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Circulating metabolic biomarkers  
of renal function in diabetic and 
non-diabetic populations
Clara Barrios1,2, Jonas Zierer   1,3,22, Peter Würtz4,5, Toomas Haller6, Andres Metspalu6, 
Christian Gieger7,8, Barbara Thorand7, Christa Meisinger7,9, Melanie Waldenberger7,8, 
Olli Raitakari10,11, Terho Lehtimäki12, Sol Otero2,13, Eva Rodríguez2, Juan Pedro-Botet14, 
Mika Kähönen15, Mika Ala-Korpela16,17,18,19,20,21, Gabi Kastenmüller3, Tim D. Spector1, 
Julio Pascual2 & Cristina Menni   1

Using targeted NMR spectroscopy of 227 fasting serum metabolic traits, we searched for novel 
metabolic signatures of renal function in 926 type 2 diabetics (T2D) and 4838 non-diabetic individuals 
from four independent cohorts. We furthermore investigated longitudinal changes of metabolic 
measures and renal function and associations with other T2D microvascular complications. 142 traits 
correlated with glomerular filtration rate (eGFR) after adjusting for confounders and multiple testing: 
59 in diabetics, 109 in non-diabetics with 26 overlapping. The amino acids glycine and phenylalanine 
and the energy metabolites citrate and glycerol were negatively associated with eGFR in all the cohorts, 
while alanine, valine and pyruvate depicted opposite association in diabetics (positive) and non-
diabetics (negative). Moreover, in all cohorts, the triglyceride content of different lipoprotein subclasses 
showed a negative association with eGFR, while cholesterol, cholesterol esters (CE), and phospholipids 
in HDL were associated with better renal function. In contrast, phospholipids and CEs in LDL showed 
positive associations with eGFR only in T2D, while phospholipid content in HDL was positively 
associated with eGFR both cross-sectionally and longitudinally only in non-diabetics. In conclusion, 
we provide a wide list of kidney function–associated metabolic traits and identified novel metabolic 
differences between diabetic and non-diabetic kidney disease.
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Chronic kidney disease (CKD) is a major public health problem affecting more than 10% of the population in 
Western countries1, leading to increased cardiovascular (CV) morbidity and mortality2. The renal microvascular 
complication of diabetes (DKD) is the leading cause of end-stage renal disease (ESRD). Despite the efforts in early 
diagnosis and therapeutic interventions in diabetes control, the rate of ESRD caused by DKD decreases less than 
the rates of all other diabetes complications3.

In recent years, several studies investigated metabolic profiles associated with renal function4,5 in the general 
population6 and in type 1 diabetic (T1D) patients7–9 to identify biomarkers for disease progression8 and mortality10.  
Other studies have looked for metabolic markers of type 2 diabetic (T2D) kidney disease, but sample sizes were 
small, they lacked independent replication11 or were performed in experimental animal models12.

Here, we used targeted nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic signatures 
of renal function in T2D and non-diabetic individuals, combining four European cohorts. Additionally, to gain 
insights in potential mechanisms of the cross-sectional associations, we investigated longitudinal changes of 
metabolite levels and renal function and associations with other microvascular complications of T2D.

Results
Levels of 227 fasting serum metabolic traits including small molecules, lipids, lipoprotein subclasses, their lipids 
component and fatty acids (Supplementary Table 1), were obtained for 5764 individuals from four independ-
ent European cohorts, including 926 T2D patients (Fig. 1). The demographic characteristics of all cohorts are 
presented in Table 1. We calculated associations of all 227 metabolic traits with renal function in each cohort 
individually and meta-analyzed results for diabetic and non-diabetic cohorts (Supplementary Table 2). To assess 
the confounding effect of drug usage, we ran the same models in 1054 individuals from TwinsUK additionally 
adjusting for statin and hormone replacement therapy (HRT), and in 655 individuals from GenodiabMar adjust-
ing for statin usage. Results remain consistent (Supplementary Table 3).

