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Abstract: Severe air pollution has significantly impacted climate and human health worldwide.
In this study, global and local Moran’s I was used to examine the spatial autocorrelation of PM2.5

pollution in North China from 2000–2017, using data obtained from Atmospheric Composition
Analysis Group of Dalhousie University. The determinant powers and their interactive effects of
socioeconomic factors on this pollutant are then quantified using a non-linear model, GeoDetector.
Our experiments show that between 2000 and 2017, PM2.5 pollution globally increased and exhibited
a significant positive global and local autocorrelation. The greatest factor affecting PM2.5 pollution
was population density. Population density, road density, and urbanization showed a tendency
to first increase and then decrease, while the number of industries and industrial output revealed
a tendency to increase continuously. From a long-term perspective, the interactive effects of road
density and industrial output, road density, and the number of industries were amongst the highest.
These findings can be used to develop the effective policy to reduce PM2.5 pollution, such as, due to
the significant spatial autocorrelation between regions, the government should pay attention to the
importance of regional joint management of PM2.5 pollution.

Keywords: GeoDetector; long-term variations; PM2.5 concentrations; spatial autocorrelation;
spatial heterogeneity

1. Introduction

In recent years, problems related to air pollution have become increasingly severe
worldwide and air pollution had a severe impact on climatic, economic development, and
human health [1–4]. Of the atmospheric pollutants, particulate matter with an aerodynamic
diameter of less than 2.5 µm (PM2.5) is the most harmful pollutant and has received
increased attention recently [5–7]. PM2.5 can severely impact environmental conditions,
reducing atmospheric visibility and including climate change [8]. Even more seriously,
previous studies have demonstrated that severe PM2.5 pollution can cause pathological
reactions in respiratory and cardiovascular systems and greatly increase mortality [9–11].
Due to rapid urbanization, these problems have become more prominent in China [12,13]
and may not only lead to the migration of large populations but also to the increased
consumption of energy [14]. Therefore, PM2.5 and related issues have received widespread
research attention worldwide.

In early studies, more attention was paid to explore the driving factors of PM2.5 pollution,
it has become increasingly apparent that socioeconomic and other pollutant factors would
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impact the accumulation and diffusion of PM2.5 worldwide [15,16]. Puentes et al. took Santiago,
the capital of Chile, as an example, and used a bivariate regression prediction model to estimate
the PM levels related to PM2.5 and PM10 at the same time. The results showed that the two
pollutants have a strong relationship [17]. Due to the city being the spatial carrier of the above
sources, one changes in response to the changes of others.

With the rapid urbanization, more research has involved socioeconomic factors such
as population density [18], coal consumption [16], industrial structures [19], built-up
areas [20], per capita gross domestic product (GDP) [21], and road density [16], as a means
of determining which human activities contribute most to PM2.5 concentrations. For
example, Cavieres et al. showed that there is severe air pollution in Santiago of Chile,
which is mainly caused by anthropogenic activities that use combustion and may further
exert adverse effects on human health [22]. Wu et al. constructed panel data models within
an environmental Kuznets curve framework to investigate the correlations between per
capita per capita gross domestic product (GDP) and PM2.5 concentrations; their result was
an inverted U-shaped curve [21]. By employing a structural equation model, Jiang et al.
demonstrated that PM2.5 concentrations in China were related to city size and the activities
of both industries and residents [23]. Based on nonparametric additive regression models,
Xu et al. found that, in China, there was an inverted-U shaped pattern between PM2.5
concentrations and economic activity, urbanization, number of private vehicles, and coal
consumption [24].

Moreover, to detect and quantify the dominant driving factors of PM2.5 pollution,
research studies have typically used linear models, such as spatial Durbin analyses [25],
Bayesian hierarchical analyses [26], traditional econometrics models [27], panel data mod-
els [21], spatial lag/error models [28], geographic weighted regressions [29] and clustering
methods [30]. For example, Du et al. indicated that PM2.5 concentrations were strongly
correlated to GDP and built-up area [25]. Using a Pearson’s correlation analysis, Han
et al. demonstrated that population size, built-up area, and the proportion of secondary
industries had significant positive impacts on PM2.5 [20]. Moreover, Zhang et al. found a
positive correlation between PM2.5 concentrations and population size using spatial inter-
polation [31]. These are just a few examples of the growing knowledge that socioeconomic
factors have important impacts on PM2.5 pollution using a series of linear models.

