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Abstract

The GenBank database contains essentially all of the nucleotide sequence data generated for published molecular
systematic studies, but for the majority of taxa these data remain sparse. GenBank has value for phylogenetic methods that
leverage data–mining and rapidly improving computational methods, but the limits imposed by the sparse structure of the
data are not well understood. Here we present a tree representing 13,093 land plant genera—an estimated 80% of extant
plant diversity—to illustrate the potential of public sequence data for broad phylogenetic inference in plants, and we
explore the limits to inference imposed by the structure of these data using theoretical foundations from phylogenetic data
decisiveness. We find that despite very high levels of missing data (over 96%), the present data retain the potential to
inform over 86.3% of all possible phylogenetic relationships. Most of these relationships, however, are informed by small
amounts of data—approximately half are informed by fewer than four loci, and more than 99% are informed by fewer than
fifteen. We also apply an information theoretic measure of branch support to assess the strength of phylogenetic signal in
the data, revealing many poorly supported branches concentrated near the tips of the tree, where data are sparse and the
limiting effects of this sparseness are stronger. We argue that limits to phylogenetic inference and signal imposed by low
data coverage may pose significant challenges for comprehensive phylogenetic inference at the species level.
Computational requirements provide additional limits for large reconstructions, but these may be overcome by
methodological advances, whereas insufficient data coverage can only be remedied by additional sampling effort. We
conclude that public databases have exceptional value for modern systematics and evolutionary biology, and that a
continued emphasis on expanding taxonomic and genomic coverage will play a critical role in developing these resources
to their full potential.
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Introduction

The GenBank nucleotide database [1] contains more than one

hundred million sequences representing more than 275,000

species of life. The successful use of these data to reconstruct

comprehensive phylogenies for many large clades has illustrated

their potential for phylogenetic inquiry [2,3], with the implication

that this potential may extend to the broadest scales, e.g. the tree

of life itself [3,4]. By some estimates however, GenBank contains

samples of only 3% of Earth’s species [5], and studies using

sequence data mined from public databases have demonstrated

enigmatic results [6–8]. Public sequence data have clear potential

for evolutionary biology and hypothesis-testing at very broad

scales, but their structure can have significant implications

regarding the limits of phylogenetic inference [9,10]. The extent

and severity of these limits for existing resources such as GenBank

remains largely unexplored (but see [3,4]). Here we demonstrate

the potential and the limits to inference of the NCBI GenBank

database for comprehensive phylogenetic studies using the land

plants, a monophyletic, ancient, and very biodiverse group with

over 300,000 extant species [11] as an example.

Results and Discussion

Leveraging public sequence data
We compiled nucleotide sequence data from GenBank for the

land plants, including the closely related Charophycean algae [12–

14] to facilitate rooting. A total of 128 markers were selected for

their relatively broad phylogenetic coverage, including 109

chloroplast, 14 mitochondrial, and 5 nuclear markers including

the nuclear ribosomal internal and external transcribed spacers

(see Table S1 for a complete list). We chose not to include

additional nuclear markers because of challenges of homology

assessment at deep phylogenetic scales. We used the program

PHLAWD [7] to gather data from GenBank release 185 for these

128 markers, resulting in a data set including 5:1|107 genetic

sequences and representing over 100,000 plant and algal species.

To maximize coverage and reduce computational complexity, we

summarized the available sequence data for all of the 13,093

genera for which at least one sequence was available. For each of

these genera, we selected the longest available sequence at each of

our target loci that had been sequenced for any taxonomic child of

that genus, which produced a set of sequence data (usually from

multiple species) that was used to represent that genus in the
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alignment. Maximum likelihood [15] was used to infer phylogeny

using this alignment, yielding the tree topology presented in Fig. 1.

Despite the vast amount of data available on GenBank, only

about one third of recognized plant species were represented in

GenBank release 185. At deeper taxonomic levels this coverage is

considerably better, with about 83% (about 13,400 of 16,167) of

recognized land plant genera [16] represented by at least one

sequence. The rate of species accumulation on GenBank has

stayed relatively constant since the mid 1990’s and shows no signs

of reaching saturation (Fig. 2, C). Coverage at the generic level

however, is approaching the estimated maximum of 16,167 (Fig. 2,

B), representing a landmark achievement for plant systematists.

Our ability to reconstruct the phylogeny of extant plants has

grown as a function of this increase in lineage representation

through time (Fig. 1). Early, often broadly inclusive studies [17–

21] resolved many deep divergences (blue branches of Fig. 1),

while myriad more detailed studies [22–30] for example) have

contributed to resolution near the tips and also increased

confidence in deep relationships.

