribution of time intervals between prey
detection is mainly driven by meso and submeso-scale landscape structures and depends little on the forager strategy or
behavioral responses.
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Introduction

A number of seabird species search and catch prey in ranges from

hundreds to thousands of kilometers away from their nesting sites

[1–8]. The changing nature of marine environments makes seabird

prey distributions highly dynamic and unpredictable over large

spatial scales, ultimately impacting on seabirds capture efficiency

[9,10]. In this scenario, seabird populations are under constant

survival pressure, a situation worsened by climate change, that

significantly perturb prey availability and the ecology of predator-

prey systems [11,12]. A well known example is the impact of El

Niño-ENSO oscillations in the Pacific Ocean [13] on sardine

population fluctuations off South Africa coast [8]. Studies of how

seabirds detect and catch prey in the open ocean are also very

important to assess the health of fish stocks [14–18], particularly for

declining species that are commercially valuable [19,20]. The

availability of telemetry and satellite tracking technologies [21–25]

accounts for recent progress in the understanding of habitat use and

foraging behavior of long-range oceanic birds [26,27]. Yet, this new

empirical knowledge has been seldom followed up by theoretical

studies providing general and more formal rationale for the

observed foraging patterns. Motivated by this, and inspired by the

long-range foraging patterns of albatrosses, here we explore how

landscape-properties (i.e. large-scale prey spatial distributions) affect

prey detection patterns in seabirds.

Foraging models (see, e.g. [28–30]) often examine the average

distance (or time) travelled between successive prey detections, a

key quantity that is inversely proportional to the foraging

efficiency. Much less attention has been paid to the entire

distribution of distances/times between detected prey (but see

[30]), herein referred to as detection statistics. This latter quantity

has been sometimes directly measured, in particular for wandering

albatrosses (Diomedea exulans) [10,31]. It is worth noting that

detection patterns in unpredictable environments are -a priori- not

closely related to displacement patterns. Displacements, i.e., a set

of positions defining a trajectory, reflect internal states and

complex behavioral responses to resource distributions [32–37].

Detections, in turn, are localized events resulting from the explicit

or physical interaction of the forager with the prey field and/or

targeted landscape features.

For the past decade, a wide debate has focused on animal

movement models with power-law move length distributions (Lévy

walks) and on their possible interpretation as optimal search

strategies of randomly distributed prey [28,38–41]. The movement

patterns of many foragers, for instance, marine predators [37],

plankton [42], spider monkeys [43] or jackals [44] display a wide

range of spatial scales that cannot be accounted for by Poisson

statistics. Wandering albatrosses were actually one of the first

biological examples where evidence for Lévy displacements was

reported [24,28]. Flaws found later in the analysis questioned these
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findings and data of higher resolution were neither fitted by a Lévy

law nor a Poisson law, but by a truncated modified power-law

function [45]. This set of studies has attempted to draw

conclusions on the search strategies of albatrosses not from direct

position tracking, but based on flight duration data, which were

assumed to be indicative of detection times between prey

[24,28,45]. Here we provide further evidence showing that these

data are actually related to detections, but also show that they do

not carry information on movements and, therefore, on the nature

of the search patterns leading to these detections.

We more generally examine the effects of the prey field spatial

structure and of foraging rules on detection patterns. For prey

uniformly distributed in space, detection patterns are trivially

exponential if displacements are ballistic or self-avoiding but the

outcome is less obvious for other types of movement. We find that

Lévy movement models [28] also lead to exponential prey

detection patterns in Poissonian environments, which illustrates

the markedly different nature of detection and movement statistics.

These predictions can explain the diving patterns of short-range

foraging seabirds, such as the thick-billed murre [46], whose dives

are exponentially distributed on time.

Prey in the ocean are not uniformly distributed at large scales,

however [47–50]. Detection patterns in complex media have been

little studied and mostly in non-biological contexts [51]. We show

that the non-Poissonian albatross data of [10] and [45] can be

explained by models of a forager flying over a fractal prey

landscape with parameter values consistent with observed resource

distributions in the ocean. We use two models generating fractal

landscapes of different nature and relate the fluctuations in the

predator detection times (or distances) to the prey density

heterogeneities. As in the uniform case, detection patterns in a

given environment are found robust with respect to a variety of

foraging rules, where the predator may or may not switch between

different behaviors depending on prey detection.