Markers of renal function common for diabetics and non-diabetics.  After adjusting for age, gen-
der, BMI and multiple testing, 26 metabolic traits where consistently associated with renal function across dia-
betic and non-diabetic cohorts (Table 2). The strongest cross-sectional associations with eGFR were observed 
for glycine and phenylalanine (P < 0.001) with association magnitudes of −8.37 [−9.73: −7.02] and −7.92 
[−9.27: −6.57], respectively, for the diabetic group and −1.29 [−1.66: −0.92] and −1.69 [−2.07: −1.32] for the 
non-diabetic group (Fig. 2).

Levels of triglycerides in different sizes of intermediate- and low-density lipoprotein (IDL and LDL, 
respectively) particles were consistently inversely associated with the eGFR, while several high-density lipo-
protein (HDL) subclasses of different sizes rich in lipids, cholesterol, cholesterol esters, phospholipids and 
Apolipoprotein-A1 (Apo-A1) were consistently positively associated with eGFR (Fig. 3).

Citrate and glycerol were consistently negatively correlated with eGFR in all cohorts and also correlated with 
longitudinal change of eGFR (β[95% CI] = −0.04 [−0.06: −0.02], p = 1.5 × 10−6 and −0.02 [−0.04: −0.01], 

Figure 1.  Flowchart illustrating the workflow to identify of metabolic markers of diabetic and non-diabetic 
renal disease. Associations between circulating metabolites and renal function were assessed in samples from 
four different cohorts stratified for type 2 diabetes status individually. Results were subsequently meta-analyzed 
for type 2 diabetics and non-diabetic individuals separately.
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p = 2.6 × 10−3) respectively, in TwinsUK and YoungFinns. However, their circulating levels at baseline did not 
predict eGFR at follow-up in GenodiabMar and diabetic-KORA cohorts (Supplementary Tables 4 and 5).

Metabolic profiles associated to renal function in diabetics.  In the three diabetic cohorts, 59 meta-
bolic measures were consistently associated with eGFR after meta-analysis at P < 0.001. Of those, 33 traits were 
associated with eGFR only in diabetics but not in non-diabetics (Supplementary Table 2). 6 of these traits were 
concentrations of cholesterol esters in LDL and IDL subclasses, 4 phospholipids in LDL and IDL, and 14 choles-
terol and lipid concentrations in LDL and IDL that followed a positive association with eGFR in diabetics (Fig. 4 
and Supplementary Fig. 1). Also, esterified cholesterol (EC) (β = 4.35 [2.96: 5.74], p = 9.3 × 10−10) and total cho-
lesterol (β = 3.68 [2.29: 5.07], p = 2.0 × 10−7) were positively associated with eGFR in diabetics only. However, 
none of this lipoprotein subclasses predicted the change of renal function and only triglycerides to total lipids 
ratio in large VLDL (β = 0.13 [0.01: 0.25]) and total cholesterol to total lipids ratio in medium VLDL (β = −0.12 
[−0.23: 0.00]) were associated to eGFR in the longitudinal analysis (Supplementary Table 5).

To further explore the relationship of metabolic profiles with other microvascular complications of dia-
betes, we calculated cross-sectional associations of metabolite profiles with proteinuria (independently of the 
eGFR), as well as cross-sectional odds-ratios for diabetic nephropathy (DN) and diabetic retinopathy (DR) in 
GenodiabMar. Glycine and phenylalanine were common risk factors not only for DN but also for both DR and 
proteinuria (Fig. 5 and Supplementary Table 6). Similarly, pyruvate, which was associated with better renal func-
tion, showed an inverse association with proteinuria. Glycerol, citrate, and pyruvate showed concordant albeit 
non-significant association with the retinal microvascular damage. Moreover, triglyceride contents in IDL, large 
and medium LDL, and small VLDL were consistently associated with decreased eGFR as well as higher risk of 
DN and DR, though to a lesser extent. In contrast, many other lipoprotein subclasses, including most HDLs, did 
not appear to be associated with DR (P > 0.05). As expected serum albumin was strongly associated with better 
renal function only in GenodiabMar cohort, due to a higher prevalence and a more severe diabetic nephropathy 
in this population.