However, it remains unclear which, among these potential factors, is dominant in
terms of PM2.5 pollution in North China. Notably, the potential interactive impacts of
these factors on PM2.5 pollution and whether or not either their determinant powers
or interactions will remain the same over time are also currently unknown. Moreover,
traditional methods are flawed in quantifying the interaction of factors that affect PM2.5.
For example, the interaction of two factors can take many forms of coupling in reality, but
in traditional regression methods, it is usually the product of two factors, and their ability
to explain the heterogeneity of spatial stratification is poor. Therefore, in contrast to the
various linear methods used in previous studies, non-linear models, such as GeoDetector,
have been applied in this study to both quantify the determinant powers of socioeconomic
factors and their interactive effects on PM2.5 concentrations in North China. That is, the
aims of this study were to: (1) examine the evolution of hot/cold spots (i.e., regions
becoming more/less polluted) in North China from 2000–2017, (2) identify the dominant
factor(s) impacting PM2.5 concentrations each year, and (3) quantify the determinant powers
and their interactive effects of socioeconomic factors on PM2.5 pollution over time using
GeoDetector software for the measurement and attribution of stratified heterogeneity. The
rest of this study is designed as follows: data sources and models applied in this study are
introduced in Section 2, while the analysis results and key findings are mainly elaborated
in Section 3. Section 4 then provides a discussion of the findings, and finally, Section 5
presents the study conclusions and policy recommendations.
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2. Materials and Methods
2.1. Study Area

North China comprises the provinces of Hebei, Henan, and Shandong, which consist
of 48 cities, including Beijing and Tianjin (Figure 1). Compared with other regions in
China, the urban population in this region suffers more severe PM2.5 pollution due to the
presence of a large number of coal-based industries [32]. According to the Ministry of
Environmental Protection of China, the air quality in 2015 of Baoding, Xingtai, Hengshui,
Tangshan, Zhengzhou, Jinan, Handan, Shijiazhuang, Langfang, and Shenyang were the
worst 10 cities, all these cities are located in the North China region, aside from Shenyang.
Furthermore, the heating of most cities in this region places a great burden on the atmo-
spheric environment, especially in winter. The area of North China is 543,000 km2; with a
population of approximately 320 million, it is one of the most densely populated regions in
China. In recent years, the accelerated growth of urbanization and industrialization in this
region, means that energy consumption is enormous, and it has generated a large amount
of atmospheric pollution, significantly impacting the atmospheric environment; this cannot
be ignored. Therefore, the effective prevention and management of PM2.5 pollution in the
area is crucial.

Figure 1. Spatial location of the study area.
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2.2. Data Sources

The PM2.5 concentration data from 2000–2017 analyzed in this study were collected
from the Atmospheric Composition Analysis Group of Dalhousie University [33], which has
a spatial resolution of 0.1◦ × 0.1◦. This dataset has great accuracy as it has been corrected
with global station-based observation values based on the geographically weighted regres-
sion model, with an R2 value of 0.817 [34] and has been used in many studies [16,34,35].
Using the regional statistical tools in ArcGIS 10.3, the mean PM2.5 concentration data for
each year in each city of the study area from 2000 to 2017 were then extracted (Figure 2).

Table 1. Descriptions of the indicators for socioeconomic factors.

Variables Definitions Units Data Sources

Population Population density (PD) 104 person/km2 China City Statistical Yearbook
(http://data.cnki.net/NewHome/index)

(accessed on 16 May 2020)Industry Industrial output (IO) 106 Yuan/km2

Number of industries (NI) /

Traffic Road density (RD) Km/km2 Open Street Map (https://www.openstreetmap.org)
(accessed on 20 May 2020)

Urbanization Proportion of non-agricultural
population (UR) %

China City Statistical Yearbook
(http://data.cnki.net/NewHome/index)

(accessed on 16 May 2020)

Energy use Fossil fuel combustion (FC) 104 m3
China City Statistical Yearbook

(http://data.cnki.net/NewHome/index)
(accessed on 16 May 2020)

2.3. Statistical Analyses

A global Moran’s I model was used to reveal whether or not the PM2.5 concentrations
of a given region impacted its neighboring regions within the study period. Local indicators
of spatial association (LISA) statistics were used to explore the hot/cold (high/low) spots
of PM2.5 concentrations. The GeoDetector (www.geodetector.cn, accessed on 18 June
2020) model was then used to quantify the determinant powers and interactive effects of
socioeconomic factors on PM2.5 concentrations.