The comprehensive phylogenies made possible by such

achievements facilitate inquiry into questions of broad interest to

the scientific community. For example, we used the tree topology

presented in Fig. 1 to assess the level of monophyly in the land

plant classification (as described in the Materials and Methods),

finding that monophyly cannot be rejected for 75.6% of the 680

families of Embryophyta in use in the Genbank taxonomy at the

Figure 1. Phylogeny of land plants generated from nucleotide sequence data in GenBank release 185. Tips represent extant genera and
branch lengths correspond to substitutions per site. Each branch is labeled according to the age of the oldest exemplar sequence in GenBank for any
of its descendant tips, with blue branches representing lineages with older exemplar sequences and red branches showing lineages that have only
recently been added. The total number of genera represented in the tree is 13,093. A large version of this figure with legible tip names is presented in
File S1.
doi:10.1371/journal.pone.0098986.g001
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time of writing. To facilitate additional inquiry into more detailed

questions, we also provide a time calibrated version of the Fig. 1

phylogeny using node age constraints from a recent dating analysis

of angiosperms [31] in the supplemental materials.

The impact of missing data
It is well-understood that high proportions of missing data (or

more specifically, that the distribution and nature of such missing

data) can impact phylogenetic inference [3,6,32]. Most large

alignments with broad phylogenetic scope compiled from public

sequence databases have relatively high proportions of missing

data [3,6–8]; for instance, the alignment used to generate the tree

of Fig. 1 (13,093 taxa | 128 loci) contained 96.4% missing data.

To measure the limiting effect of these absent data, we used the

partial decisiveness metric d [10]. This metric indicates the

proportion of all possible edges across all possible trees that are

distinguishable given the available data (that is, given the

distribution of missing data). d is distributed on interval ½0,1� with

d~0 indicating a fully uninformative alignment in which no edges

may be informed because the available data are not sampled

densely enough to permit phylogenetically informative compari-

sons, and d~1, indicating that all possible edges may be informed

(i.e. all possible trees may be inferred). We note that edge

distinguishability, which is measured by d, is not synonymous with

edge support (we assess branch support with other measures; see

corresponding sections), and that d does not measure phylogenetic

signal. An edge is considered distinguishable—that is, the data are

decisive for that edge—if the taxonomic sampling is such that the

edge may be informed by at least some of the present data, but this

does not imply that those data will support a topology containing

that edge [9,10].

The partial decisiveness of our comprehensive alignment was

estimated to be d~0:863, indicating that GenBank’s sampling is

sufficient to inform all but 13.7% of the potential phylogenetic

relationships among represented plant genera. This statistic

represents a fairly conservative estimate of GenBank’s phyloge-

netic utility in the sense that while d considers all possible edges,

only a small subset of those are likely to occur in phylogenetic

trees. Accurate phylogenies may be reconstructed while dv1 as

long as the data are decisive for the edges present in those tree(s)

that actually represent the phylogenetic history of the sampled

organisms [6].

Phylogenetic inference relies on the co-sampling of homologous

data across lineages; high levels of lineage representation allow the

distinguishability of many more edges than low levels simply

because lineages for which no data are present can only be

arbitrarily placed. Ideally, phylogenetic datasets should contain an

adequate number of informative loci (we usually assume that more

is better), each sampled for many lineages, thus allowing many

edges to be informed by relatively large amounts of data. In Fig. 3,

we present patterns of lineage and locus sampling depth across the

entire plant chloroplast genome, which comprises the great

majority of phylogenetically informative sequence data for plants.

In general, chloroplast loci show highly asymmetrical lineage

sampling (indicated by dark blue bar plots in the outer ring), and

the frequency at which pairs of loci have been sampled for the

same lineages is in quite low overall (indicated by the blue ribbons

connecting pairs of loci). Only a handful of loci—atpB, matK, ndhF,

psbA-trnH, rbcL, rps4, and trnT-trnL-trnF—show relatively high levels

of lineage representation or taxonomic overlap (primarily with one

another). Similar patterns hold for loci in the mitochondrial and

nuclear genomes (data not shown), and the problem of sparse data

coverage is in fact exacerbated in the case of nuclear genes by

challenges associated with homology assessment at deep phyloge-

Figure 2. Taxon sampling through time on GenBank and the
ages of exemplar sequences. A: purple bars indicate the number of
new generic exemplars that were: added each year to GenBank (light
purple); and the number of exemplar sequences from that year that
were used in the phylogeny presented in Figs. 2 and 5 (dark purple).
Yellow bars indicate cumulate values. The lag in the total number of
genera represented in the phylogeny is due to the fact that the
sequence selection procedures prefer the longest available exemplar
sequence, which is often not the oldest. B and C: cumulative numbers
of genera (B) and species (C) represented by sequences on GenBank,
with colors labeling major groups. Species representation continues to
grow at a relatively constant rate, but the rate of new genus addition is
slowing.
doi:10.1371/journal.pone.0098986.g002
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netic scales. Only the nuclear ribosomal internal transcribed