Analysis

Foraging Seabirds: Movement vs. Detection Statistics
In this study we re-analyze data from thick-billed murres and

wandering albatrosses, two seabird species with markedly different

behaviors. Thick-billed murres forage over small spatial scales in

short foraging trips (representing less than 1h of flight in total)

within a few kilometers of their colony [46]. They feed on benthic

or pelagic fish in zones where prey occur in patch and are

relatively predictable. These animals show a high degree of site

fidelity. Murres perform above-water and underwater searching,

although the latter has a much shorter mean duration [46]. In ref.

[46], flight durations (t) of thick-billed murres between consecutive

dives were measured with time-depth-temperature recorders.

On the other hand, telemetry data reveal that some albatrosses

species, especially wandering albatrosses, perform exploratory trips

of thousands of kilometers involving commuting and looping

typical of central-place foraging [10,52]. This large scale behavior

is interspersed with hierarchically nested area-restricted search

induced by the recognition of water masses such as the shelf edge,

sea-mounts or frontal zones. Prey are likely to be scattered within

these mesoscale physical structures that represent higher profit-

ability areas that need to be prospected, involving successive

landings and take-offs [52]. Heart-rate recorder signals in

wandering albatrosses show that landings and take-offs represent

a high energy expenditure for these large birds, who practically

consume as much energy flying with a favorable tail or side wind

as when sitting on the water or resting on the nest [53]. From an

optimality standpoint landings should be considered informed

behavioral responses, mostly associated to prey detection or

exclusive seascape features, but not strictly related to successful

prey captures. In [10,54] it was observed that birds need about two

landings on average before capturing prey (measured from

stomach temperature sensors data). In particular, two capture

modes have been identified in wandering albatrosses: ‘‘foraging in

flight’’, where the prey is captured within a few seconds after

landing, and ‘‘sit-and-wait’’, where the bird is sitting on the water

for more than 10 min before prey is caught [31,52]. The sit-and-

wait strategy appears to be a secondary tactic used for prey

clustered in small patches, for which foraging in flight would

require high turning and landing rates, or for prey capture at night

[52]. Albatrosses also land in water to rest, probably selecting the

resting areas as well. Herein the term ‘‘prey detection’’ will denote

the detection of prey, prey cues, or targeted seascape areas (for

prospection, potential prey captures, resting, etc.) that may induce

landing or diving responses.

One of the wandering albatross data discussed in the following

(Bird Island data [45]) were obtained with wet-dry sensors

measuring flight durations (t) between successive take-offs and

landings. The data was acquired in 2004 with a reading each

Dt~10s [45]. However this technology, which is similar to that of

the murre data mentioned above, does not give information on

trajectories and the animals were not equipped with a high

resolution GPS device. The second wandering albatross data set

re-analyzed here (Crozet Islands data [10]) consists in distances

between captured prey measured using stomach temperature

transmitters and position tracking systems.

Let us now consider, as an illustrative example, the search

model of [28]. A forager with constant velocity v chooses randomly

oriented, rectilinear displacements of lengths (l) drawn from a

probability distribution function (PDF) P0(l): Prey is immobile and

randomly, uniformly distributed on a plane in number density r,
and the forager can detect a prey only when it is at a shorter

distance than a perception radius r. A step is stopped if a prey is

detected on the way or completed otherwise.

Viswanathan et al. [28] considered power-law distributions,

P0(l)~Cl{m for lwl0 and zero otherwise, where 1ƒmƒ3. To test

this move length distribution for wandering albatrosses, [28] and

[45] compared the PDF of the flight durations t obtained from the

wet-dry sensors to a power-law distribution. A similar comparison

was performed with the flight duration data of the thick-billed

murres [46]. In these studies, t was thus assumed to be indicative of

a chosen move length, l. But, as we have argued, t represents the

time elapsed between two detections, not a time spent traveling in

straight line between two re-orientations. As t and l are different

variables, they a priori obey different distributions. Therefore,

comparing the model (or any other foraging model) with the three

data sets described above requires to seek the PDF of the distance

flown between two successive detected prey for that model,

denoted as L here (if the bird velocity is constant, then L = vt).

