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Summary
Background: Single‐centre studies reported alterations of faecal microbiota in pa‐
tients with primary sclerosing cholangitis (PSC). As regional factors may affect micro‐
bial communities, it is unclear if a microbial signature of PSC exists across different 
geographical regions.
Aim: To identify a robust microbial signature of PSC independent of geography and 
environmental influences.
Methods: We included 388 individuals (median age, 47 years; range, 15‐78) from 
Germany and Norway in the study, 137 patients with PSC (n = 75 with colitis), 118 
with ulcerative colitis (UC) and 133 healthy controls. Faecal microbiomes were ana‐
lysed by 16S rRNA gene sequencing (V1‐V2). Differences in relative abundances of 
single taxa were subjected to a meta‐analysis.
Results: In both cohorts, microbiota composition (beta‐diversity) differed between 
PSC patients and controls (P < 0.001). Random forests classification discriminated 
PSC patients from controls in both geographical cohorts with an average area under 
the curve of 0.88. Compared to healthy controls, many new cohort‐spanning altera‐
tions were identified in PSC, such as an increase of Proteobacteria and the bile‐tol‐
erant genus Parabacteroides, which were detected independent from geographical 
region. Associated colitis only had minor effects on microbiota composition, suggest‐
ing that PSC itself drives the faecal microbiota changes observed.
Conclusion: Compared to healthy controls, numerous microbiota alterations are re‐
producible in PSC patients across geographical regions, clearly pointing towards a 
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1  | INTRODUC TION

Primary sclerosing cholangitis (PSC) is a chronic progressive dis‐
ease of the biliary system.1 There is no medical treatment available 
and patients have an increased risk of both hepatobiliary and bowel 
malignancies.2,3 As a result, most patients decease or receive liver 
transplantation 15‐20 years after diagnosis.4 The pathogenesis is still 
unclear, although a dysregulated immune reaction at the epithelial 
barrier in the intestine and the biliary system may play a key role. Co‐
occurrence of inflammatory bowel disease (IBD), typically in form of a 
mild pancolitis, has been reported in up to 80% of patients with PSC, 
and at least 2%‐7.5% of IBD‐patients develop PSC.1,5‐7 It has been 
postulated that PSC‐associated colitis (PSC‐IBD) represents a distinct 
IBD entity alongside Crohn's disease and UC.8,9

Several genetic risk factors have been identified that are as‐
sociated with PSC, but collectively they only contribute to a small 
fraction of disease susceptibility.1 Given the minor role of genetic 
variation, environmental factors likely play a major role in the patho‐
genesis of PSC. Of these, the microbiome has emerged as one of the 
most important potential environmental players in chronic inflam‐
matory diseases. Gut microbiome alterations have been identified in 
several metabolic and inflammatory diseases,10‐12 and recent reports 
have demonstrated alterations in both the faecal and mucosal micro‐
biota in patients with PSC.13,14 The faecal microbiota of PSC patients 
has been characterised by a distinct profile compared to healthy 
controls and UC patients, including an overabundance of Veillonella 
in a Norwegian and a Czech cohort.13,15 However, a classification be‐
tween PSC and UC in a Norwegian cohort based on the abundance 
of Veillonella could not be validated in a German population.16 In a 
Belgian cohort, stool samples of PSC patients showed an increased 
abundance of the genera Fusobacterium, Enterococcus, Lactobacillus 
and Streptococcus compared to healthy individuals.17

In summary, it is unclear whether the microbial signature so far 
described in PSC single‐centre cohorts is centre‐specific or if a PSC‐
specific microbial signature across different geographical regions ex‐
ists. Cross‐regional analysis of faecal microbiota of patients with PSC 
might reveal general patterns of microbial perturbation, which could 
elucidate the role of the microbiome in PSC and PSC‐IBD and provide 
the basis for a better understanding of their possible pathogenetic 
significance in further mechanistic and clinical longitudinal studies.