Metabolic profiles associated to renal function in non-diabetics.  In the three non-diabetic cohorts 
109 metabolic measures were consistently associated with eGFR (P < 0.001) (Supplementary Table 2). 83 of these 
were associated with renal function only in non-diabetics but not in the diabetic group. Cholesterol and triglyc-
eride levels in VLDL particles of all sizes were negatively associated with eGFR. In contrast, phospholipid in large 
HDL were positively associated with renal function in non-diabetic populations cross-sectionally (phospholip-
ids to total lipids ratio in very large HDL: β = 0.69 [0.32:1.06], p = 2.8 × 10−4) and longitudinally (phospholip-
ids in very large HDL: 0.04 [0.02:0.05], p = 1.3 × 10−5) in TwinsUK (Supplementary Tables 2 and 4). Also, this 
lipid ratio predicted longitudinal change of eGFR independently of baseline eGFR in KORA (0.04 [0.01:0.07], 
p = 3.7 × 10−3) (Supplementary Table 5).

Discordant metabolic measures between diabetics and non-diabetics.  Four metabolites were 
positively associated with eGFR in diabetics, while they were negatively associated in the non-diabetic indi-
viduals at P < 0.001. However, the effect directions of these metabolites were not consistent throughout all 
cohorts. These include the amino acids alanine (T2D: β = 3.32 [1.92:4.72], non-T2D: −1.39 [−1.75: −1.03]), 
valine (T2D: 4.48 [3.08: 5.88], non-T2D: −0.88 [−1.27: −0.48]), the glycolysis product pyruvic acid (T2D: 3.37 
[1.93: 4.82], non-T2D: −0.70 [−1.06: −0.34]), and albumin (T2D: 2.55 [1.16: 3.93], non-T2D: −0.70 [−1.06: 
−0.35]) (Supplementary Table 2). Albumin also predicted the longitudinal change of eGFR (0.18 [0.06: 0.30] 
p = 3.8 × 10−3) in the GenodiabMar and KORA cohorts (Supplementary Table 5). Also, there was a trend towards 
an increase of small, medium, and large LDL particles rich in phospholipids and cholesterol with better eGFR in 
T2D, that followed an opposite albeit non-significant association in non-diabetic populations (Fig. 4).

Diabetic cohorts Non-diabetic cohorts

GenodiabMar TwinsUK (diabetics) Kora (diabetics) TwinsUK Kora (non-diabetic) YoungFinns

n 655 111 160 1168 1624 2046

Zygosity (MZ/DZ/
Single) 30/4/77 466/546/156

Age (years) 69.70 (±9.32) 68.64 (±8.38) 66.74 (±7.44) 64.83 (±7.91) 60.30 (±8.83) 41.88 (±5.00)

Gender (female) 256 (39.1%) 105 (94.6%) 71 (44.4%) 1118 (95.7%) 845 (52.0%) 1115 (54.5%)

BMI (kg/m2) 30.32 (±5.05) 29.33 (±5.55) 31.48 (±5.53) 26.05 (±4.61) 27.82 (±4.58) 26.54 (±5.05)

eGFR (mL/min/1. 
73 m2) 58.64 (±28.83) 75.80 (±17.64) 76.59 (±18.15) 79.87 (±14.53) 87.80 (±15.38) 94.75 (±12.53)

creatinine (mg/dL) 1.26 (±0.62) 0.84 (±0.24) 0.96 (±0.48) 0.80 (±0.16) 0.83 (±0.23) 0.87 (±0.15)

CKD* (grades 
1/2/3/4/5) N and (%)

116/213/202/72/52 
(17.7/32.5/30.8/10.9/7.9)

20/76/12/3/0 
(18/68.4/10.8/2.7/0)

39/95/24/1/1 
(24.3/59.3/15/0.6/0.6)

322/726/118/2/0 
(27.5/62.1/10.1/0.1/0)

795/752/73/2/2 
(48.9/46.3/4.4/0.1/0.1)

1339/699/7/1/0 
(65.4/34.1/0.3/0.04/0)