First, in this study, a global Moran’s I model [37] was employed to test and quantify
the spatial autocorrelation of PM2.5 concentrations from 2000–2017. The formula for this
model is defined as follows:

I =
n

∑n
i=1 ∑n

j=1 wij

∑n
i=1 ∑n

j=1 wij(yi − y)
(
yj − y

)
∑n

i=1(yi − y)2 , (1)

where the I value ranges from −1 to 1 and the larger the absolute value of I is, the stronger
the autocorrelation becomes; n is the number of cities; wij is the spatial connection matrix,
the value of which is 1 if polygons i and j are adjacent; and yi, yj, and y are the city-level
mean values in cities i, j, and the study area, respectively. The statistic I was obtained in
this study using 999 Monte Carlo permutations, and the significance of the I value was
measured by the p-value (at the 5% significant level), which performed in GeoDa 1.16
software and was download from http://geodacenter.github.io/download.html (accessed
on 18 June 2020), and the features of computer used is 64 bit.

Second, local indicators of spatial association (LISA) was used to analyze global spatial
autocorrelation analysis, but it cannot present local differences in each city. Therefore, to
detect the hot/cold spots of the study area, LISA statistics were used [38] according to the
following formula:

Ii =
n(yi − y)∑n

j=1 wij
(
yj − y

)
∑n

i=1(yi − y)2 , (2)

where yi, yj, y, and wij are the same as in Equation (1). If Ii > 0, a positive correlation
existed between city i and the surrounding cities with similar levels of PM2.5 pollution.
This facilitated the observation of spatial clusters (i.e., hot spots (high-high; HH) or cold

http://data.cnki.net/NewHome/index
https://www.openstreetmap.org
http://data.cnki.net/NewHome/index
http://data.cnki.net/NewHome/index
www.geodetector.cn
http://geodacenter.github.io/download.html
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spots (low-low; LL)). Conversely, a negative correlation was observed, it indicated the
presence of spatial outliers (i.e., high-low, HL; low-high, LH).

Figure 2. Spatiotemporal evolution of the annual mean PM2.5 concentrations from 2000–2017 in North China (data source:
http://fizz.phys.dal.ca/~atmos/martin/ accessed on 20 May 2020). Based on the results of previous studies, the explanatory
variables used in this study were: population density (PD), industrial output (IO), number of industries (NI), road density
(RD), fossil fuel combustion (FC), and proportion of the non-agricultural population (UR) (Table 1). The UR is a traditional
and commonly used proxy to represent urbanization. Additionally, the road data calculated in this study were obtained
from Open Street Map [36], which maps urban roads and multi-segment highways. The line density tool in ArcGIS was
then used to calculate RD in each city of the study area from 2000 to 2017.

http://fizz.phys.dal.ca/~atmos/martin/
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All of these analyses were implemented in GeoDa 1.16 software and download from
http://geodacenter.github.io/download.html (accessed on 18 June 2020), and the features
of computer used is 64 bit.

Third, GeoDetector was used to quantify the determinant powers of socioeconomic
factors and their interactive effects on PM2.5 concentrations. It was assumed that if a given
factor (X) determined the response variable (Y), the response variable would present a
similar spatial distribution to that of the factor [39–41]. It has been employed in the fields
of geology, environment, health, disasters, and other many fields [42–44], as indicated in
the following formula:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 , (3)

where the q value ranged from 0 to 1, indicating the determinant power of the factor. The
larger the value of q, the stronger the determinant power of the factor. Here, N and Nh
represent the number of cities in the entire study area and stratum h, respectively; σ2 and
σh

2 denote the variance of all cities in the study and stratum h and the study area was
stratified into L strata, denoted by h = 1, 2, . . . , L.

The interactive effects of different factors (Xs) can also be quantified by the GeoDetector,
which investigates whether or not the interactions of factors (X1∩X2) weakens or enhances
the influence on Y by comparing the values of q(X1), q(X2), and q(X1∩X2) (Figure 3).

Figure 3. Principle of interactive effects.

It is noteworthy that one of the advantages of GeoDetector is that it does not make
linear assumptions for factors, such that the problem of multicollinearity is precluded.
Therefore, adding or deleting variables will not impact the results. The GeoDetector tool
was download from www.geodetector.cn (accessed on 10 July 2020) and implementation in
Excel 2019 (Microsoft, Redmond, WA, USA) (the features of computer used is 64 bit).