spacer (ITS) shows levels of lineage sampling similar to the heavily

sampled chloroplast loci named above (Fig. 3; Table S3). The

partial decisiveness (d) of GenBank’s nucleotide data, and the great

majority of our information about phylogenetic relationships

among plants, comes from these fewer than 10 loci (Figs. 3, 4).

Many of these best sampled loci, however, are relatively fast

evolving (especially ITS and chloroplast intergenic spacers), and

contain relatively little phylogenetic signal for resolving deep

branches in the tree.

We assessed the extent and potential impact of this sparse data

coverage at a more targeted scale by calculating the number of loci

in the alignment which had phylogenetically decisive taxon

coverage for each branch in the ML tree (see Materials and

Methods). These branch-specific patterns of data decisiveness

across the land plant genus phylogeny are presented in Fig. 5, and

additional figures identifying the individual branches capable of

being informed by each locus are presented in the file titled

‘‘Supplemental tree figures’’ that is available in the Data Dryad

repository associated with this article. Very deep branches in the

tree are informed by many loci (blue hues in Fig. 5), but branches

near the tips are informed by relatively few (red hues in Fig. 5).

Figure 4 plots sampling depth (in this case the number of loci with

decisive taxon sampling) by the proportion of branches in the tree,

and demonstrates that the great majority of branches in the tree

are informed by relatively few loci.

The patterns shown in Figs. 4 and 5 suggest that GenBank data

may lack the sampling depth required to accurately infer

comprehensive plant phylogenies. We combined data at the

generic level to maximize genetic coverage for the resulting tips,

but even this did not entirely overcome sampling issues at shallow

phylogenetic depths. This is a significant limitation for a variety of

evolutionary analyses that depend on trees—shallow to mid-depth

regions of trees encode a far greater amount of phylogenetic

information (by sheer number of branches and nodes alone) than

deep branches, and have a very high capacity to inform a broad

variety of questions regarding evolutionary processes in plants.

Thus, we argue that the accurate inference of shallow relationships

is critical for many important questions in evolutionary biology

(e.g. any analysis involving lineage diversification). At shallower

taxonomic depths than genera, however, the limiting effects of

sparse data coverage are even stronger than those we present here.

Overcoming these limits will require increased sampling to

improve both the genetic depth as well as the taxonomic coverage

of the data.

Measuring branch support
Estimating branch support is an important mechanism of

assessing confidence in topology, but doing so with large, sparse

matrices can be challenging. Traditional measures such as

bootstraps do not perform well with very high proportions of

missing data [6] and replicate tree searches (e.g. Bayesian MCMC,

standard bootstrapping, and jackknife) on large alignments can be

prohibitively time consuming. In the case of our alignment, a

single ML tree search took several weeks using 10|2:4Ghz Intel

Xeon processor cores and more than 40 GB of memory; running

thousands or more of these is not feasible. We therefore

implemented a measure of branch support that is relatively fast

to calculate given a single tree and an alignment (even for large

alignments), which relies on the information criterion (IC)

framework presented by [33]. Specifically, we used the ICA

statistic (defined in that paper), which is a branchwise measure of

support based on information theory that quantifies, for a given

bipartition (e.g. the one implied by a given branch in a tree), the

level of congruence or conflict (with that bipartition) across a set of

topologies. The ICA score varies on the interval [21,1], with 1

indicating perfectly congruent supporting information—the spec-

ified bipartition is observed in all of the topologies; 21 indicating

perfectly congruent conflicting information—the specified bipar-

tition is never observed, but rather a single conflicting bipartition is

observed in all the topologies; and 0 indicating perfectly equivocal

information—all observed bipartitions occur at equal frequency. A

positive ICA score in general indicates that the specified

bipartition is observed at a higher frequency than any single

alternative (i.e. conflicting) bipartition, whereas a negative ICA

score indicates that some other alternative bipartition occurs at a

higher frequency.

Since computational limits prevented us from generating

topology replicates for the entire tree, we generated replicates

using an approach that we call a localized taxon quartet jackknife,

which consisted of selecting tips at random from clades defined by

the complete ML tree, and inferring topology for these random-

ized tip subsamples to generate topology replicates. Each replicate

contained a quartet of tips selected to guarantee that any topology

inferred for those tips would either be consistent with a given

targeted branch in the original ML topology, or would conflict

with that branch (see Materials and Methods for a more complete

explanation of the subsampling procedure). For each branch in the

ML tree, 500 representative ML topologies were generated using

these randomly selected quartet replicates, and the resulting

topology set was used to calculate the ICA score for that branch.