2  | PATIENTS AND METHODS

Seventy‐four nontransplanted German patients with PSC (n = 37 
PSC only, n = 37 PSC‐IBD) were recruited at the University Medical 

Center Hamburg‐Eppendorf. In addition, a German UC study cohort 
(n = 88) and 95 German healthy individuals (controls) were recruited 
for comparison by the PopGen Biobank.18

Furthermore, 63 nontransplanted Norwegian patients with PSC 
(n = 25 PSC only, n = 38 PSC‐IBD), 30 UC patients without PSC and 
38 controls were recruited at the Norwegian PSC Research Center 
Biobank at Oslo University Hospital Rikshospitalet.13

PSC was diagnosed based on cholangiography and liver biopsy 
(if required) according to most recent guidelines.19,20 All individu‐
als underwent extensive screening for potential confounding (see 
Methods S1 for exclusion criteria). The characteristics of both study 
populations are summarised in Table 1.

The study was approved by the local ethics committees in Hamburg 
and Kiel (A148/14 and MC‐111/15) and the Regional Committee for 
Medical and Health Research Ethics in South‐Eastern Norway (refer‐
ence 2012/286b). All participants gave their written informed consent.

2.1 | Assessment of dietary patterns

Dietary data were collected for 220 individuals (Table 1) of the 
German study cohort using standardised and validated food fre‐
quency questionnaires of the German Institute of Human Nutrition. 
Translation into nutrients was performed via the German Food Code 
and Nutrient Database (vII.3).21

2.2 | Stool sample processing and sequencing

Samples were collected and subjected to DNA extraction as previously 
described for the respective cohorts.13,22 The amplification and library 
preparation of the V1‐V2 region of the 16S rRNA gene using dual‐
indexing was performed in a single facility (Methods S1). We chose 
V1‐V2 as target amplicon, as 2 300 bp sequencing covers the ampli‐
con of 300‐320 bp almost entirely twice, thus assuring high quality 
data readout. Sequencing data were subjected to quality control and 
data processing to obtain count‐based relative abundance tables for 
operational taxonomic units (OTUs) and taxonomic levels from phylum 
to genus (Methods S1).

2.3 | Data analysis

Data analyses were performed with R statistical programming lan‐
guage (v3.4.3).23

Differences in dietary patterns were evaluated using the log‐
transformed average intake of the primary macronutrients protein, 
fat and carbohydrates (g/day), as well as fibre, water (both g/day), 
and total energy intake (kJ/day). To assess dietary differences of 

microbiota composition that is shaped by the disease itself and not by environmen‐
tal factors. These reproducibly altered microbial populations might provide future 
 insights into the pathophysiology of PSC.
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TA B L E  1   Demographic and clinical characteristics of the German and Norwegian study populations

German Controls PSC only PSC‐IBD UC

Total number n = 95 n = 37 n = 37 n = 88

General information

Age, median years (min‐max) 47 (19‐64) 51 (18‐73)*  46.5 (15‐73) 45 (19‐78)

Gender (female) 51.6% (n = 49) 32.4% (n = 12) 43.2% (n = 16) 61.4% (n = 54)

BMI, median kg/m2 (min‐max) 22.8 (20.2‐24.9) 23.7 (17.9‐32)** 23.6 (15.8‐34.3)*  24.8 (17.0‐36.5)***

Smoking (yes) 16.8% (n = 16) 8.1% (n = 3) 0%** 3.4% (n = 3)***

Dietary data

Available 89.5% (n = 85) 83.8% (n = 31) 76.7% (n = 28) 86.4% (n = 76)

Daily intake, median (min‐max)

Energy (kJ) 9025 (4,313‐23,006) 9961 (5,150‐18,249) 10 153 (4,218‐19,630) 9304 (5040‐19 609)

Carbohydrates (g) 215.9 (93.8‐772.9) 239.6 (124.7‐511.0) 275.3 (91.8‐588.1) 242.8 (103.3‐483.9)

Fibre (g) 20.1 (9.9‐25.5) 21.3 (12.9‐34.1) 24.1 (10.6‐46.5) 21.7 (10.4‐40.7)

Fat (g) 98.0 (46.4‐223.2) 105.2 (49.3‐202.3) 108.2 (45.1‐191.0) 95.8 (43.6‐203.3)