Table 1.  General characteristics of the study populations. MZ = monozygotic, DZ = dizygotic. BMI = Body 
mass index. eGFR = estimated glomerular filtration rate (CKD-EPI equation). *Grades of Chronic Kidney 
Disease are stratified per KDIGO recommendation56 as: G2 60–89, G3 59–30, G4 15–29 and G5 < 15 mL/
min/1.73 m2. Values for categorical variables are given as n (percentage); values for continuous variable as mean 
(±SD).
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Discussion
In the largest study of its kind, including 926 T2D diabetics and 4838 non-diabetics from four independent 
European cohorts, we identified 142 metabolic traits consistently associated with renal function at P < 0.001 and 
with concordant effects across cohorts: 59 in diabetics, 109 in non-diabetics, with an overlap of 26 traits. When 
comparing the effect directions, associations were largely concordant between diabetic and non-diabetic cohorts 
(R2 = 0.60, Fig. 2). However, there were some notable exceptions. For instance, phospholipids and CE in IDL and 
LDL were positively correlated with eGFR only in diabetic individuals, while phospholipid content in HDL was 
positively associated with eGFR both cross-sectionally and longitudinally only in non-diabetics. We addition-
ally identified four traits, valine, alanine, pyruvate, and albumin that were negatively associated with eGFR in 
non-diabetics, and positively associated in diabetics, though the positive associations were not consistent across 
all cohorts but driven by the GenodiabMar cohort that has a wider range of renal function impairment.

The metabolic measures identified fall into three categories: amino acids, energy-related metabolites, and 
lipoprotein subclasses particles and their lipids composition.

Class Trait

diabetics non-diabetics

N Signs Beta [95% CI] p N Signs Beta [95% CI] p

Amino Acid
Glycine 887 — −8.37 [−9.73: −7.02] 7.28 × 10−34 4632 — −1.29 [−1.66: −0.92] 6.33 × 10−12

Phenylalanine 905 — −7.92 [−9.27: −6.57] 1.19 × 10−30 4716 — −1.69 [−2.07: −1.32] 1.11 × 10−18

Glycolysis
Citrate 913 — −3.34 [−4.78: −1.90] 5.68 × 10−6 4705 — −1.82 [−2.18: −1.47] 7.06 × 10−24

Glycerol 551 — −5.57 [−7.37: −3.77] 1.25 × 10−9 3695 — −1.77 [−2.19: −1.34] 7.54 × 10−16

Apolipoproteins Apolipoprotein A-I 926 +++ 3.62 [2.14: 5.10] 1.63 × 10−6 4817 +++ 0.81 [0.43: 1.19] 3.09 × 10−5

Cholesterol Total cholesterol in HDL2 924 +++ 4.05 [2.59: 5.50] 4.94 × 10−8 4817 +++ 1.32 [0.91: 1.72] 1.51 × 10−10

Total cholesterol
Total cholesterol in very large 
HDL 926 +++ 3.18 [1.74: 4.61] 1.41 × 10−5 4817 +++ 1.14 [0.74: 1.53] 1.62 × 10−8

Total cholesterol in HDL 925 +++ 3.65 [2.19: 5.11] 9.65 × 10−7 4817 +++ 1.18 [0.78: 1.58] 6.55 × 10−9

Free cholesterol Free cholesterol in medium 
HDL 926 +++ 3.47 [2.03: 4.90] 2.22 × 10−6 4817 +++ 0.75 [0.39: 1.11] 5.25 × 10−5

Cholesterol esters Cholesterol esters in very large 
HDL 926 +++ 3.14 [1.71: 4.57] 1.60 × 10−5 4817 +++ 1.05 [0.66: 1.44] 1.43 × 10−7

Lipoprotein subclasses

Concentration of very large 
HDL particles 926 +++ 2.62 [1.17: 4.07] 4.13 × 10−4 4817 +++ 1.21 [0.80: 1.62] 5.90 × 10−9

Concentration of medium HDL 
particles 926 +++ 3.33 [1.89: 4.76] 5.41 × 10−6 4817 +++ 0.76 [0.40: 1.12] 3.27 × 10−5

Total Lipids
Total lipids in very large HDL 926 +++ 2.97 [1.52: 4.42] 5.71 × 10−5 4817 +++ 1.28 [0.87: 1.69] 8.36 × 10−10

Total lipids in medium HDL 923 +++ 3.33 [1.88: 4.77] 6.29 × 10−6 4813 +++ 0.82 [0.46: 1.18] 8.81 × 10−6

Phospholipids Phospholipids in medium HDL 926 +++ 3.24 [1.80: 4.68] 1.02 × 10−5 4817 +++ 0.78 [0.42: 1.14] 2.40 × 10−5

Total cholesterol (%)