We present this information in Fig. 6, which contains the ML

topology colored according to the ICA score estimated for each

branch. Blue branches are those with positive ICA scores, that is,

the quartet topology consistent with those branches was observed

more often than either of the possible conflicting quartet

topologies. Branches with negative scores are colored yellow to

red, and indicate branches that are not supported by the data—the

most frequently resolved quartet topology in these cases was in

conflict with the branch. These poorly supported (or controver-

sially resolved) branches are primarily concentrated near the tips

of the tree, where data coverage, and by extension the number of

loci with decisive taxon coverage, for each branch are low. It is

also likely that better resolutions for some of these controversial

branches may have been found by running the ML optimization

procedure for longer, but such an exhaustive ML search was not

feasible, as is often the case for datasets of this size.

To more specifically address the question of whether increased

sampling depth (measured here as the number of decisive loci)

affects confidence in branch reconstruction, we used a simple

linear regression to assess the correlation between the number of

decisive loci for a branch, and its ICA score (Fig. 7). Very strong

branch support values (i.e. ICA close to 1) are elusive in this

dataset, even with high numbers of decisive loci, and the

relationship between ICA score and the number decisive loci is

correspondingly weak when the entire dataset is analyzed (the ‘‘all

x’’ regression line in Fig. 7; r~0:0004, p~0:02). However, very

few branches in the tree are informed by more than 25 loci, and

the combination of this sparse sampling with the high variance in

these data places strong limits on our ability to infer patterns at this

scale. It is likely that at least some of the variance in branch

support is due to ‘‘dirty data’’ in GenBank, such as misidentified

taxa or poor quality sequences, which lead to spurious topology

inference when those data are subsampled. Another process that

may affect support for deep branches is that even though many

loci in the alignment contain decisive taxon sampling for these

branches, individual randomized representative taxon quartet

replicates for deep branches may often not subsample quartets

Limits of Public Sequence Data for Phylogenetic Inference
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with decisive sampling, simply because the number of possible

quartet combinations for deep branches is large. Near the tips,

there is a stronger tendency for subsampled taxa to be represented

for the same loci, thus potentially increasing the level of

phylogenetic signal in mid-depth replicates. Future studies to

more thoroughly characterize the behavior of the ICA statistic, as

well as the localized taxon quartet jackknife we present here,

would be valuable.

Figure 3. Taxonomic sampling depth and overlap for chloroplast loci in GenBank. Data shown are representation of genera in GenBank
release 185 for all chloroplast loci sampled for this study, superimposed on a genome map of the Coffea arabica genome. Overall generic sampling
depth across the chloroplast is quite low. Dark blue bar plots on the outside of the ring show the number of genera g represented by at least one
exemplar sequence for each locus, out of G~16,167 total genera, while light blue bars show log(g)=log(G), and illustrate relative sampling
proportions among loci when absolute proportions are small. Ribbon plots in the center of the figure identify pairs of loci, and indicate the
proportion of genera that are represented by exemplar sequences for both loci in the pair. Dark ribbons label locus pairs that are co-represented for
many genera; light ribbons label pairs that are co-represented for few. Locus colors correspond to gene groupings by function, and tick marks show
linear distance in kilobases. The most well sampled locus in our entire alignment was trnT–trnL–trnF, with 55% of genera represented. Mitochondrial
and nuclear loci are not shown in the figure, but the most well-sampled nuclear markers were ITS (53%) and ETS (8%; similar to rps4 in the figure), and
for the mitochondrion atpA (7%), rps3 (5%), matR (5%), and atp1 (5%); all other nuclear and mitochondrial markers were sampled for fewer than 4% of
genera. Exact counts of genera represented for all markers sampled in this study are available in Table S3.
doi:10.1371/journal.pone.0098986.g003
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To circumvent the limits imposed by the sparse sampling of