3. Results
3.1. Spatiotemporal Analyses

The global Moran’s I values of PM2.5 concentrations from 2000–2017 were all positive
and statistically significant at an α-level = 1% (p < 0.01) (Table 2). Notably, the values
of I all exceeded 0.60, with a maximum value of 0.75 and a minimum of 0.61. This not
only indicates that PM2.5 concentrations were significantly spatially autocorrelated in the
study area (i.e., cities with high(low) PM2.5 concentrations tended to cluster near cities with
high(low) values), but also that these autocorrelations remained high during the study
period. Only the results at four time points are shown; however, they are representative of
the full data (Figure S1). Most of the points shown in Figure S1 are found in the first and
third quadrants, indicating that during the selected period, most cities exhibited significant
and positive spatial autocorrelations.

http://geodacenter.github.io/download.html
http://geodacenter.github.io/download.html
www.geodetector.cn
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Table 2. Global Moran’s I of PM2.5 concentrations from 2000–2017.

Year Moran’s I Year Moran’s I

2000 0.75 2009 0.61
2001 0.66 2010 0.64
2002 0.67 2011 0.65
2003 0.68 2012 0.71
2004 0.62 2013 0.70
2005 0.67 2014 0.63
2006 0.66 2015 0.67
2007 0.72 2016 0.67
2008 0.61 2017 0.67

The local Moran’s I value was used to identify the hot and cold spots of the PM2.5
concentrations in North China. Only the results at five time points, which are representative
of the results, are shown here (Figure 4). There were no outliers (high-low or low-high) in
the study area, meaning that no areas tended to aggregate with areas with different PM2.5
pollution concentrations.

Figure 4. Local Moran’s I scatterplots for 2000, 2005, 2010, 2015, and 2017 (data source: http://fizz.phys.dal.ca/~atmos/
martin/) (accessed on 15 March 2020).

Spatially, the risk of PM2.5 pollution was relatively high in southeastern Hebei, north-
ern Henan, and western Shandong, while it was relatively low in northern Hebei and
eastern Shandong. The frequency of clusters between 2000 and 2017 indicates that Xinxi-
ang, Kaifeng, Dezhou, Xingtai, and Heze are mostly represented by HH clusters each year
(≥16 out of 18), while Qinhuangdao and Chengde are represented by LL clusters each year

http://fizz.phys.dal.ca/~atmos/martin/
http://fizz.phys.dal.ca/~atmos/martin/
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(Figure S2). In general, stable and high concentrations of PM2.5 clusters were mainly found
in southeastern Hebei, northern Henan, and western Shandong.

Temporally, the mean annual value of PM2.5 for each province was extracted to
capture its temporal evolution, which showed an upward trend (Figure 5). Both temporal
variations and regional differences were observed. Regionally, relatively higher PM2.5
concentrations were recorded in Tianjin and Henan from 2000–2007. In Beijing, it has been
always low. As for temporal variation, there are also significant regional differences. For
example, the annual mean PM2.5 concentrations in 2000 were 28.24, 42.30, 42.80, 60.59,
and 38.48 µg/m3 in Beijing, Tianjin, Hebei, Henan, and Shandong, respectively, in which
the PM2.5 concentrations in Tianjin, Hebei, and Henan were more than 40 µg/m3. Before
2006, PM2.5 concentrations in Beijing, Tianjin, and Hebei all showed obviously increasing
trends, with peak values of 58.47, 84.66, and 73.50 µg/m3, respectively. However, slightly
declining trends were observed between 2007 and 2012. In Henan and Shandong, PM2.5
concentrations also showed primarily increasing trends before 2007, reaching maxima
of 84.59 and 73.13 µg/m3, followed by a nearly continuous decline from 2007 to 2012.
Interannual fluctuations have been observed since values peaked in 2013 in Beijing, Tianjin,
Hebei, Henan, and Shandong.

Figure 5. Temporal variations of PM2.5 concentrations from 2000–2017 (data source: http://fizz.phys.dal.ca/~atmos/
martin/) (accessed on 15 March 2020).