Total cholesterol to total lipids 
ratio in chylomicrons and 
extremely large VLDL

739 — −3.02 [−4.55: −1.49] 1.07 × 10−4 4005 — −0.90 [−1.28: −0.53] 2.21 × 10−6

Total cholesterol to total lipids 
ratio in IDL 916 +++ 5.43 [4.08: 6.77] 2.65 × 10−15 4805 +++ 0.83 [0.48: 1.18] 3.60 × 10−6

Cholesterol esters (%)

Cholesterol esters to total lipids 
ratio in very small VLDL 920 +++ 3.67 [2.28: 5.06] 2.25 × 10−7 4808 +++ 0.76 [0.40: 1.12] 3.13 × 10−5

Cholesterol esters to total lipids 
ratio in IDL 917 +++ 5.45 [4.10: 6.79] 2.05 × 10−15 4807 +++ 0.67 [0.32: 1.03] 1.66 × 10−4

Triglycerides (%)

Triglycerides to total lipids ratio 
in very small VLDL 924 — −3.68 [−5.07: −2.30] 1.93 × 10−7 4814 — −1.05 [−1.42: −0.68] 3.28 × 10−8

Triglycerides to total lipids ratio 
in large LDL 923 — −5.70 [−7.04: −4.36] 9.08 × 10−17 4813 — −0.96 [−1.32: −0.61] 7.75 × 10−8

Triglycerides to total lipids ratio 
in medium LDL 913 — −5.43 [−6.79: −4.08] 4.05 × 10−15 4808 — −0.80 [−1.15: −0.44] 9.26 × 10−6

Triglycerides to total lipids ratio 
in small LDL 913 — −5.00 [−6.37: −3.63] 8.91 × 10−13 4807 — −0.92 [−1.28: −0.57] 3.73 × 10−7

Triglycerides to total lipids ratio 
in IDL 923 — −5.75 [−7.10: −4.40] 8.20 × 10−17 4811 — −1.15 [−1.51: −0.80] 2.40 × 10−10

Triglycerides to total lipids ratio 
in large HDL 886 — −4.17 [−5.60: −2.75] 9.49 × 10−9 4612 — −1.34 [−1.70: −0.98] 1.71 × 10−13

Phospholipids (%) Phospholipids to total lipids 
ratio in very small VLDL 923 +++ 3.01 [1.61: 4.40] 2.34 × 10−5 4808 +++ 0.94 [0.58: 1.31] 4.27 × 10−7

Table 2.  Metabolic traits consistently associated with renal function in diabetic and non-diabetic cohorts. 
26 metabolic traits from 14 metabolic classes, listed here, were associated with eGFR consistently across both 
diabetic and non-diabetic cohorts. Signs represent the directions of the regression coefficients in each diabetic 
(GenodiabMar, diabetics-TwinsUK, diabetics-KORA) and non-diabetic (TwinsUK, KORA, YoungFinns) 
cohort. Results were meta-analyzed for diabetic and non-diabetic cohorts separately. Association magnitudes 
are eGFR per 1-SD (log-transformed) concentration. For detailed list of associations of all 227 analyzed 
metabolic traits see Supplementary T2.



www.nature.com/scientificreports/

5SCIENTIFIC RepOrts |  (2018) 8:15249  | DOI:10.1038/s41598-018-33507-7

Amino acids.  Phenylalanine, serves as precursor for tyrosine in the liver and kidneys13. It has been previously 
associated with insulin resistance, increased risk of T2D14–17 and is a predictor of CV events18. Moreover, reduced 
rates of conversion of phenylalanine to tyrosine were observed in CKD19,20, leading to decreased circulating levels 
of tyrosine and increased levels of phenylalanine. While previous studies found the negative association of eGFR 
with tyrosine stronger than its positive associations with phenylalanine21, we found tyrosine levels decreased 
only in diabetic patients (P < 0.001) Also, the log-fold change of phenylalanine over tyrosine correlated stronger 

Figure 2.  Comparison of metabolic associations with renal function between type 2 diabetics and non-
diabetics. We compared associations of metabolic measures with eGFR between diabetic and non-diabetic 
cohorts. Figure shows effect sizes per 1-SD metabolite concentration from both meta-analyses, colored 
according to significance level in diabetics (blue), non-diabetics (green) and both (cyan). Non-significant 
associations are shown in grey (details are shown in Supplementary Table 2).