branches with high numbers of decisive loci, we performed an

additional regression which we limited to a subset of the data. The

mean ICA values for branches with relatively low numbers of

decisive loci (i.e. fewer than about 25) suggest a positive

correlation, though branches informed by very few loci (i.e. fewer

than about 5) show a decreasing trend in ICA compared to those

with more. We conjecture that the decreasing support values for

branches with fewer than about 5 decisive loci may be due to

increasing levels of conflicting signal as more data are added, up to

the point where the dominant signal becomes strong enough to

reverse the trend (other plausible explanations certainly exist). We

therefore limited the second regression to branches with greater

than 5 but fewer than 25 decisive loci (the ‘‘5vxv25’’ line in

Fig. 7), which we propose constitutes a representative and

sufficiently densely sampled subset of the data to accurately

quantify any existing trend. In these subsampled data, we find a

positive correlation between branch support and the number of

loci capable of informing the branch. This relationship is strongly

supported (pv10{9), but even so, the correlation itself is weak

(r~0:016), suggesting that even with relatively high levels of data

coverage (in this case, up to 25 loci, which is higher than many

phylogenetic studies being published today), confident inference of

at least some phylogenetic relationships may remain challenging.

This observation is consistent with studies using very large and

densely sampled alignments, which have nonetheless yielded trees

containing numerous poorly supported branches [6,13,23,34].

The reasons for this are unclear, but may be related to conflicting

phylogenetic signal or in some cases to an overall lack of

informative sites even at genome-wide scales.

Concluding remarks
The utility of public sequence databases for phylogenetic

inference has reached never before seen levels, facilitating the

inference of phylogeny at both broad and deep scales for major

groups in the tree of life (Figs. 1 and 2). In plants, we are nearing a

threshold where nearly every known land plant genus is

represented in GenBank by at least one exemplar sequence,

making phylogeny inference across all lineages of land plants

possible at relatively fine scales (Figs. 2 and 5). These compre-

hensive phylogenies have already shown a unique potential to

address broad evolutionary questions that may be difficult to test at

less inclusive scales [6,8,32,35,36], and many opportunities exist

for researchers who wish to exploit the potential of public sequence

databases. Nevertheless, lineage representation remains extremely

low for all but a handful of genetic markers (Fig. 3), and resources

such as GenBank remain heavily limited by this (Figs. 4, 5, and 6).

The most obvious solution to the problem of low data coverage

is simply to increase sampling for informative loci for lineages

without it, and indeed one of the implications of the work we

present here is that the accurate resolution of comprehensive land

plant phylogenies may require the collection of a significant

amount of additional sequence data (Figs. 5, 6). This implication is

corroborated by the results of previous work by Sanderson [4],

which showed that phylogenetically informative sampling is very

low for a large number of eukaryotic lineages. In fact, that study

found that land plants were among the best sampled major

lineages of eukayotic life (after vertebrates), clearly illustrating that

despite the relative low sampling depth for land plant genera

(Figs 3, 5), the situation is even more extreme in almost all other

parts of the tree of life. We suggest that one proactive response to

this situation would be to continue to fund and pursue

opportunities to improve both taxonomic as well as genetic

coverage across the tree of life.

Statistics such as d, ICA, and the measures we have

implemented here using these theoretical foundations (Figs. 5

and 6) provide useful tools that can allow the rapid and accurate

identification of potential problem areas even in very large

phylogenies, and thus may enable efficient and cost-effective

collection of targeted data to improve taxonomic and genetic

coverage. The concept of data decisiveness in general can be

expected to remain a useful theoretical background for data-

mining approaches across diverse lineages on the tree of life, and

statistics such as d as well as related methods [37,38] may be able

to provide a more nuanced assessment of the phylogenetic

potential of large databases than previous approaches have

allowed [3,4].

The continued accrual of novel sequence data and improve-

ments to taxonomic coverage at the species level will be required

to facilitate broad application of these resources at fine evolution-

ary scales. Improvements to coverage, however, will lead to

increasingly larger datasets, which can pose significant technical

challenges for analysis methods. An alignment of 100,000 plant

species sampled for the same 128 genetic loci as this study resulted

in an alignment text file over 6 GB in size, which exceeded the

capabilities of available phylogenetic search software. If the

relatively stable rate of species accumulation in GenBank remains

so for the next four decades, we will reach the estimated

(minimum) land plant species diversity of 300,000 around the

year 2044, but technical challenges related to computational

tractability (given currently available software) would prevent

reconstruction of trees with 300,000 plant species, just as those

problems prevent the reconstruction of trees with 100,000 plant

species today. Encouragingly, methodological advancement in this

field is proceeding rapidly [39–43].

In summary, we propose that the continued role of public

sequence databases in evolutionary analysis at comprehensive

scales will depend critically on advancement in at least three areas:

(1) the continued expansion of taxonomic and genetic coverage of

these data, (2) ongoing efforts to understand the effects of the

complex structure of large phylogenetic datasets, and (3) innova-

tive solutions to the challenges posed by their analysis.

