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Abstract: Recently, value-added nanomaterials including nanoparticles or nanofluids have been
significantly used in designing drilling fluids with tunable rheological properties to meet specific
downhole and environmental requirements. In this work, we report novel water-based drilling fluids
(WBDF) containing eco-friendly Fe3O4 nanoparticles (Fe3O4-NPs) prepared by using olive leaves
extract (OLE) as a reducing and capping agent. A series of economical and excellent performance of
WBDF was obtained by introducing low, medium, and high concentrations of Fe3O4-NPs into the
conventional WBDF. The synthesis of Fe3O4-NPs was accomplished through the thermal decomposi-
tion of iron precursors in an organic medium. NPs were added to the based fluid at concentrations of
0.01, 0.1, and 0.5 wt%. Emission scanning microscopy (FESEM), field- and Fourier transform infrared
spectroscopy (FTIR), X-ray diffraction (XRD), and Energy-dispersive X-ray analysis (EDX) were used
for Fe3O4-NPs analysis. Compared to the conventional WBDF, the addition of Fe3O4-NPs as an
additive in the based fluids has been investigated to help increasing viscosity and yield point, which
is advantageous for hole cleaning, as well as decreasing fluid loss and mud cake thickness.

Keywords: olive leaves; Fe3O4 nanoparticles; characterization; WBDF; filtrate loss

1. Introduction

Over the years, hydrocarbons have been traditionally the main source of substance to
play a crucial role in the fulfillment of various industrial requirements [1]. With the projected
increase in human population to 9.8 billion by 2030, an increase in the availability of goods and
services is expected to be accomplished by increasing global gas and oil production [2]. Nan-
otechnology has been successfully used widely in many applications such as nanomedicine,
nanoelectronics, and energy-related fields [3]. In addition, the usage of nanotechnology is up-
surging in the oil and gas industry. Consequently, the industry has been able to successfully
capitalise on improved drilling operations [4], enhanced oil recovery (EOR) [5], lubricity [6],
corrosion inhibition, cementing, and reduction of heavy oil viscosity [7].

The stability, strength, and high thermal conductivity of nanomaterials is essential
for the improvement of oil and gas downhole separations [8]. In this regard, nanotech-
nology contributes to the development and maintenance of drilling process equipment,
allowing improved water and corrosion resistance, better reliability, stable rheological
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properties, and filtrate loss issues of wellbore instability [9,10]. The drilling industry has
been revolutionized by the modifications of additives in drilling fluids to meet specific
downhole and environmental requirements, as well as tunable rheological properties.
Drilling fluids or drilling muds are classified into WBDF, oil-based drilling fluids (OBDF),
and synthetic-based drilling fluids (SBDF) [11]. During the drilling process, mud circula-
tion is one of the most critical systems of rotary drilling that is formulated to perform a
wide range of functions, such as monitoring subsurface pressures, cleaning the wellbore,
stabilizing exposed rock, providing buoyancy, cooling, and lubrication [12]. Such fluids
must be constructed in a way that these can work effectively under intense downhole
conditions with less formation damage. WBDF is the most common type of mud used in
drilling operations globally. According to the literature, 80% of the world’s drilling wells
have used WBDF [13]. Compared to OBDF and SBDF, WBDF are less expensive. Despite
having higher operational efficiencies than WBDF, it has been observed that the use of
OBDF and SBDF in drilling operations has decreased significantly due to environmental
concerns [14]. On the other hand, WBDF have some drawbacks, including pipe sticking,
poor lubricity, increased drag and torque, borehole erosion, gel formation, consolidation
formation, wellbore instability, lost circulation, and shale swelling [15,16]. Hence, an im-
proved formulation of WBDF is an alternative with efficient clay inhibition and enhanced
rheological properties [17].

The selection of a suitable type of circulation fluid for drilling a well at a lower cost
with minimal environmental risk and formation damage is among the most important
criteria of the drilling process [18]. Drilling fluid is essentially a clay-water or oil mixture.
Chemicals such as acids, polymers, and fibres are commonly added to drilling fluids
to manipulate their functions and properties [19]. In general, the literature highlights
the primary targets of these chemical additives, which are enhancing wellbore stability,
improving wellbore cleaning, reducing fluid loss, and enhancing the rheological properties
of the drilling fluids [11,19,20]. However, their application is limited due to environmental
damage and high cost. Therefore, it is important to develop a new form of alternative
chemicals and mud additives with low cost, high quality, are eco-friendly, and are readily
biodegradable to avoid any short- or long-term environmental effects. Researchers have
investigated the impact of nanofluid drilling on nearly all of the common and specific
issues that based fluids are likely to encounter in the wellbore [20,21].