Equivalently, L is the sum of the step lengths travelled between

prey. One may use the identity PDF (L)~{dp(L)=dL, where

p(L) is the probability that a path of length L has not found a prey

yet (or the fraction of flights of length §L).

Results

Prey Detections in Poissonian Landscapes
We illustrate below that the distance flown between two

successive detection events, i.e. L, is exponentially distributed in

random and uniform prey fields, even if the choice distribution

P0(l) is not an exponential. In such landscapes, if detected prey

disappear (destructive scenario), any foraging strategy producing

Detection Patterns in Foraging Seabirds
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paths that do not revisit the same location is optimal. Such non-

oversampling paths can be ballistic (similar to a Lévy process with

m&1), spirals, self-avoiding walks, etc. Any non-oversampling path

of length L has a probability p(L)~ exp ({L=l) of not finding

any prey, with l~1=(2rr) a characteristic distance, being r a

detection radius and r the prey density. If the forager follows a

random Lévy search, its trajectory involves some degree of

oversampling. We have obtained p(L) from numerical simulations

for this model. In a destructive scenario, in which prey are

depleted and not revisited, p(L) closely follows an exponential, not

only for m&1 but also for walks with 1vmƒ2 (Figure 1A and C).

In the non-destructive scenario, prey can be revisited. If one

chooses m~2 or any smaller value, one also observes exponential

detection statistics in a very good approximation (Figure 1B and

D). The distribution {dp(L)=dL has the form l{1
d exp ({L=ld ),

a shape which is not related to that of P0(l): These results illustrate

that exponential tails for prey detection statistics are an essential

outcome of foraging models, including those generated from Lévy

processes, when the landscape is Poissonian. However, the precise

value of the characteristic length travelled between prey, ld (which

is related to the foraging efficiency), generally depends on the

scenario and movement rules (P0(l),here). As we assume that

movement is truncated by detections, ld is finite.

The simple exponential form of p(L) obtained for uniform prey

fields describes well the murre data. The maximum likelihood

estimate (MLE) of ld is 9.5 min and a log-likelihood ratio test of

goodness-of-fit (G-test) was performed from 104 independent

Monte Carlo samplings, giving P~0:82 (n~2083, df ~15). In

contrast, the exponential does not describe the wandering

albatross curves, see Figure 1 (G-test, Bird Island: Pv 0.0001,

n = 1507, df ~47; Crozet Islands: Pv0:0001, n~276, df ~47).

In this figure, distances in the Crozet I. data were converted into

flight durations assuming a constant flight velocity v~16m/s

[52,55]. The resulting curve lies very close to the Bird Island data.

Prey Detection in Large Scale Fractal Landscapes
In the case of Bird Island wandering albatrosses, Edwards et al.

accurately fitted the flight duration distribution by a shifted

gamma function, which is asymptotically an exponential multi-

plied by an inverse power-law [45]. Similarly, Weimerskirch et al.

found that the distribution of distances between captured prey by

Crozet Islands wandering albatrosses did not follow a simple

exponential, but approximately an inverse power-law [10] (see also

[56]).

Such intermittent landing by albatrosses, often related to prey

capture behavior, can be explained by fractal prey landscapes. As

a matter of fact, wandering albatrosses forage over much larger

spatial scales than murres and mainly feed on squid and pelagic

fish [10]. This prey display several levels of spatial aggregation and

schooling [47,48] and have strong spatial overlap with plankton

[49]. The large scale horizontal spatial distributions of plankton

[37,50], passive drifters [57], cephalopods [47] and pelagic fish

[48,58–60] are known to be self-similar (with fractal dimension

DF&1:2{1:6v2) over a wide range of scales, typically from a

lower characteristic scale R0, of tens of meters, to an upper scale

Rm, of 1002300 km [50,58,60]. At scales larger than Rm the prey

field is seen as heterogeneous but space filling, that is, with DF&2:
The mechanisms generating fractal horizontal distribution of

marine species near the ocean surface are not well-known.