Figure 4. Genetic sampling depth for branches in the ML
generic topology of Figs. 1, 5, and 6. Data shown are the
proportion of branches for which each number of loci have decisive
taxon sampling. Black bars are actual proportions, and grey bars are
square roots of each proportion, which illustrate relative differences
when proportions are very small. The dark grey line is the cumulative
proportion of branches, which indicates the proportion of branches in
the tree for which the number of loci with decisive taxon sampling is
less than or equal to the indicated x value. Exact values used to create
this figure are presented in Table S2.
doi:10.1371/journal.pone.0098986.g004
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Analysis

Data collection and phylogeny inference
Data were gathered from GenBank [1] release 185 (accessed in

May 2012), using the software PHLAWD [7], which uses an

algorithm based on recursive profile alignment (alignment of

multiple alignments to one another) to facilitate the alignment of

nucleotide sequence data even at relatively deep phylogenetic

levels. PHLAWD requires vetted guide sequences to ensure

accurate identification of candidate sequences for alignment.

High-quality guide sequences for many loci were supplied by

Moore et al. [44] and Soltis et al. [22], which we combined with

strict coverage and identity requirements to ensure the inclusion of

homologous candidate sequences (Table S1, lines with coverage

and identity set at 0.4). For the remaining alignments, we

manually selected guide sequences from GenBank, and optimized

search parameters to ensure homology and minimize noise.

Explicit search terms were used to exclude non-homologous

sequences for some loci (Table S1, lines with coverage and identity

set to 0), while for others we used coverage/identity cutoffs as well

as search terms.

In some cases, loci with uncertain homology were aligned

separately for different clades. In these cases, search parameters in

Table S1 may appear to indicate that some alignments are

taxonomically nested subsets of others, e.g. trnG_intron_bryos

defines its search clade as Streptophytina whereas trnG_intron_-

tracheophyta appears to use an identical search over Tracheo-

phyta only, but because Tracheophyta is nested within Strepto-

Figure 5. Generic phylogeny of plants with branches colored according to the number of loci with decisive taxon sampling. Branches
for which large numbers of loci have phylogenetically decisive taxon sampling are blue, while branches with low numbers are pink to red. Blue
branches have a higher capacity than red branches to be informed by the data. Most branches in the tree are able to be informed by data at relatively
few loci, but deep branches are generally able to be informed by many. A large version of this figure with legible tip names is presented in File S2.
doi:10.1371/journal.pone.0098986.g005
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phytina, it would seem given this nesting that both these

alignments would contain Tracheophyta sequences. In this case,

however, and in other similar cases, other information such as

genetic distance from guide sequences was used to exclude

sequences that would otherwise have been represented twice from

the the more inclusive alignment.

Each of these PHLAWD alignments was imported into to a

SQLite database where sequences were linked on the basis of ncbi

taxon id. Using the NCBI taxonomy, we extracted a synthetic

concatenated alignment from this database, with each OTU in the

alignment corresponding to an NCBI-recognize genus, and each

partition corresponding one of the alignments generated with

PHLAWD (i.e. each partition corresponded to a single locus). To

populate the alignment, we used exemplar sequences that were

chosen on the basis of unaligned length; the longest sequence

available for any species in each genus was used to exemplify that

genus for each locus. The Python scripts that were used to create

the SQLite database and query it are available in the github

repository http://github.com/chinchliff/autophy.

The final concatenated alignment file (with empty columns

removed) used to create Figs. 1, 5, and 6 consisted of 13,093 tips

representing genera, and 128 partitions representing loci. This

alignment contained 148,143 total sites encoding 126,121 site

patterns, 96.37% missing data, and was 1.9 GB in size. It is

Figure 6. Generic phylogeny of plants with branches colored according to ICA support values. Branches with strong positive values (high
support) are light blue, while branches with low positive values (low support) are gray, and branches with negative values (which imply relatively
strong conflicting signal in the data) are colored yellow to red. Most branches deep in the tree are moderately well supported, whereas most strongly
supported branches occur within smaller clades, and most branches that appear to be in conflict with the signal from the alignment occur near the
tips of the tree. Terminal branches (i.e. tips) were pruned from the tree for display purposes, as they do not have meaningful support values. A large
version of this figure with legible tip names is presented in File S3.
doi:10.1371/journal.pone.0098986.g006
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available in the Data Dryad repository, as are the metadata for all

GenBank sequences used in this alignment, including GI numbers.

Phylogenetic trees were inferred from this alignment in RAxML

7.3.0 [15], using the command line arguments:

raxmlHPC-PTHREADS-SSE3 -f d -m GTRCAT -p 12345 -q

,partitionfile. -s ,alignmentfile. -n ,name. -j -D -T

numthreads.