Figure 3.  Metabolic traits associated with eGFR in diabetic and non-diabetic cohorts. As for lipoprotein 
subclasses, associations with eGFR were calculated for several additional metabolic traits. Effect sizes per 1-SD 
in metabolite concentration and respective 95% confidence intervals are shown for each cohort individually 
and combined (black). The complete list of results including estimates for cohort heterogeneity can be found in 
Supplementary Table 2.
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with eGFR in GenodiabMar than either individually (β = 13.13 [11.38:14.88], p = 5.2 × 10−42). While increased 
concentration of phenylalanine was associated with worse renal function in both diabetics and non-diabetics, it 
was not predictive for disease progression in this study. This suggests that phenylalanine might not be a predictor 
of renal decline but rather a consequence of renal dysfunction and a maker of vascular damage18. Indeed, phe-
nylalanine was also associated at p < 0.05 with DR and albuminuria suggesting an association with endothelial 
microvascular damage.

Similarly, glycine is converted to serine in the kidneys22,23. Thus, impairment of renal function leads to accu-
mulation of glycine, which was consistently observed in both diabetic and non-diabetics. Glycine also correlated 
with albuminuria and DR at P < 0.001 but did not predict longitudinal change of renal function. Previous studies 
report glycine to be negatively associated with CV risk factors and T2D17, but renal function was not included 
as a covariate. Also, eGFR usually increases in early stages of diabetes, before renal function declines. Thus, the 
observed associations with risk for T2D might be confounded by renal function. Our results highlight the impor-
tance of including renal function as cofactor when studying diabetes, and are in line with T2D experimental 
animal model studies, that revealed a lower urine excretion of glycine and accumulation of this metabolite in 
diabetic kidney tissues12.

Energy-related metabolites.  Alanine is a major precursor of hepatic and renal gluconeogenesis and gly-
colysis via pyruvate pathways. Together with glycerol, which was also negatively associated with eGFR, and glu-
tamine, they constitute 90% of the substrates of gluconeogenesis. Metabolic acidosis induced by CKD leads to 
increased abundance of circulating alanine, glutamine, and glutamate23. However, in the diabetic milieu, glucose 
metabolism is heavily disturbed with an increased rate of gluconeogenesis24. Consequently, the decline of renal 
function has a different impact on gluconeogenesis in diabetics, as evidenced by the different directions of asso-
ciations for alanine and pyruvate in this study.

Figure 4.  Lipoprotein classes associated with eGFR in diabetic and non-diabetic cohorts. Associations of 
lipoprotein subclasses with eGFR were calculated in three type 2 diabetic (T2D) and three non-diabetic 
(non-T2D) cohorts and results were meta-analyzed (black). Here we report regression coefficients and their 
respective 95% confidence interval per 1-SD (log-transformed) metabolite concentration for each cohort and 
the meta-analyses. For detailed list of results, including heterogeneity of effect estimates, and full metabolites 
names see Supplementary Table 2.
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Citrate is an important metabolic substrate in the kidney accounting for up to 10% of the energy production 
that counteract metabolic acidosis25. In agreement with our findings, different studies reported increased concen-
tration with the decline of eGFR12,26,27.

Lipoprotein subclasses and their lipids component.  Lipids abnormalities are not always detected 
in CKD subjects when using standard clinical measures28,29. Particularly total and LDL cholesterol are usually 
normal and even low in advanced CKD30–33. The CKD-induced lipid profile has specific characteristics distinct 
from the general population. Besides quantitative changes, renal patients have several qualitative lipid altera-
tions34,35 that cannot be detected by routine determinations and some alterations of the lipoprotein composition 
and size may contribute to the CV complications observed in CKD patients. Interestingly, in the present study 
non-classical lipid profiles showed association with renal function and remained associated after adjustment 
for statin usage (Supplementary Table 2). Some epidemiological studies revealed controversial results regarding 
lipid-lowering therapy and reduction of cardiovascular mortality in CKD36–38 and emphasize the need for further 
studies such as the present analysis. In our study, the lipid content in the different lipoprotein particles showed 
considerable differences, which highlights the potential importance of performing a more detailed lipidomic 
analysis that may reveal different risk patterns that would otherwise be missed.