Oceanic turbulence [50,60] and predator-prey interactions [61]

are two factors often invoked.

Based on these field observations, we consider below more

realistic prey distribution models that generate fractals of different

types.

(a) Truncated Lévy Dust model (LD). It is commonly

accepted that the assumption of randomly distributed prey in

spatial ecological models is not entirely appropriate since there is a

growing body of evidence showing that prey are more likely

distributed in a patchy and aggregated fashion. This seems to be

especially true for distributions of prey in marine environments as

discussed above [48,58–60]. Lévy dusts in finite domains are a

convenient method to generate stochastic fractal point patterns

and they have been applied to model oceanic prey fields [37,50].

They have been less often used to model the movement of foragers

profiting on these, however (but see [62]). Our first fractal foraging

model therefore employs truncated Lévy dusts (LD) to generate

fractal prey locations.

LD are standard Lévy flights coming from the power-law

distribution f (x)*x{b with 1vbƒ3 [63] and where only the

turning points joining successive displacements x are considered as

prey locations. This method generates point patterns with fractal

dimension DF ~b{1v2 (Figure 2). The power-law distribution

when finite (contained in a square domain-box of unit length) is

truncated in the range ½d,1� where d is interpreted as the minimum

distance separating neighboring prey. On the other hand, the

maximum distance separating consecutively located prey is the

domain-box size, set to 1 for convenience. Between both limits

(which define the self-similarity range of the fractal) the

corresponding truncated probability distribution function is

normalized to 1. The Lévy dust generator starts at the center of

a square domain of unitary area and accommodates N successive

prey (see Figure 2). When a new prey position is to be located

outside of the domain, it is discarded and a new step is attempted

(we call this a ‘‘border-bounce’’). The fractal nature of the pattern

may disappear if the number of bounces is too high. In order to

prevent this, a tuning of d is applied to guarantee that the number

of bounces is low, given a total number of prey. If the distance d is

large enough (but always %1) and if the total number of prey is

also large, the pattern approximates a Poisson distribution because

of too much bouncing. If the value of d is too small, the prey field

is limited to a very small region of the domain. An intermediate

situation would produce a locally sparse fractal covering the whole

domain. In our simulations, we took values of d such that a bounce

occurs in no more than 1.5% of the total number of prey. It is also

necessary to keep in mind that the value of d depends on the value

of the scaling exponent b of the walker. The lower the exponent b
is, the lower the value of d has to be in order to generate an

undistorted fractal with few bounces (see Figure 2). We will discuss

in the following section the detection dynamics of a forager

moving on a fractal prey field generated by this process (see

Figure 3, left).

(b) Fractal Local Density (FLD) model. We next propose

an alternate and original model that builds stochastic fractals

where, in contrast with Lévy dusts or Sierpinski-like hierarchical

structures [51,58], the local prey density r is well-defined.

Acoustic devices allow to measure the density of marine

organisms, either locally (e.g., [37]) or over hundreds of kilometers

squared instantaneously [60]. Krill density has been observed to

fluctuate widely from one location to another and to follow a

power-law frequency distribution, of the form PDF (r)*r{ar ,
with ar&1:7 [37]. These large density variations also have a

spatial structure that involves many length scales across the

landscape [60]. Therefore, to characterize the prey field as a

patchwork of regions with different densities, one must specify the

sizes of these regions. These length scales (R below) represent

another important ingredient of the model, as the local density

alone is not a space variable. For albatrosses, fairly localized high

productivity marine areas occur interspersed with vast oceanic

Detection Patterns in Foraging Seabirds
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areas of low productivity [10,54]. We construct a model that

captures these properties. In the model, high density regions are

numerous but small, and represent overall a small fraction of the

total area, corresponding to the tail of the density PDF. On the

contrary, a significant area fraction is occupied by a few large

regions of very low local density. The density is a continuous

variable bounded by a minimal and a maximal value.