Protein (g) 77.3 (32.4‐206.0) 90.7 (45.0‐182.5) 84.4 (39.7‐136.1) 78.8 (41.4‐156.7)

Water (L) 3.15 (1.05‐7.73) 2.67 (1.47‐7.15)*  2.83 (1.43‐4.41) 2.79 (1.09‐7.32)

Faecal Calprotectin (fCAL)

Median (µg/g) (Q1‐Q3) 27.3 (15.6‐40.9) 20 (10‐52.4) 29.4 (10‐110) 43.3 (18.3‐190.8)

fCAL low (<50 µg/g), % 80% (n = 42) 73.0% (n = 27) 56.8 (n = 21) 52.3% (n = 46)

fCAL elevated (50‐200 µg/g), % 19.2% (n = 10) 13.5% (n = 5) 27.0% (n = 10) 22.7% (n = 20)

fCAL high (>200 µg/g) % 0 13.5 (n = 5) 16.2 (n = 6) 25 (n = 22)

NA n = 43 — —

PSC additional information

Years since PSC diagnosis, median 
(min‐max)

— 6.5 (0‐35) 9.0 (1‐28) —

Cirrhosis (yes) — 5.4% (n = 2) 5.4% (n = 2) —

ALT, median U/L (min‐max) — 37 (11‐165, NA = 10) 38.5 (13‐286, NA = 15) —

AP, median U/L (min‐max) — 116 (61‐590, NA = 10) 125 (44‐332, NA = 15) —

Bilirubin, median U/L (min‐max) — 10.3 (5.1‐35.9, NA = 11) 11.97 (3.4‐34.2, NA = 16) —

Medication (%)

UDCA — 97.3 (n = 36) 94.6 (n = 35) —

5‐ASA — 2.7 (n = 1) 83.8 (n = 31) 79.5 (n = 80)

Azathioprine — 5.4 (n = 2) 13.5 (n = 5) 30.7 (n = 27)

Budesonide — — 5.4 (n = 2) 31.8 (n = 28)

Biologics (Adalimumab, Infliximab) — — 5.4 (n = 2) 15.9 (n = 14)

PPI — — — —

Statins — — — —

Norwegian Controls PSC only PSC‐IBD UC

Total number n = 38 n = 25 n = 38 n = 30

General information

Age, median years (min‐max) 47 (35‐61) 46 (31‐66) 48 (21‐69) 42.5 (25‐69)

Gender (female) (%) 36.8 (n = 14) 36 (n = 9) 31.6 (n = 12) 53.3 (n = 16)

BMI, median kg/m2 (min‐max) 26 (19.4‐39.4) 26.0 (17.8‐32.2) 24.0 (17.7‐34.7) 24.5 (21.4‐34.3)

Smoking (yes) (%) 15.8 (n = 6) 0 2.6 (n = 1) 0* 

PSC additional information

Years since PSC diagnosis, median 
(min‐max)

— 7.8 (2.1‐31.7) 9.6 (1.4‐28.8) —

(Continues)
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diseased individuals from healthy controls, permutational analysis 
of variance (PERMANOVA) was performed on Euclidean distances 
using residuals of dietary data after regression against sex, as sex 
is a known major predictor of dietary behaviour.

Shannon index, as a measure of within‐sample diversity (alpha‐
diversity), and PERMANOVA on Bray‐Curtis dissimilarity, as a 
measure for beta‐diversity, were applied to investigate differences 
according to disease state and other co‐variables (Methods S1).

All abundances are based on a normalised number of counts, thus 
being relative abundances, this is always the case when the term 
‘abundance’ is used throughout the text. To assess differential taxa 
abundances, we tested microbes that were identified as differentially 
abundant in previous studies in a first step (Methods S1), followed by a 
second step where we aimed to discover new associations. Details on 
the applied regression models and meta‐analysis are provided in the 
Methods S1. Taxa with significant signals in both respective geograph‐
ical cohorts and the meta‐analysis were re‐analysed with inclusion of 
dietary co‐variables in the German cohort, for which food frequency 
questionnaire data was available, to correct for dietary effects.