Numerous studies have claimed the addition of nanoparticles which improved drilling
fluids by providing optimal rheological and filtration properties, increased shale stability,
and enhanced wellbore strengthening as alternatives to costly chemicals [13,17,22]. The
petroleum industry has been looking for polymers or natural products that are multifunc-
tional, biodegradable, thermally stable, and environmentally friendly in order to build
smart drilling fluids for petroleum exploration and extraction [23]. Due to their eco-friendly
effects, plant extracts are preferred for nanoparticle synthesis. The preparation of NPs
from various green materials has been used to achieve specific goals and is documented in
the literature [24]. Thus, environmentally friendly and high-performance drilling fluids
production is the focus of this research.

Metal oxide nanoparticles have been a strong candidate to be used as an additive
in drilling fluids, due to their high surface area to volume ratio and remarkable heat
transfer, plugging, and coating properties [25]. Researchers have investigated the trans-
port, attachment, and retention of SiO2 NPs in core plugs at different base fluid salinity
(0–3 wt% NaCl). The hydrophilic SiO2 NPs were injected into the limestone core as nanofluid
of various sizes (5 nm and 20 nm) and concentrations (0.005–0.1 wt%) at various tempera-
tures (23 and 50 ◦C) [26]. It was found that SiO2 NPs dispersed in brine solution of (NaCl) to
be gradually retained in the limestone core as the ionic strength of the solution increased.
Further research has been conducted to investigate the effects of CuO and ZnO with sizes
lower than 50 nm as an additive in WBDF with xanthan gum aqueous solution as the base
fluid [27]. When compared to WBDF, nanoparticle-based drilling fluids have improved
electrical and thermal properties by approximately 35%, while other studies highlighted
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the enhancement of rheological and filtration properties, as well as thermal conductivity of
bentonite-based drilling fluids using copper oxide/polyacrylamide nanocomposite which
used standard methods for both salty and deionized water [28]. The idea of using Ferro Fluid
called “smart-nano fluid,” that contains surfactants as enhanced flooding in EOR processes
resulted with their findings particularly on Ferro Fluid’s rheological properties [29]. Follow-
ing that, the effect of CM Fe3O4-NPs on the properties of aqueous bentonite suspension at
HP/HT conditions was reported [30]. Researchers found that the addition of CM Fe3O4 NPs
increased the ability to control filtration loss with a thin and impermeable mud filter cake.
Various types of NP flooding have been investigated, and the results show that Fe2O3 NPs
have a higher recovery factor in distilled water than in oil [31].

Owing to that, research studies have discussed the effect of iron oxide NPs on the
rheological and filtration properties of WBDF. However, none of the above-mentioned
studies tried to perform a comparative evaluation when adding Fe3O4-NPs prepared using
plant extracts.

It is noteworthy that olive leaves contain a variety of potentially bioactive chemicals,
including hydroxytyrosol and oleuropein fragments, which may have antioxidant prop-
erties [22,31]. Based on earlier studies, it is not clear how the concentration of Fe3O4-NPs
additives could affect the overall performance of the rheological and filtration properties.
This study describes the green synthesis of Fe3O4 nanoparticles using OLE, which contains
a variety of polyphenols that can act as reducing and capping agents. Therefore, this work
attempts to fulfill this research gap by proposing environmentally friendly olive-leaves-
derived Fe3O4-NPs and studying the effect of drilling fluids, water bentonite suspensions,
in terms of rheological and fluid loss properties when incorporating Fe3O4-NPs prepared
at three different levels (0.01, 0.1, and 0.5 wt%). Firstly, Fe3O4 nanoparticles were pre-
pared by a facile and eco-friendly method using olive leaves extraction (OLE). Secondly,
X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and Fourier
transform infrared spectroscopy (FTIR) were used for the characterization of synthesized
NPs, and finally, Fe3O4-NPs were tested for their ability to provide rheological control by
exploring their rheological properties.

2. Experimental Section
2.1. Materials and Methods

Iron (III) nitrate hydrate (Fe(NO3)3.9H2O, 99% from Spectrum). Ethanol (99.8%) from
ChemPur. Olive leaves are collected from the high Aures mountains- Batna province, Algeria.