The definition of a patch tends to be rather inclusive. We define

here a patch as a region of space of uniform prey density, with no

limitation on its size and density [64,65]. Consider a random

assembly of non-overlapping, roughly circular patches of varying

diameters R that are drawn from a frequency distribution y(R)
(Figure 3, right). Inside a patch of size R, an average number of

np(R) prey are distributed randomly and uniformly. Therefore, the

density in a patch is proportional to np(R)=R2: To obtain a

medium with fractal properties up to a scale Rm, one first

distributes R according to a truncated power-law distribution:.

y(R)~cR{n exp ({R=Rm), with R§R0 ð1Þ

where n is an exponent related to the fractal dimension, Rm the

large cut-off length of the fractal mentioned earlier, and c the

normalization constant. In addition, R is always larger than some

length R0, which is the minimum size of a patch (R0%Rm) and

can be taken as the resolution size. We next assume an algebraic

relationship between the size of a patch and the number of prey it

contains:

np(R)~kRE; ð2Þ

with k a constant and an exponent ƒ2: The case ~2 corresponds

to a uniform Poissonian medium, where all regions have the same

density. As further shown, the albatross data is best fitted by

landscapes with negative values of : large patches have fewer

prey. On length scales R0vR%Rm, the patch distribution (1) is

scale-free, whereas practically no patch has a size much larger

than Rm. The box-counting method shows that for some

parameters n and , the prey distribution of this model forms a

fractal set with dimension DF v2 on scales smaller than Rm (see

Information S1). Restricting ourselves to the case v0 of interest

here, one finds that the fractal dimension is given by:

Figure 1. Detections in random uniform prey landscapes. (A) Albatross data and the model with destructive scenario. Green circles:
accumulated distribution p(L) of flight lengths between successive detected prey of the model forager [28] with perception radius r = 0.001 following
a Lévy process with m = 1.5 (from 20 simulations of 75 captures each). The foraging ground is represented by a square of area unity and contained
5000 prey. Continuous line: exponential fit. Red triangles: p(L) of the Bird Island albatross takeoff/landing data [45]. Blue triangles: p(L) of the Crozet
Islands albatross prey capture data [10], converted into flight durations assuming a constant flight velocity v~16m/s. Inset: same curves represented
in semi-log to better emphasize the non exponential nature of the observed albatross data versus the exponential form of the model forager
detections. (B) Albatross data and model with non-destructive scenario. Violet circles: accumulated distribution p(L) for the model forager performing
a Lévy process with m = 2. Continuous line: exponential fit. Prey number: 3000; r = 0.0003. In A) and B), the lengths in the model with foraging arena of
area unity are converted in hours (t) by using L~vt with the scaling factor v = 0.12. Inset: same curves represented in semi-log to better emphasize
the non exponential nature of the observed albatross data versus the exponential form of the model forager detections. (C) Murre data and model
with destructive scenario. Green circles: accumulated distribution p(L) of flight lengths between prey of the model forager with perception radius
r = 0.001 following a Lévy process with m = 1.5 (from 20 simulations of 75 captures each). Continuous line: exponential fit. Brown dots are the murre
flight durations from [46]. Inset: same data represented in semi-log in order to better emphasize the exponential nature of both the observed murres
data and the model forager. (D) Murre data and model with non-destructive scenario. Violet circles: accumulated distribution p(L) for a forager
performing a Lévy process with m = 2. Continuous line: exponential fit. Prey number: 3000; r = 0.0003. Inset: same curves represented in semi-log.
Similar close-to-exponential detections are obtained in all simulations with 1ƒmƒ3, in both destructive and non-destructive scenarii.
doi:10.1371/journal.pone.0034317.g001
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DF ~n{{1v2, for nv3zE, ð3Þ

whereas DF ~2 for nw3z. When DF v2, the PDF of the local

prey density is an inverse power-law (over a wide range of densities

provided that Rm=R0 is sufficiently large), with exponent given by:

ar~
5{E{n

2{E
w0: ð4Þ

In this medium, we consider the case of a ballistic predator with

constant velocity v: Ballistic motion is the simplest movement

behavior and can accurately represent albatross relocations at

certain scales [31,54]. If we assume that there are no correlations

between the sizes of neighboring patches, the problem can be

simplified to that of a forager flying through a one-dimensional

succession of patches (Figure 3, right). The process is easy to

simulate numerically: during an elementary time step Dt( = 10s, as

in [45]), the forager located in a patch of size Ri travels a distance

R0~vDt and has therefore a Poissonian probability

exp½{~rr(Ri=R0){2� of not finding any prey, with ~rr~2rvDtkR{2
0

the dimensionless detection radius and Ri=R0 the dimensionless

patch size. The process is iterated until the end of a patch is

reached, when a new Ri (and therefore a new prey density) is

drawn from Equation 1.

