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ABSTRACT We report the complete genome sequence of Chlamydia abortus MRI-
10/19, recovered from the infected placenta of a sheep that had been vaccinated
with the commercial live attenuated C. abortus 1B vaccine strain. Comparative analy-
sis revealed 1 single nucleotide polymorphism (SNP) difference and 4 indels com-
pared to the vaccine strain.

C hlamydia abortus, an obligate intracellular Gram-negative bacterium and a cause
of enzootic abortion of ewes (EAE), is responsible for late-term abortion, stillbirths,

and the birth of weak offspring (1). In Europe, the disease is controlled using the com-
mercial live C. abortus 1B vaccine (2), which has been associated with infections and
cases of abortion in vaccinated ewes (3–7).

Here, we report the complete genome sequence of C. abortus strain MRI-10/19, iso-
lated from the placenta of a sheep that had been vaccinated with the commercial 1B
strain (Cevac Chlamydia, Ceva Animal Health Ltd.) and showed evidence of gross
lesions typical of EAE (8). The strain was isolated from pooled placental tissue following
the inoculation of ground-up and filtered material onto HEp-2 cells (8). Elementary
bodies were purified from infected cultures (9) and genomic DNA extracted using a
DNeasy blood and tissue kit (Qiagen). The DNA concentration and purity were deter-
mined using a Qubit double-stranded DNA (dsDNA) broad-range (BR) assay kit
(Invitrogen) and a NanoDrop One spectrophotometer (Thermo Scientific), respectively.

A genomic DNA library was prepared using the Nextera XT library preparation kit
for sequencing on an Illumina HiSeq platform using a 250-bp paired-end protocol. The
reads were adapter trimmed using Trimmomatic v0.30 (10) with a sliding window qual-
ity cutoff of Q15. Taxonomic classification to the species level as C. abortus was con-
firmed using Kraken v2.1.1 (11). A long-read genomic DNA library was prepared using
a rapid barcoding kit (SQK-RBK004) and sequenced in a MinION FLO-MIN106 flow cell
(MinKNOW v20.10.3), with integrated live base calling provided by Guppy v4.4.1
(Oxford Nanopore Technologies). The reads were filtered using Filtlong v0.2.0 (12) with
a minimum cutoff of 5,000 bp. All trimmed raw data analysis was performed on the
Galaxy platform (http://usegalaxy.org.au/) (13). The read quality was checked using
FastQC (Galaxy v0.721galaxy1) (14) and NanoPlot (Galaxy v1.28.21galaxy1) (15).
Sequencing resulted in 232,402 Illumina paired-end reads (average read length,
242 bp) and 363,047 filtered Nanopore reads (average read length, 6,842 bp; read N50,
6,663 bp). Hybrid de novo assembly of the Illumina and Nanopore raw reads was car-
ried out using the Unicycler pipeline (Galaxy v.0.4.8.0) (16), producing a single contig
comprising a circular chromosome of 1,144,464 bp with 39.9% GC content and ori-
ented at the hemB gene. The average genome coverages for the Illumina and
Nanopore read sequences were calculated as 97.4� and 2,107.7�, respectively, using
BWA-MEM (Galaxy v0.7.17.1) (17). The assembly metrics were calculated using QUAST
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(Galaxy v5.0.21galaxy1) (18). Annotation using the NCBI Prokaryotic Genome Annotation
Pipeline v5.0 (19) identified 1,004 predicted genes and 1 rRNA operon. Default settings
were used throughout for all utilized software packages.

Pairwise comparative analysis of the assembled sequence with the C. abortus 1B
Cevac vaccine strain (GenBank accession number LN589721.1) using Mauve v2015.02.26
(20) identified one SNP at position 131000 and indels in homopolymeric (poly-G) tracts
at positions 320135, 684576, 687229, and 991350, identifying the strain as originating
from infection with the commercial live vaccine and being responsible for the reported
pathological placental lesions (8).

Data availability. The C. abortus MRI-10/19 genome sequence is available in
GenBank/EMBL/DDBJ under accession number CP070224. The raw sequence reads are
available under BioProject accession number PRJNA700999.
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