3.2. Impact Factors

The determinant powers (q values) of the impact factors from 2000–2017 were quanti-
fied using GeoDetector (Table 3). Among the five selected factors, PD showed the great-
est determinant power for PM2.5 concentrations (q = 0.67), followed by IO (q = 0.60),
NI (q = 0.56), RD (q = 0.53), FC (q = 0.36), and UR (q = 0.32). The q values presented here
are the results for 2017. Of the selected factors, PD exhibited a remarkably dominant
effect on PM2.5 concentrations, as demonstrated by its q values, which ranged from 0.27 to
0.67 between 2000 and 2017 (Table 3), which was consistent with the results of other studies,
for example, Wang et al. demonstrated that PD had a critical effect, reflected in the accu-

http://fizz.phys.dal.ca/~atmos/martin/
http://fizz.phys.dal.ca/~atmos/martin/
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mulation of PM2.5 by region [18]; similar, Ding et al. showed that PD had the remarkable
impact on PM2.5 concentrations [45].

Table 3. The q values of each influence factor from 2000 to 2017.

Time PD IO NI RD UR FC

2000 0.27 0.42 0.29 0.29 0.19 0.17
2001 0.45 0.45 0.26 0.32 0.28 0.24
2002 0.52 0.55 0.40 0.48 0.37 0.21
2003 0.55 0.42 0.41 0.46 0.45 0.29
2004 0.50 0.46 0.47 0.50 0.41 0.33
2005 0.61 0.50 0.32 0.54 0.34 0.41
2006 0.61 0.55 0.34 0.46 0.27 0.30
2007 0.64 0.56 0.26 0.53 0.39 0.32
2008 0.67 0.57 0.33 0.60 0.47 0.32
2009 0.66 0.52 0.31 0.49 0.36 0.20
2010 0.62 0.51 0.55 0.65 0.38 0.19
2011 0.64 0.58 0.50 0.58 0.42 0.18
2012 0.60 0.60 0.44 0.55 0.42 0.45
2013 0.65 0.47 0.39 0.50 0.27 0.34
2014 0.66 0.55 0.55 0.56 0.46 0.19
2015 0.61 0.47 0.54 0.54 0.26 0.25
2016 0.63 0.58 0.41 0.54 0.30 0.18
2017 0.67 0.60 0.56 0.53 0.32 0.36

The q values of RD indicated that traffic conditions also had an increasing impact
on PM2.5 pollution. The q values for RD (Table 3) ranged from 0.29 to 0.65, indicating
that it accounted for between 29% and 65% of PM2.5 concentrations. The factors, IO and
NI, generated q values from 0.42 to 0.60 and from 0.26 to 0.56, respectively, denoting an
increasing and significant determinant power of industrial activities on PM2.5 pollution.
It is generally believed that industrial growth, as represented by IO and NI, has a non-
negligible impact on the degradation of the environment (Table 3). The q values of UR
revealed that the influence of urbanization on PM2.5 pollution was increasing and non-
negligible, ranging from 0.19 to 0.47, indicating that urbanization accounted for between
19 to 47% of annual mean PM2.5 concentrations. The q values of FC showed that the
influence of fossil fuel combustion on PM2.5 pollution was increasing and non-negligible,
ranging from 0.17 to 0.45, indicating that fossil fuel combustion accounted for between
17 to 45% of annual mean PM2.5 concentrations (Table 3).

Furthermore, the scatter plots for the selected periods display the q values with
quadratic polynomials to fit the trend lines, as well as the labeled R2 values with which
to explore the changing patterns of these driving factors (Figure 6). PD, RD, UR, and FC
all showed a tendency to first increase and then decrease from 2000–2017. Both NI and
IO showed increasing trends in the long-term, indicating that industrial activities have an
increasing influence on PM2.5 pollution (Figure 6).

Moreover, in total, fifteen pairs of interactions among the five studied variables
from 2000–2017 were calculated using the GeoDetector (Figure 7). It was found that the
interactive effects of two random factors were greater than the effect of each individual
factor, (i.e., the interactions between paired factors had a greater impact on PM2.5 pollution
than any single factor). The strongest interaction between factors changed according to the
year. For example, q(PD∩IO) showed the strongest interaction on five occasions between
2000 and 2017, ranging from 0.59–0.82, indicating that the interaction between PD and IO
had the strongest impact on the spatial pattern of PM2.5 pollution. Over the study period,
q(PD∩IO), q(PD∩NI), and q(RD∩NI) had the strongest interactions five, four, and four
times, respectively, indicating that population, traffic, and industrial development had
increasing interactive effects on the spatial pattern of PM2.5 pollution.
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Figure 6. Scatter plots with trend lines of q values for each impact factor from 2000–2017.