Predictive performance of the identified taxonomic signature 
was evaluated using random forests classification24 (Methods S1). 
To evaluate model performance, receiver operating characteristic 
analysis was used. Additionally, F1 score and Matthews Correlation 
Coefficient (MCC) as weighted measures of true and false positives 
rates were calculated (Methods S1).

3  | RESULTS

In total, we applied 16S rRNA gene sequencing to 257 German (n = 95 
controls, n = 37 PSC only, n = 37 PSC‐IBD and n = 88 UC) and 131 
Norwegian samples (n = 38 controls, n = 25 PSC only, n = 38 PSC‐IBD 

and n = 30 UC). We applied the same amplification and library preparation 
standard operating procedure within a single facility to all samples. For 
220 of the 257 (85.6%) German study participants dietary data, assessed 
by standardised food frequency questionnaires, was available (Table 1).

3.1 | Healthy Norwegian and German subjects share 
similar core microbiota

To determine the baseline similarities and differences between the 
faecal microbiota of German and Norwegian healthy volunteers, 
we compared the healthy controls of both cohorts. We found large 
proportions of the core microbiota (122 of 144 taxa, 84.7%) shared 
by healthy controls from both populations (Figures S1‐S3). The 
healthy Norwegian cohort displayed a significantly lower intra‐in‐
dividual (alpha) diversity compared to the healthy German popula‐
tion (P = 0.006). We observed slight but significant differences in 
between‐sample diversity (beta‐diversity) between German and 
Norwegian controls (P = 0.01; R2 = 0.021).

3.2 | The faecal microbiota of patients with PSC is 
significantly different from both healthy controls and 
patients with UC

In both cohorts, between‐sample diversity (beta‐diversity) was 
significantly different between patients with PSC and controls 
(P < 0.001, respectively; R2

GER = 0.028; R2
NOR = 0.042). Differences 

in beta‐diversity between patients with PSC and UC were also 
significant but less pronounced in both cohorts (PNOR = 0.016, 
R2

NOR = 0.027; PGER = 0.013, R2
GER = 0.015).

In the Norwegian cohort, mean within‐sample diversity (alpha‐
diversity) of patients with PSC was reduced compared to controls 
(P = 0.001) and comparable to patients with UC (P > 0.05). In the 

German Controls PSC only PSC‐IBD UC

Signs of impaired liver function 
(yes) (%)

— 4 (n = 1) 2.6 (n = 1) —

ALT, median U/L (min‐max) — 65.5 (16‐258), NA = 3) 54 (14‐331), NA = 2) —

AP, median U/L (min‐max) — 192 (50‐548, NA = 4) 130 (30‐589, NA = 2) —

Bilirubin, median U/L (min‐max) — 13.5 (6‐114, NA = 3) 13 (6‐44 NA = 3) —

Medication (%)

UDCA — 36 (n = 9) 26.3 (n = 10) —

5‐ASA — 4 (n = 1) 57.9 (n = 22) 76.7 (n = 23)

Azathioprine — 4 (n = 1) 15.8 (n = 6) 23.3 (n = 7)

Budesonide — 4 (n = 1) 2.6 (n = 1) 6.7 (n = 2)

Biologics (Adalimumab, Infliximab) — — 2.6 (n = 1) 40 (n = 12)

PPI — – 2.6 (n = 1) 6.7 (n = 2)

Statins — 16 (n = 4) 5.2 (n = 2) —

Only medication taken by at least two patients is listed.
ALT, alanine aminotransferase; AP, alkaline phosphatase; ASA5, 5‐aminosalicylic acid; BMI, body mass index; PPI, proton pump inhibitors; PSC, pri‐
mary sclerosing cholangitis; Q1, first quartile; Q3, third quartile; UC, ulcerative colitis; NA, not available.
*P < 0.05; **P < 0.01; ***P < 0.001. 

TA B L E  1   (Continued)
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German cohort however, alpha‐diversity of patients with PSC was 
comparable to controls (P > 0.05) and significantly increased in con‐
trast with patients with UC (P = 0.01) (Figure 1).