Some of the largest differences found with renal function between diabetics and non-diabetics were the nega-
tive associations of small to large VLDL and LDL subclasses and their respective cholesterol and triglyceride con-
tent observed only in non-diabetics, as well as the positive associations of small to large IDL and LDL subclasses 
and their cholesterol, EC and phospholipid content observed only in diabetics.

The positive association of the pro-atherogenic LDL and IDL with eGFR observed in this study, are likely not 
reflecting a positive effect of these lipoproteins on renal function but rather a better nutritional status in sub-
jects with better renal function. Higher prevalence of individuals with worse renal function in the T2D cohorts 
is the likely cause of these counter-intuitive associations39. Of note, the phospholipid and CE content of these 

Figure 5.  Metabolic measures associated with microvascular complications of diabetes. To further assess 
associations of metabolic traits with general microvascular damage we compared their association with diabetic 
nephropathy (DN) and diabetic retinopathy (DR) in the GenodiabMar cohort. Bars represent odds ratios and 
the respective 95% confidence intervals for each metabolic trait. (For detailed list of results see Supplementary 
Table 5).
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lipoprotein particles may be related to increased lipid transfer proteins (LTP) activity (CETP and PLTP) present 
in diabetic subjects40. On the contrary, lower activity of LTPs associates with lower CV risk41, which might be 
related to the negative associations of LDL subclasses with renal function in non-diabetic subjects. Interestingly, 
triglyceride ratios in LDL and IDL were negatively associated with renal function consistently between diabetics 
and non-diabetics. Also, triglyceride to total lipid ratios showed stronger association in diabetes compared to 
non-diabetes (Supplementary Table 2). To the best of our knowledge, no studies have investigated the activity 
of LTP and their association with renal damage and whether pharmacological targeting of this proteins might 
influence in renal function.

Longitudinal analysis revealed a positive association of several HDL particle and Apo-A1 with renal function 
over time (Supplementary Table 4). However, their circulating levels at baseline were not associated with a better 
renal function in T2D at follow-up. Diabetic dyslipidemia presents particularities regarding quantitative lipopro-
tein abnormalities and also qualitative and kinetic abnormalities that results in a more atherogenic lipid profile28. 
Changes in HDL composition in T2D have been shown to affect cholesterol efflux42,43. Moreover, higher protein-
uria may increases the loss of particles derived from HDL catabolism44,45. In our study, the ratio of phospholipids 
to total lipids in very-large HDL was associated with longitudinal change of eGFR and predicted future eGFR only 
in non-diabetics. Phospholipids in HDL enhance its cholesterol efflux capacity46,47, which is impaired in diabetics 
and may explain the observed differences42,43.

Although many of our findings are shared with previous studies on T1D7,8, we found some differences. For 
example, we did not find any association of eGFR with sphingomyelin or total fatty acids that were markers of 
kidney injury and mortality in T1D. This may suggest differences between T1D and T2D metabolic profiles and 
the importance of analyze both conditions individually.

The present study has several strengths. First, we analyzed data from four independent cohorts, thus min-
imizing the risk of false positive findings. Second, we analyzed a wide range of metabolic traits beyond those 
commonly used in clinics. Also, we stratified for diabetes status, thus providing a direct comparison of meta-
bolic profiles associated with diabetic and non-diabetic renal damage. We also note some study limitations. The 
GenodiabMar cohort was recruited from medical consultations while the other cohorts represent individuals 
from the general population. Thus, the presence of other medical complications as well as different grades of 
renal dysfunction may be confounding factors. However, by meta-analyzing results across diabetic cohorts, we 
controlled for population-specific effects. Also, drug use may have an important impact on metabolic profiles, 
although statin use did not substantially change the results in this study (Supplementary Table 3). However, 
further analyses specifically addressing the effects of different drugs, such as antihypertensive, other medical 
conditions and the potential effect of renal replacement therapies, are needed.