Figure 7. Heatmap of interactive effects from 2000–2017.

Between 2000 and 2017, the scatter plots in Figure 8 show the interactive effects with
quadratic polynomials used to fit trend lines and R2 to explore the changing patterns of
interactive effects for the driving factors. The interactive effects of (PD, RD), (PD, IO), (PD,
UR), (RD, UR), (IO, RD), (PD, NI), (IO, UR), (RD, FC), (UR, FC), and (NI, UR) essentially
showed a tendency to first increase and then decrease (Figure 8). Both (IO, NI), (IO, FC),
(PD, FC), (NI, FC), and (RD, NI) showed long-term increasing trends, meaning that the
influence of these factors on PM2.5 concentrations has gradually increased.
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Figure 8. Scatter plots with trend lines of q values for each pair of interactive effects from 2000–2017.

4. Discussion

In recent years, problems related to air pollution, especially PM2.5, have become
increasingly prominent and have attracted widespread attention. North China, as one of
the most densely populated and rapidly urbanizing regions in China, with millions of
residents and rapid economic development, has suffered severely from PM2.5 pollution.
In this study, a global Moran’s I model was used to examine the spatial autocorrelation of
PM2.5 concentrations from 2000–2017. A LISA model was utilized to explore the hot and
cold spots of PM2.5 concentrations and determinant powers of socioeconomic factors and
their interactive impacts on PM2.5 pollution was quantified using GeoDetector. The results
indicate that the cities with high pollution risks are mainly distributed in Xinxiang, Kaifeng,
Dezhou, Xingtai, and Heze and exhibit significant spatial autocorrelation. Furthermore,
the determinant power of PD remained high during the study period, and the interaction
between PD and IO was the strongest on five occasions between 2000 and 2017.

In this study, the temporal evolution of PM2.5 concentrations in North China from
2000–2017 was examined and found to have an overall increasing trend. A potential reason
for this may be that China has experienced rapid urbanization in recent years, especially
in the study area, which is the most concentrated region in terms of industry (e.g., steel,
and vehicle use) [32]. It is notable that these industries consume tremendous amounts of
fossil fuels and inevitably generate large amounts of industrial emissions. Moreover, in
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the process of urbanization, populations are increasingly concentrated in urban regions,
and the demands of transportation and consumption of energy continue to expand with
increasing population densities.

Significant and positive spatial autocorrelations existed in the PM2.5 concentrations
analyzed here. Hot spots were mainly concentrated in southeastern Hebei, northern Henan,
and western Shandong, and specifically in cities such as Xinxiang, Kaifeng, Dezhou, Xingtai,
and Heze, to which more attention should be paid. Cold spots were distributed across
northern Hebei, southern Henan, and eastern Shandong, in cities such as Qinhuangdao,
Chengde, and Yantai.

Many prior studies have demonstrated that socioeconomic factors significantly impact
the spatiotemporal patterns of PM2.5 pollution, and it is widely accepted that PD is a
remarkable factor influencing PM2.5 concentrations. Similarly, in this study, the determinant
power of PD was the strongest (e.g., q = 0.67 in 2017), which is widely consistent with the
results of previous studies. For example, Ding et al. showed that PD had the strongest
impact on PM2.5 concentrations [45], while Lou et al. demonstrated that PD had a critical
effect, reflected in the accumulation of PM2.5 by region [46]. Wang et al. also found that
PD exerts a remarkable effect on PM2.5 concentrations [18]. Hinojosa et al. indicated that
population was correlated with PM2.5 concentration using data from Mexico City [47]. The
results of the current study demonstrate that anthropogenic emissions are the key factors
leading to significant increases in PM2.5 concentrations in North China between 2000 and
2017. Anthropogenic emissions are also a fundamental source of secondary aerosols of
PM2.5 [48]. Dense populations also consume greater amounts of non-renewable energy,
which is considered to be the main source of PM2.5 [28].

In this study, IO was found to have a significant impact on the spatial distribution
of PM2.5 concentrations, as has been shown in previous studies. For example, Yang et al.
demonstrated that IO had a significant influence on the spatial pattern of PM2.5 concen-
trations in China [16], and Wang et al. determined that industrial development would
increase industrial emissions, resulting in inevitable increases in PM2.5 concentrations [18].
In another study, Zhang et al. suggested that the proportion of secondary industry is the
decisive factor in terms of PM2.5 pollution, as industrial activities are the main emission
sources, including energy-intensive and high-polluting mining, construction, and man-
ufacturing, which emit exhaust gases and dust into the atmosphere that can form PM2.5
pollution through direct or secondary reactions [19]. Additionally, some regions lack proper
management and fail to implement effective energy-saving measures and environmental
protection policies. In such regions, PM2.5 emissions have greatly increased. Industry still
affects economic and social development in China.