3.3 | Targeted analysis of taxa with previously 
reported association with PSC

A total of nine genera that were previously identified as differen‐
tially abundant13,17 were analysed in a targeted approach aiming to 
reproduce the taxonomic signals. A detailed summary is provided in 
the Tables S1 and S2.

In both cohorts, an increased relative abundance in patients 
with PSC was displayed by Veillonella and Streptococcus (both 
PMETA < 0.0001). In addition, an increased prevalence in patients 
with PSC was confirmed for Lactobacillus and Enterococcus (both 
PMETA < 0.0001, respectively). Other taxa either showed inconsis‐
tent distribution patterns between cohorts or could not be recov‐
ered (with sufficient prevalence) in our samples.

3.4 | Extensive microbiota alterations in patients 
with PSC

In the next step, we aimed to discover new robust taxonomic dis‐
tribution patterns between patients with PSC and controls across 
all taxonomic hierarchy levels. A detailed summary is provided in 
Figures 2 and 3 as well as Tables S3 and S4.

A total of 20 taxa in the German and 18 taxa in the Norwegian cohort 
showed altered (continuous) abundance in patients with PSC. However, 
only seven of these met the meta‐analysis criteria (see Section 2).

Robust and cohort‐spanning increased relative abun‐
dances in patients with PSC were displayed by the phylum 

Proteobacteria, represented by the class Gammaproteobacteria, 
order Lactobacillales and the class Bacilli (all QMETA < 0.0001, re‐
spectively). An OTU belonging to the genus Coprococcus was the 
only taxon with cohort‐consistent decreased abundance in PSC 
(QMETA = 0.017). For the differentially abundant taxa, an additional 
analysis was performed in the German cohort, to assess whether 
these signals are truly driven by disease or may be influenced by di‐
etary differences. Only for the class Bacilli and order Lactobacillales 
a significant influence of protein intake could be observed (both 
P = 0.03), this however, did not influence the strongly significant 
signals of disease association (P = 1.1 × 10─7 and P = 8.9 × 10─8, 
respectively).

Regarding microbial (binary) prevalence patterns, we observed 
an extensive depletion in patients with PSC compared to controls 
affecting 32 taxa. Among these were the genera Holdemanella and 
Desulfovibrio as well as OTUs classified as Faecalibacterium and 
Clostridium IV (both QMETA < 0.0001).

3.5 | Microbiota alterations in PSC are independent 
from associated colitis, medication or grade of colonic 
inflammation

For the analysis of effects of medication and calprotectin the same 
aforementioned statistical models were applied with inclusion of the 
respective data as additional independent variables. No differences in 
levels of faecal calprotectin could be found between PSC patients with 
and without IBD. Additionally, neither medical treatment with UDCA, 5‐
ASA or Azathioprine, nor faecal calprotectin levels exhibited any effect 
on or correlation with the microbiota in PSC (Supporting information).

PSC‐IBD has a genetic basis and clinical phenotype different 
from classical UC.9 Therefore, PSC could drive the phenotype of 

F I G U R E  1   Violin plots of Shannon‐
Index and the unconstrained ordination 
plots of the Bray‐Curtis dissimilarities for 
the German (GER) and the Norwegian 
(NOR) cohort. Ordination was performed 
on genus‐level abundances subsequently 
plotted for each cohort separately. 
Centroids of ellipses are marked by 
crosses in the respective colours. 
*P < 0.05; **P < 0.01
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intestinal inflammation, as well as intestinal microbiota composition. 
Therefore, we investigated if the microbiota signature in PSC‐IBD is 
closer to PSC only or closer to UC.

Neither in the German nor in the Norwegian cohort there was 
any significant difference in beta‐diversity between patients with 
PSC only and PSC‐IBD (P > 0.05, respectively). Since functionally 
important taxa may be differentially abundant even in the absence 
of significant overall beta‐diversity, we explored potential cohort‐
spanning taxonomic differences between patients with PSC only 
and PSC‐IBD (Tables S5, S6 and S8).