In conclusion, we found widespread metabolic changes associated with decline of renal function. While 
associations of many lipoprotein particles and their lipid composition with renal function were largely similar 
between diabetic and non-diabetic cohorts, several exceptions revealed metabolic differences between the condi-
tions. Also, changes of amino acid and energy metabolism were markedly different regarding diabetes condition. 
Our results show alterations of lipoprotein composition in kidney disease that are currently underexploited in 
clinics. We also find marked metabolic differences between diabetic and non-diabetic kidney disease, suggesting 
that more specific markers for each condition might be able to outperform current markers of kidney disease.

Methods
Study Design and Participants.  Targeted NMR metabolic profiling was conducted in 926 diabetic and 
4838 non-diabetic individuals from the GenodiabMar (n = 655), TwinsUK (n = 1279, 111 with T2D)48, KORA 
(n = 1784, 160 with T2D)49, and Young Finns (n = 2046)50 cohorts. GenodiabMar is a cohort of T2D patients, 
recruited in a hospital, while the other cohorts were recruited from the general population. Renal function was 
measured as eGFR from standard creatinine using the Chronic Kidney Disease Epidemiology Collaboration 
equation (CKD-EPI)51. Longitudinal measures were available for a subset of 3644 individuals (Supplementary 
methods). Each local ethics committee approved the study, and subjects were included after providing informed 
consent. All methods were performed in accordance with the relevant guidelines and regulations.

A flowchart of the study design is depicted in Fig. 1.

Metabolic profiling.  Metabolic profiling of 227 metabolic traits, 143 metabolite concentrations, 80 lipid 
ratios, 3 lipoprotein particle sizes and a semi-quantitative measure of albumin (see Supplementary Table 1 for full 
list), was conducted for all cohorts by Nightingale Health Ltd. (Helsinki, Finland; previously known as Brainshake 
Ltd) using a targeted NMR spectroscopy platform that has been extensively applied for biomarker profiling in 
epidemiological studies as previously described18,52,53 (Supplementary methods).

Statistical analysis.  All metabolic measures were log-transformed. To account for zero values a 
pseudo-count of 1 was added to all measurements prior to transformation. All measurements were shifted to zero 
mean and scaled to standard deviation (SD) of 1 (z scores) to facilitate comparisons across cohorts. The average 
absolute concentrations and SDs of each metabolite in each cohort are presented in Supplementary Table 1.

Cross-sectional analysis.  We assessed the associations between metabolic profiles and renal function in each 
cohort individually by fitting linear regressions for all metabolic traits with eGFR as outcome, adjusting for 
age, gender, BMI (and family relatedness as random intercept) to account for the decline of renal function with 
advancing age as well as its dependency on obesity. All results were then meta-analyzed separately for T2D 
patients and non-diabetic cohorts using inverse variance fixed effect meta-analysis due to the expected homo-
geneity of effects in both subgroups. We adjusted for multiple testing using Bonferroni correction assuming 50 
independent test as suggested by Li and Ji54 (P < 0.001) (Supplementary methods).
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As metabolic profiles may be strongly affected by medication such as statin treatment55 or hormone replace-
ment therapy, we tested the robustness of our results by running a sub-analysis in a subset of individuals from 
TwinsUK and GenodiabMar with information on treatment available, additionally adjusting for medication 
status.

To further investigate traits of interest, we regressed the concentration of albumin in urine against each of the 
metabolic traits. Finally, we calculated logistic regression models to assess the association of each metabolic trait 
with diabetic nephropathy and retinopathy, respectively.

Longitudinal analysis.  For TwinsUK and YoungFinns we estimated the trajectories of metabolite/eGFR change 
by fitting linear mixed models for each metabolite with a per-individual random effect for the time since baseline. 
The estimate of this random effect provides a measure of the (linear) change of metabolite concentration over 
time similarly to calculating the change per year for two visits. These trajectories were estimated for all metabo-
lites individually and then compared to the change in eGFR in a separate regression model, thus assessing longi-
tudinal correlations between metabolites and renal function.

Also, we evaluated the potential of metabolite measures as diagnostic tool by predicting the eGFR at follow-up 
using metabolic measures at baseline, correcting for gender and baseline eGFR, age, and BMI.

Data Availability
Data from the TwinsUK cohort are available upon request on the department website (http://www.twinsuk.
ac.uk/data-access/accessmanagement/). Data from the KORA cohort can be requested online (https://epi.helm-
holtz-muenchen.de/) and is subject to approval by the KORA board.
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