After a prey is detected, the forager can either (i) follow its way

(‘‘non-responsive search’’) or (ii) stay within the same patch for

Ri=R0 other elementary time steps (‘‘responsive search’’). The

latter rule mimics area restricted search [30,33], a behavior that

has been observed in wandering albatrosses [31,54]. With rule (ii),

the forager tends to exploit more intensively higher density

regions, where detections are more probable.

Results of the LD and FLD Models
A ballistic walker foraging through a LD with 0:5ƒDF ƒ0:9

(corresponding to 1:5ƒbƒ1:9) produces a flight duration

distribution that fits very well the Bird Island [45] and Crozet

Islands [10] albatross data over the entire range (Figure 4A-D).

Somewhat surprisingly, no fine tuning of the fractal dimension is

needed, as a range of small values of DF describes the data equally

well. In contrast, Lévy dust landscapes with DF v0:5 or DF w0:9
do not produce a good agreement with empirical data. In a given

landscape, detection patterns are also robust to changes in the

assumptions regarding predator movements. If predators, instead

of being ballistic (m&1), choose step lengths with 1ƒmƒ2, for

instance 1.5 and 2, p(L) in Figure 4E-H still fits the data very well

(LD with DF ~0:5). Poor agreement is obtained for m~2:5 and

larger, therefore, albatross data cannot be explained by a Gaussian

random walker detecting prey in a fractal media. While a LD

fractal prey field gives detection statistics that are qualitatively in

excellent agreement with the observed albatross data, estimations

of DF for oceanic prey fields are indeed in the range

1:2vDF v1:6 [50,57,59]. This quantitative difference prompts

us to analyze the FLD model where good agreement can be

obtained with DF in this range of values.

The FLD model gives similar results (Figure 5). First, a range of

values of the fractal dimension can fit the data. Secondly, the different

foraging behaviors considered can fit the data, too. Table 1 displays,

for various values of DF and forager behaviors, the maximum

likelihood estimates (MLE) of the exponent n of the patch size

distribution, of the cut-off length Rm, and of the dimensionless

detection radius ~rr: The responsive search scenario describes the data

as well as the simple ballistic one. The main difference between the

two cases is the value of ~rr: The responsive case is much more efficient

since the same prey detection patterns are obtained by a forager with

detection radius (~rr) 2{20 times smaller compared with a non-

responsive forager in the same medium.

Importantly, within each data set the MLE of the patch size

distribution parameters (n and Rm) are nearly independent of DF

and the foraging scenario. The parameter values found are also

strikingly similar across the two albatross data sets. Using an

estimate of albatrosses’ speed, 16 m/s [52,55], the Bird Island

flight durations were converted into km. The values of Rm in

Table 1 are on the order of hundreds of kilometers, the same order

of magnitude as the self-similarity range found in marine

landscapes [50,58–60]. Even by assuming that the Bird Island

Figure 2. Three different theoretical patterns of spatial prey
distribution in a unit box and their corresponding box-counting
fractal dimension. s represent the size of the boxes and N(s) is the
number of boxes of size s in the box-counting algorithm. In the three
cases, 5000 prey are distributed accordingly to a Lévy dust with fractal
dimension DF ~0:5 (b~1:5). (A) If the minimal distance between prey
is large the Lévy process producing the fractal pattern bounces many
times on the walls and the overall process tends to be space-filling. In
this particular case, the minimal distance between prey was 1/7 and the
process bounced around 2500 times which is equivalent to the
superposition of 2500 separated fractals in the same domain. (B) As
expected in this case, the fractal dimension measured by box-counting
does not show a scaling region with exponent DF ~0:5 (red line) but
approximates more the typical graph of a 2D random process with
DF ~2:0 (blue line). (C) Pattern that corresponds to a prey distribution
with a minimal distance of 1/700 between prey, leading to less than 150
bounces (*3% of the total prey number). (D) In this case a scaling
region with DF ~0:5 is visible, followed by a two-dimensional behavior
at larger length scales. (E) A very clumped and aggregated fractal
pattern of prey is obtained when the minimal distance between prey is
set to 7|10{6: (F) In this case the fractal is nearly perfect with DF ~0:5:
doi:10.1371/journal.pone.0034317.g002
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data are accurate for flights longer than 3Dt = 30s [45] or 480 m,

these values indicate that the albatross prey field is fractal over

nearly three logarithmic decades.