Furthermore, a strong association between RD and PM2.5 concentrations was found,
according to the indicator of traffic conditions (q = 0.53), which is consistent with previous
research. Yang et al. demonstrated that in China, traffic conditions (depicted by RD)
have a significant impact on the spatial patterns of PM2.5 concentrations [16]. Similarly,
Wu et al. determined that traffic conditions, represented by the proportion of road area,
exerted a remarkable effect on PM2.5 pollution [21], while Zhang et al. showed that the
increasing length of highways would significantly raise the health risks related to PM2.5 in
eastern China [19]. Oliveira et al. demonstrated that emissions of light-duty vehicles have
impacted on the PM2.5 pollution using data from Brazil [49]. This may occur because rapid
urbanization is generally accompanied by a huge demand for buildings, road networks, and
other public infrastructure, which directly increase energy consumption and the amount
of dust (e.g., emission of vehicles, road and building dust) [21]. Highly accessible roads
also indicate increased vehicle usage [50]. Therefore, RD has a remarkable impact on the
accumulation and diffusion of PM2.5.

In assessing the interactions of all tested factors, they all presented non-linear enhanced
effects, that is, after interaction, the effect is greater than that of the single factor. Moreover,
GeoDetector revealed significantly increasing interactive effects, of which, PD and IO were
the strongest on five occasions between 2000 and 2017. Because socioeconomic factors
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are closely related to anthropogenic and industrial emissions, changes over the past few
decades to the original ecological environment and human living conditions have increased
anthropogenic and industrial emissions that will further promote PM2.5 pollution under the
influence of rapidly increasing global urbanization. For instance, socioeconomic activities
mainly interact from a spatial perspective, in the ecological environment, and with human
settlements and farmland systems, which also strengthen PM2.5 pollution [51]. Therefore,
the interaction of socioeconomic factors will amplify the impact of PM2.5 to an extent.

5. Conclusions, Limitations, and Future Research

In this study, a global Moran’s I was used to examine the spatial autocorrelation of
PM2.5 pollution in North China from 2000–2017. Local indicators of spatial association
statistics were then used to identify hot and cold spots before the determinant powers of
socioeconomic factors and their interactive effects were finally quantified using GeoDetec-
tor. The PM2.5 concentrations in the study area exhibited an increasing trend from 2000 to
2017. Additionally, the concentrations showed significant and stronger global spatial auto-
correlation. Hot spots were mainly concentrated in the cities of Xinxiang, Kaifeng, Dezhou,
Xingtai, and Heze, while cold spots were mainly distributed in the cities of Qinhuangdao
and Chengde. PD was shown to have the most decisive influence on the spatial pattern of
PM2.5 pollution, and the interactive effect of PD and IO was the strongest for many times
during the period. Between 2000 and 2017, the impacts of PD, RD, UR, and FC trended to
first increase and then decrease, while those of NI and IO showed an obviously increasing
trend. Finally, the interactive effects of most factors appeared to first increase and then
decrease, while the others showed a significant increasing trend. In total, these findings
provide a clearer picture of the socioeconomic factors responsible for PM2.5 pollution across
cities in North China, which has significant meaning and may be used to guide policy
development and remediation measures in the future and mean that more specific control
strategies need to be developed for different regions to successfully control and reduce
PM2.5 pollution.

Some limitations of this study require mentioning. First, we only considered socioeco-
nomic impact factors in this study, while environmental conditions, such as air temperature
and atmospheric humidity, and other pollutant factors, such as PM10, were omitted, in the
future research, more attention should be paid to analyze the association between other
pollutants and PM2.5 pollution. Second, the association between compositional data and
impact factors can be considered in the future research [52]. Third, the data used in our
analyses were binned by city (spatially) and by year (temporally), likely introducing some
uncertainties. In addition, the accuracy of raw PM2.5 data is considerably high, but it also
exists uncertainty in different regions. Thus, data with high spatiotemporal resolution
used in further studies might provide high accuracy and efficiency of the quantification of
socioeconomic impacts on PM2.5 pollution.
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