The raw topology corresponding to the ML best tree found by

RAxML is supplied in Newick format with branch lengths in the

Dryad repository. Several extremely long tip branches (potentially

representing erroneous phylogenetic chimeras) were manually

pruned from this tree for display in Figs. 1, 5, and 6. The pruned

topology was used in conjunction with time calibrations from [31]

to generate the ultrametric chronogram supplied in the Data

Dryad repository, using the program treePL [45].

We used Python scripts (all available in the Dryad repo) to

extract sequence age data from GenBank and calculate the ages of

the oldest exemplar sequences used to color the tree in Fig. 1. First,

the script get_gi_dates_from_gbseq.py was used to extract the date

of every land plant sequence from the GenBank release 185

flatfiles. Second, the script calc_age_of_oldest_exemplar_for_no-

des.py was used to find the earliest added sequence that could be

used to exemplify each tip in the Fig. 1 topology (i.e. the sequence

was a sample from a the taxon represented by the tip), and for

each internal branch, to identify the age of the oldest exemplar

sequence for any of the leaves subtended by that branch.

Assessing the impact of missing data
Partial decisiveness (the d statistic as defined by Sanderson et al.

[9]) for the entire dataset was estimated with the software

Decisivator (J.W. Brown). We also calculated the number of loci

with decisive taxon sampling for each branch (using the Python

script calc_branchwise_decisiveness.py, available in the Dryad

repo), which is simply a count of the data partitions from the

alignment (i.e. loci) for which the four-way partition property of

Steel and Sanderson [10] is satisfied for the given branch. The

four-way partition property describes the distinguishability (or not)

of an edge based on the presence of minimal data to inform that

edge—this property is satisfied for an edge (i.e. the edge is

distinguishable) if and only if the alignment contains sufficient

taxon by locus sampling that it is possible for the given edge to be

informed by at least some of the data. For a thorough

mathematical exposition of the four-way partition property and

its relevance for phylogenetic data decisiveness, we refer readers to

the original publications [9,10].

Measuring branch support
We used a localized taxon quartet jackknife approach to

subsample the original alignment in order to estimate support

values. To explain this, we first define the rationale used for the

taxonomic subsampling itself. Let A~fa1,a2,:::,akg represent an

alignment of phylogenetic data, where each ai is a row in the

alignment corresponding to a tip ti in a given rooted, bifurcating

tree T with tips ft1,t2,:::,tkg and internal edges fb1,b2,:::,bk{3g.
In such a tree, each observed internal edge bj defines four non-

overlapping subsets of A: its daughter clades Dj15A and Dj25A,

a sister clade Sj5A, and the rest of the tree

Oj~A{fDj1|Dj2|Sjg. Then, for a given branch bj , any

bifurcating tree topology Ljm inferred for any taxon quartet

Rjm~fd1,d2,s,og such that d1[Dj1, d2[Dj2, s[Sj , and o[Oj , must

either contain an internal edge representing the bipartition

(d1,d2Ds,o), which is consistent with the tree topology containing

bj , or else Ljm will contain an edge implying one of two alternative

bipartitions that are inconsistent with bj (these are (d1,sDd2,o) and

(d1,oDd2,s)). We therefore designate any taxon quartet Rjm as a

representative taxon quartet replicate for branch bj , and Ljm as a

representative quartet topology replicate, for all bj in T .

We assessed support for each branch in the ML topology

inferred using our large generic alignment, by performing 500

random taxon selection procedures to generate representative

taxon quartet replicates, inferring the ML topology for each of

these quartet replicates using data from the original alignment and

RAxML [15], and then calculated the ICA score for the topology

(d1,d2Ds,o) (consistent with the original ML tree), across all 500 of

these representative quartet topology replicates for each branch.

ICA is an information theory-based measure of edge support that

is calculated across a set of topologies [33]. ICA varies on the

interval ½{1,1�, with negative values indicating that the targeted

edge occurs less frequently across the replicate topologies than

some other conflicting edge, positive values indicating that the

edge occurs more frequently than any other conflicting edge, and a

value of zero indicating that the edge occurs at equal frequency

with all alternative (i.e. conflicting) edges. The absolute value of

ICA is correlated with the overall frequency of that branch relative

to alternative (i.e. conflicting) topologies in the input set. The

calculations to yield these ICA scores were performed using

software phyx [46].