Abundance‐based models comparing PSC only to PSC‐IBD showed 
no cohort‐spanning signals. Additionally, there were significant differ‐
ences between PSC and UC in abundance and diversity, strongly indi‐
cating that PSC drives the microbiota associations observed in patients 
both with PSC only as well as in those with PSC‐IBD. The only robust 

taxonomic differences detected between PSC only and PSC‐IBD were 
decreased prevalences of Bilophila (QMETA = 0.017) and an OTU assigned 
to Bacteroides (OTU_28; QMETA < 0.0001) in patients with PSC‐IBD.

3.6 | PSC and UC are both characterised by 
altered microbiota, but cannot be differentiated by 
single taxa

We investigated if the observed difference of beta‐diversity between 
patients with PSC and UC can be traced to robust differential distribu‐
tion of individual taxa (Tables S9 and S10). In both cohorts, the phylum 
Firmicutes was significantly increased in patients with PSC compared 
to patients with UC (QMETA = 0.011). We found no cohort‐spanning 
differences of lower hierarchy level taxa except for one OTU assigned 
to the genus Ruminococcus (OTU_59; QMETA < 0.01; Figure 3).

F I G U R E  2   Significant and between‐
cohort consistent results of differentially 
abundant taxa in PSC patients and 
controls. Only taxa with P < 0.05 in each 
cohort, QMETA < 0.05 and concordant 
directionality are shown. Taxa from 
Kummen et al or Sabino et al that could be 
replicated in both cohorts are marked with 
a pound (#) symbol. Base‐colours depict 
the respective cohort (blue: Germany; 
red: Norwegian) and the combined meta‐
analysis result (yellow). Beta‐values larger 
than zero represent a higher abundance 
in PSC patients, taxa with beta‐values 
less than zero are less abundant in PSC 
patients. Details on the model coefficients 
and the resulting P‐values in the cohorts 
and the meta‐analysis can be found in S1‐
S3. *P < 0.05; **P < 0.01; ***P < 0.001
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3.7 | The faecal microbiota profile can predict the 
diagnosis of PSC across different geographical regions

In order to investigate, whether faecal microbiota can be used to pre‐
dict the presence of disease, we applied random forests classifica‐
tion to the pooled cohort of controls and patients with PSC (n = 270 
subjects) using default hyperparameters. As baseline model variables 
all taxa with robust differential distribution were included (n = 43 fea‐
tures). Implementing 0.632 bootstrap resampling, a high performance 
with an average AUC of 0.88 was achieved (F1 = 0.83, MCC = 0.66; 
Figure 4A, taxon importance for the classifier evaluated by Gini index 
is displayed in Figure 4D). Training of the classifier on the German co‐
hort and validation on the Norwegian subjects resulted in an AUC of 
0.86 (F1 = 0.62, MCC = 0.32; Figure 4B). Classifier training with the 
Norwegian cohort and testing on the German population resulted in an 
AUC of 0.87 (F1 = 0.61, MCC = 0.51; Figure 4C). Further in‐depth ex‐
ploration of the classification is provided in the Supporting information.

3.8 | Diet has minor impact on microbial community 
alterations in PSC

Univariate comparisons of disease groups to healthy individuals showed 
only a minor reduction in daily water intake in PSC patients (Padj = 0.049). 
Comparing multivariate differences in major dietary patterns in 220 
samples of the German cohort, no significant differences were seen 

according to age (P > 0.05, R2 = 0.002), BMI (P > 0.05, R2 = 0.008) and 
diagnosis (P > 0.05, R2 = 0.013). Gender, however, showed a strong im‐
pact (P < 0.001, R2 = 0.2), as expected. Using the mentioned macronu‐
trients and questionnaire derived intake variables as covariates in the 
analysis of disease‐associated shifts in microbial beta‐diversity yielded 
no significant associations (P > 0.05, respectively) and also revealed only 
minor effects on the still highly significant change in community compo‐
sition associated with PSC (P = 0.003, R2 = 0.019).