In summary, our fractal landscape model produces non-

exponential detection patterns and can explain wandering

albatross data with realistic parameters. A non-trivial result is

that the shape of the flight durations PDF is primarily determined

by the patch size distribution y(R), rather than by the fractal

dimension DF : Similarly to the robustness observed in the LD

model, the shape of p(L) in the FLD model is not altered by

modifications in the forager movement strategy.

Figure 3. Left panel. Foraging arena composed of N = 5000 prey generated with a LD of exponent b = 1.5 (fractal dimension DF = 0.5). Solid line:
trajectory of a ballistic forager (m^1) with detection radius r = 0.001. The larger grey dots indicate detection events (destructive scenario). Right
panels: Fractal Local Density (FLD) model. Upper figure: The medium is composed of patches of heterogeneous sizes R, drawn from a PDF
y(R)!R{nexp({R=Rm): Within a patch, np(R)!RE prey are randomly and uniformly distributed. Lower figure: linear representation of the forager/
medium system, which is solved here.
doi:10.1371/journal.pone.0034317.g003

Figure 4. Detections in LD media. (A)-(D): Accumulated histograms of prey detection times (grey circles) for a ballistic model predator (m = 1.01)
with r = 0.0003 foraging in LD environments (N = 5000) of varying fractal dimension at lower scales. Foraging is destructive in all cases. Bird Island
data: red triangles, Crozet Islands: blue triangles. Recall that DF ~b{1: (A) b = 1.2 (d~5|10{7, v = 0.55), p-value of K-S test on Bird Island:
pB = 0.0045, Crozet Islands: pC = 4.9e-08; (B) b = 1.5 (d~2|10{4,v = 0.50), pB = 0.997, pC = 0.248; (C) b = 1.8 (d~1:67|10{3 , v = 0.25), pB = 0.997,
pC = 0.367 and (D) b = 2.2 (d~3:84|10{3,v = 0.20), pB = 0.033, pC = 0.033. (E)-(H): Same quantities for LD media with fixed b = 1.5 (N = 5000,
d~2|10{4) and a model forager following processes with different step length distributions: (E) m = 1.5 (v = 0.5), pB = 1, pC = 0.248; (F) m = 2.0
(v = 0.67), pB = 0.999, pC = 0.0995; (G) m = 2.5 (v = 0.67), pB = 0.000955, pC = 4.03e-09 and (H) m = 3.0 (v = 0.67), pB = 6.38e-05, pC = 1.72e-13.
doi:10.1371/journal.pone.0034317.g004
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Discussion

The foregoing results show the importance of considering

predator displacements and prey detection events in unpredictable

environments as two different aspects of the same foraging process.

We emphasize that detection patterns alone are in general unlikely

to inform movement patterns and search strategies. Detection

statistics of long-ranging foraging animals in the ocean can be

regarded as depending on the size of the regions with uniform

density, i.e. a higher level of landscape organization, and not on all

the details of the prey field. This result resonates with the current

view that marine animals can track meso and submeso-scale

seascape features [66]. Our study suggests that detection statistics

in both uniform and scale invariant landscapes depend little on the

hypothesized predator movement rules, therefore forager search

strategies cannot be inferred from detection patterns only.

Wandering albatrosses adjust their movement to cope with

overdispersed prey and environmental features at different scales

[10,54]. The two data sets analyzed here can be consistently

explained by different foraging models assuming that landings and

prey capture are related to prey detection and that prey is fractally

distributed from about 200–400 m up to scales of 1502250 km.