Colored trees (Figs. 1, 5, and 6, and the ‘‘Supplemental tree

figures’’ file in Dryad repository) were generated using the Python

script paint_branches.py (available in the dryad repo) and the

software FigTree. The paint_branches.py script cross-references

node labels in a newick tree file with a CSV file containing values

for those nodes, and then assigns branch colors based on those

values. It generates a FigTree-formatted tree file with branch color

annotations, which can be visualized in FigTree [47] itself and

then exported in graphical formats. We used FigTree 1.4.0. The

branch-painting script depends on the newick3.py and phylo3.py

modules also provided in the Dryad repository.

Figure 7. Correlation of branch support (ICA) with locus
sampling depth (number of loci with decisive taxon sampling).
Original data points correspond to individual internal branches in the
ML topology, and are shown in gray. Large colored dots represent
mean ICA values for all branches with the corresponding number of loci
with decisive sampling, and error bars extend to plus or minus the
standard deviation of the data from each mean. Two regression lines
are plotted, one for the entire dataset (labeled ‘‘all x’’; r2

v0:001,
F~5:27, df ~13,081, p~0:02) and one for only those branches with
greater than five but fewer than 25 loci with decisive sampling (labeled
‘‘5vxv25’’; r2~0:016, F~41:5, df ~2,486, pv10{9).
doi:10.1371/journal.pone.0098986.g007
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Additional procedures
Monophyly was assessed for all families in the GenBank

taxonomy at the time of writing using the Python script

test_monophyly_against_tree.py (available in the Dryad repo).

The script accesses a taxonomy through a PHLAWD sequence

database; we used a database containing the NCBI taxonomy

from GenBank release 185. The test for monophyly involved two

parts: first, for a given family, all the tips contained within that

family in the taxonomy were identified in the tree. We note that in

some cases, not all the taxa defined in the taxonomy were present

in the tree. Second, the tree topology was checked to determine if

the set of identified tips formed a monophyletic group in the tree,

that is, they were all contained in a single clade that contained no

other tips. If this condition was met, we inferred that monophyly

could not be rejected for the given family. Conversely, if this

condition was not met (i.e. the tips associated with a given family

did not form a clade in the tree), then monopoly was rejected.

Figure 3 was created using the software Circos 0.62–1 [48]. The

karyotype data used to assign genes and named regions were taken

from the Coffea arabica chloroplast genome on GenBank (accession

NC008535). The data for sampling frequencies for loci were

extracted from the metadata files generated by the autophy scripts

and formatted for Circos using a combination of bash and Python

scripting and regular expression search/replace in the text editor

Geany [49].

The estimate of time required to reach representation of

300,000 plant species in GenBank was based on an extrapolation

using a linear rate estimate of species accumulation (about 6,500

new species/year) between 2000 and 2012. At this rate, it will take

32 years to accumulate the additional 208,000 species required to

reach 300,000 from the approximately 92,000 sampled today.

Supporting Information

Table S1 A comma–separated tabular data file describ-
ing parameters for all PHLAWD runs.
(CSV)

Table S2 Proportion of branches in tree for which each
number of loci contain decisive data.
(CSV)

Table S3 Number of genera represented for each locus
in data mined from GenBank 185.
(CSV)

File S1 Full size version of Fig. 1 with tip names.
(PDF)

File S2 Full size version of Fig. 5 with tip names.
(PDF)

File S3 Full size version of Fig. 6 with tip branches and
tip names.
(PDF)

Acknowledgments

Thanks to Ya Yang and Joseph Brown for valuable discussions and

feedback. Additional supplementary materials are available at the Data

Dryad doi 10.5061/dryad.450qq, including the compressed alignment and

partition files used with RAxML to generate the tree, a metadata table

identifying the GenBank sequence information used to generate the

alignment, the ML tree topology found by RAxML, an ultrametric

chronogram of this topology and the configuration files used with treePL

used to create it (see Materials and Methods), all Python scripts used to

generate figures and statistics, and the ‘‘Supplemental tree figures’’ file,

which exceeds the size limit set by the journal.

Supplemental tree figures. A collection of figures showing branches

on the generic phylogeny for which each locus contains decisive data. This

Appendix is a PDF file. View its table of contents to browse the contained

figures by locus name. This file exceeds the 100 MB size limit of the journal

for hosted supplemental materials, so it is available from the Data Dryad

repository instead.

Author Contributions

Conceived and designed the experiments: CEH SAS. Performed the

experiments: CEH. Analyzed the data: CEH. Contributed reagents/

materials/analysis tools: CEH SAS. Wrote the paper: CEH SAS.

References

1. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008)

GenBank. Nucleic Acids Research 36: D25–30.

2. National Center for Biotechnology Information (2013) Taxonomy statistics.

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/index.

cgi?chapter = STATISTICS&uncultured = hide&unspecified = hide). Accessed

20 November 2013.
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