4  | DISCUSSION

It is unclear, to which extent reported single centre microbiota studies 
in PSC were influenced by environmental factors and whether reported 
associations would remain significant across different geographical re‐
gions. In this study, we analysed the faecal microbiota of patients with 
PSC including patients from a German and a Norwegian cohort based on 
16S rRNA gene‐amplicon sequencing profiles. To the best of our knowl‐
edge, this is the largest microbiota study focusing on PSC so far. The 
previously analysed cohorts13,16 were reprocessed using a unified se‐
quencing‐library preparation and data analysis workflow to reduce tech‐
nical and statistical disparities. Controlling for cohort‐specific effects and 
potentially false positive results, the joint analysis of these two cohorts 
facilitated the identification of extensive disease‐associated changes in 
the faecal microbiota structure in PSC independent from geographical 

F I G U R E  3   Robust results of the logistic regression within cohorts and the meta‐analysis testing for differential prevalence of taxonomic 
groups in PSC patients and healthy controls. Only taxa with P < 0.05 in each cohort, QMETA < 0.05 and concordant effect direction are 
shown. Colour saturation expresses the effect size (Beta) of the association. Beta‐values larger than zero (red boxes) represent a higher 
prevalence in PSC patients, taxa with values less than zero (blue) are less prevalent in PSC patients. Details on the model coefficients and 
the resulting P‐values in the cohorts and the meta‐analysis can be found in Table S4. p: phylum, c: class, o: order, f: family, g: genus
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region. We identified several microbial signals previously not described 
in association with PSC, including an increased abundance of the phy‐
lum Proteobacteria, likely driven by the class Gammaproteobacteria, 
increased abundance of the genus Parabacteroides, and increase of one 
OTU belonging to the genus Bacteroides. Gammaproteobacteria com‐
prise gram‐negative bacteria with lipopolysaccharide (LPS) containing 
membranes, such as Enterobacteriaceae.25 Multiple lines of evidence 
point to LPS as a common co‐factor of liver injury.26 Individual variation 
in Gammaproteobacteria has been directly linked with susceptibility to 
fatty liver disease.27 The increase in Parabacteroides is intriguing, as it has 
been demonstrated that this bile‐tolerant taxon is linked to changes in 
cholesterol and bile acid metabolism.28,29

For eight taxa across different taxonomic levels we demonstrated a 
consistently increased abundance in patients with PSC. These findings 
confirm previously found associations, eg for the genera Veillonella13,16 
and Streptococcus.17 Increased abundance of both were previously found 
in patients with primary biliary cholangitis (PBC) and patients with liver 
cirrhosis of different origins.12,30 This indicates that these alterations 
might be rather unspecific features of chronic liver disease. Additionally, 
we confirmed a markedly reduced abundance of one OTU belonging to 
the genus Coprococcus in patients with PSC. This taxon has previously 
been found to be decreased in patients with UC,31 which is consistent 
with our own findings (Supporting information). This supports the notion 
of Coprococcus as an indicator of general gut integrity. Other previously 
described associations of bacterial taxa with PSC could not be confirmed, 
such as the recently described association with the genus Klebsiella.32

We could demonstrate an extensive alteration of the microbial com‐
munity structure in patients with PSC, identifying 36 taxa with differen‐
tial prevalence patterns associated with the disease, of which 32 were 
less present in PSC patients and including the genera Faecalibacterium 
and Clostridium IV. Both genera comprise butyrate‐producing species, 
which provide an important energy source for intestinal epithelia and dis‐
play an array of beneficial immunological properties.33 Faecalibacterium 
was attributed with beneficial immunoregulatory properties and pro‐
posed as a pharmacobiotic agent to treat inflammatory diseases.34 This 
finding further underlines its potential importance for the understand‐
ing of the pathophysiology and development of novel therapeutic ap‐
proaches in inflammatory intestinal and liver diseases, where depletion 
of Faecalibacterium is a frequently observed common trait.11,30

The results of the machine learning classification highlight that 
faecal microbiota can be used to detect PSC in geographically sep‐
arate cohorts. This might underline the potential pathophysiolog‐
ical significance of the faecal microbiota and a potential clinical 
value as a future biomarker. While the generalisability of the model 
is limited by the fact that the prevalence of PSC in the general 
population is significantly different from the prevalence in our co‐
hort, the significant PSC‐specific overlap of the faecal microbiota 
is promising. The results of the classifier additionally complement 
the results of the GLM‐based analysis, identifying a subset of the 
same taxa that were found to be significantly changed in relative 
abundance to also be most important (scaled Gini Index > 50) for 
the pooled classifier.