These scales are in agreement with observations of the

distributions of pelagic fish, plankton and squid in the ocean

[50,58,60]. We infer that albatross prey distribution can be

pictured as a random, self-similar assembly of regions with varying

sizes and densities (FLD model). The empirical PDF of flight

lengths is well reproduced if the size of the aforementioned regions

follows a power-law distribution with exponent close to unity

(n&1:2, see Table 1). The truncation of very long flights

(.200 km) is unavoidable as the prey field tends to be space

filling beyond these scales. Our results on landing/take-off activity

are consistent with direct prey capture data of wandering

albatrosses, suggesting that both are closely related, although not

strictly equivalent.

The probability distribution function of the local density of krill,

the prey of several top marine predators, is described by an inverse

power-law, r{ar , with ar&1:7 over four decades [37]. It is likely

that many other types of organisms, in particular large fish, follow

a similar pattern [60]. In the FLD model, along with n, ar is an

important exponent characterizing the prey field. In the two

examples of Figure 5-Table 1, where DF is fixed to 0.6 and 1.6,

respectively, we obtain ar = 1.75 and 1.53 from relation (4). These

values are comparable to the empirical exponent 1.7. These results

also imply considerable relative variations in albatross prey

density, at least of the order of (Rm=R0)2&106:
Large fluctuations in prey density have been identified as a

possible cause of non-exponentially distributed detections [67].

The FLD model shows that it is indeed the case, if the local density

fluctuations are structured in widely different characteristic sizes

across many scales. As an example, in the ocean, high productivity

areas are separated by larger areas of lower productivity [10,54]. A

simple analytical calculation can show that a forager crossing an

heterogeneous medium composed of patches of equal and small

sizes, although with power-law distributed prey densities, has an

Figure 5. Cumulative distribution of prey detection times/distances obtained by fitting the FLD model to the albatross data
(triangles), for two fixed fractal dimensions of the medium (DF = 0.6 and 1.6). Solid black line: responsive search; green dotted line: non-
responsive search. Each curve is plotted with the MLE of the parameters, see Table 1. (A)-(B): Bird Island. (C)-(D): Crozet Islands. The best estimates of
the patch size distribution parameters vary little in the different cases: n = 1.20 6 0.05 and Rm in the range of 160–240 km, independently of DF , for
the whole range considered. A more efficient strategy yields a lower dimensionless detection radius ~rr:
doi:10.1371/journal.pone.0034317.g005
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exponential p(L) [68]. Hence, not only prey density distributions

but the spatial arrangement of prey density fluctuations seem to be

a crucial element to obtain non-exponentially distributed detec-

tions. In a different context, the study of a model of ballistic

particles propagating through Sierpinski-like fractals showed that

detection patterns were not exponentials [51]. Our modeled

landscapes differ from these Sierpinski gaskets, though, as the

fractals considered here are not characterized by a single length

scale between nearest prey, an important assumption made in

[51]. As noted earlier, no general relation has to be expected

between the fractal dimension and detection statistics, which also

depend on the kind of fractal structure considered.

Our results also show that random but uniform prey fields

should lead to exponential detection patterns. We have identified

exponential distributions of flight durations between dives in the

thick-billed murre, an Arctic seabird that, unlike the much bigger

wandering albatross, forages at small spatiotemporal scales by

restricting its search over reduced areas where prey predictability

is higher [46]. These observations can be interpreted within our

modeling framework: a forager with a high degree of site fidelity

performing a search restricted to areas where prey encounter is

high should not experience large variations in prey density.

Therefore, the detection patterns should come closer to an

exponential form than for a species searching over vast oceanic

surfaces.

We conclude that detection statistics, as well as other behavioral

traits of seabirds [15], can give valuable information on the prey

field spatial distributions. Namely, in our examples the frequency

distribution of detection times or distances follow a scaling law,

l{1
d f (L=ld ), where ld is a typical length between prey detections

and depends both on predator movements and the prey field,

whereas f (x) depends on the prey field only. The function f (x) is

typically an exponential for uniform prey fields and may involve

power-law terms for fractal media. These findings could be useful

for disentangling the renewed debate on how organism-environ-

ment interactions build up statistical patterns of movement

[29,36,39,40] not only in seabirds but in other animals as well.
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