F I G U R E  4   Receiver operating 
characteristic curve of random forest 
classification PSC vs controls across 
cohorts. Displayed are (A) the 0.632 
bootstrap results from the pooled German 
and Norwegian cohort, (B) the classifier 
trained on the German cohort and 
validated on the Norwegian cohort and (C) 
vice versa. Features included in the model 
were the taxa with robust differential 
distribution between PSC and controls. 
(D) Feature importance of the respective 
taxa in the pooled classifier was ranked by 
Gini index
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In previous studies of the mucosal microbiota in UC patients with 
and without PSC, city of origin was the main determinant of gut micro‐
biota profile despite identical handling of all samples and no consistent 
differences between UC and PSC with colitis were observed.35 This is in 
line with the present findings, as significant differences were detected 
between PSC and UC in each cohort separately, however, only few of 
them were consistently observed across both cohorts. We can there‐
fore not answer conclusively if microbiota profiling is also sufficient to 
distinguish PSC from UC in a geographically independent manner.

Our results strongly suggest that the increase of abundance or 
prevalence in PSC in contrast with controls is specific for certain taxa. 
Therefore, their potential role in the pathogenesis of PSC should be 
investigated. In addition, the extensive loss of many taxonomic groups 
is relatively unspecific and may potentially be explained by general ef‐
fects of chronic inflammation rather than by disease‐specific etiology.

Only marginal differences were identified in our study between 
patients with PSC only and PSC‐IBD. This suggests that the liver 
disease and not the colitis is the primary driving force behind the 
observed gut microbial dysbiosis and that, as the differences in in‐
flammation‐localisation in the colon already suggest, PSC‐IBD dis‐
plays significant pathophysiological differences to UC.

Our study has several strengths and shortcomings. Notably, even 
though the German and Norwegian samples were processed with kits 
from different manufacturers, we could show extensive overlap in bio‐
logical signals. Analysis of dietary patterns, that were available for the 
German cohort, showed no general differences between individuals 
based on disease status. Only minor influences on beta diversity were 
observed, which did not affect the clear disease‐associated shift in 
microbial communities. Previous studies investigating the influence of 
dietary patterns on the microbiota could show, that indeed diet can in‐
fluence microbiome compostion.36,37 However, these were performed 
on larger study populations (n > 1000) and still only found small indi‐
vidual effects, thus to really investigate diet‐disease interactions, larger, 
well‐typed PSC cohorts are needed, which are currently not available.

Although facilitating large‐scale analysis, amplicon‐based marker 
gene surveys always come with trade‐offs regarding fragment‐spe‐
cific biases in amplification and taxonomic assignment quality, which 
may in part explain differences between studies. Ultimately, the in‐
testine must be regarded as an open, highly dynamic and spatially 
heterogeneous system, and faecal samples can only serve as a proxy 
for the actual state. Nevertheless, we here present the largest micro‐
biota study performed in PSC to date and show robust and geogra‐
phy‐spanning alterations in the faecal microbiota, in spite of sampling 
and technical differences between the centres. This strongly sup‐
ports the conclusion that the observed microbiota changes are dis‐
ease specific, and not primarily driven by environmental factors.

In summary, patients with PSC from different geographical regions 
display shared differences in gut microbial composition compared to 
healthy controls, independent from the presence of concurrent IBD and 
the use of common medication. The PSC specific gut microbiota signa‐
ture might have diagnostic potential and provides a strong rationale 
for further microbiome meta‐analyses with even larger international 
cohorts. These should also utilise metagenomic sequencing, profiling of 

microbial metabolites as well as longitudinal designs to further define 
the role of the gut microbiota in the pathogenesis and clinical care in 
PSC. Furthermore, additional patients with chronic or cholestatic liver 
disease should be included for validation of disease specific effects. 
This study focused on broad, disease‐specific signals, as these are likely 
to be directly connected to the largely unknown etiology of PSC, inde‐
pendent of environmental influences. Ultimately, this may lay the foun‐
dation for new therapies targeting the gut microbiota in PSC.
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