Green drilling fluid components were used: NaOH (purity ≥ 99 wt%), KCl (purity
≥ 99 wt%), and Carboxymethylcellulose (purity ≥ 99 wt%), were acquired from Sigma-
Aldrich, St. Louis, MO, USA. Bentonite and barite (purity 91–93 wt%) were provided
by Merck, Germany. Distilled water was used to prepare all aqueous solutions with no
further purification.

2.1.1. Olive Leaves Extract Preparation

Olive leaves were collected in the autumn season, washed with distilled water to
remove impurities, cut into small pieces, and dried for 7 days. An amount of 10 g of the
leaves were boiled in 100 mL of distilled water until the color of the aqueous solution
turned to a green color. After that, the extract was cooled in air, filtered, and stored in a
tight container at 4 ◦C for further utilization. The phenols present in olive leaves are mainly
Hydroxytyrosol, Tyrosol, Catechin, Caffeic Acid, Vanillic Acid, Vanillin, Rutin, Luteolin-7-
glucoside, Verbascoside, Apigenin-7-glucoside, Diosmetin-7-glucoside, Oleuropein, and
Luteolein, as presented in Figure 1.
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2.1.2. Synthesis of Fe3O4-NPs

OLE was added to a solution of 0.6M Fe(NO3)3 in a (1:1) volume ratio to obtain a
black colloidal solution for Fe3O4-NPs formation using OLE. At temperature of 50 ◦C, the
mixture was then reflexed for 2 h. After 1 h of calcination at 550 ◦C in a tube furnace with
pure argon gas, the magnetic black powder was obtained as presented in Figure 2.
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2.1.3. WBDF Preparation Using Different Concentrations of Fe3O4-NPs

Based fluid was prepared in accordance with API recommended practice 13B-2 standards.
Table 1 shows the formulation used for the preparation of based fluid. Firstly, a

bentonite slurry was made by mixing 25 g of bentonite powder with water for 20 min
in a Hamilton Beach mixer. The slurry was then kept for 24 h to allow the bentonite to
completely hydrate [32].
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Table 1. Preparation of based fluid.

Components Amount (Concentration)

Distilled water (mL) 259.65
Pre-hydrated bentonite slurry (g) 25.0

NaOH (g) 0.15
CMC (g) 1.60
KCl (g) 25.0

Barite (g) 65.41
Fe3O4-NPs (g) 0.01, 0.1, 0.5

NaOH: Sodium hydroxide. CMC: Carboxymethylcellulose. KCL: Potassium chloride.

The pre-hydrated bentonite slurry was added gradually into water under mechan-
ical stirring for 15 min. Furthermore, sodium hydroxide (NaOH) as a PH adjuster [33],
Carboxymethylcellulose (CMC) as a viscofier for fluid loss control, potassium chloride
(KCl), and barite as a weighing agent to help in holding the cuttings [34] were added into
bentonite-based mud and kept stirred to homogenize the mixture.

Fe3O4-NPs concentrations of 0.01, 0.1, and 0.5 g were dispersed in the prepared
aqueous solution and vigorously mixed for 15 min with the help of a mechanical stirrer to
achieve uniform particle distribution for the production of nano-fluids (Table 1). Figure 3
represents the reaction mechanism for the synthesis of Fe3O4 from the interaction between
iron nitrate hydrate and OLE.
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2.2. Characterization
2.2.1. Fe3O4-NPs Analysis

X-ray diffraction was carried out to investigate the crystallinity, phase composition,
and purity as well as the average size of the Fe3O4-NPs, synthesized using a PANalytical
X’Pert PRO X-ray diffractometer (XRD), (λ = 1.54 Å Cu Kα at 40 kV and 20 mA) in the 2θ
range from 10◦ to 90◦. A uniform layer of Fe3O4 powder was added to the holder to ensure
that the surface was flat and smooth. The sample was analyzed for around 15 min. In a
high vacuum mode, the morphology and particle dispersion were observed using a field-
emission scanning electron microscope (FESEM) (AURIGA, made by ZEISS, UK) equipped
with an energy-dispersive X-ray spectroscope (EDX). The investigation of the potential
bonding between Fe3O4NPs and OLE was conducted by using FTIR spectroscopy. This
was to investigate the underlying factors that may influence the improvement of drilling
fluid efficiency during drilling operations with the addition of Fe3O4 NPs. The structure
of Fe3O4 prepared using OLE was studied using Fourier transform infrared (FTIR), with
spectra obtained in the 400–4000 cm−1 range using a Nicolet iS10 FT-IR Spectrometer, UK.

2.2.2. Rheological Properties Investigation

Fann Model 35 Viscometer (Houston, TX, USA) and Anton Paar rheometer (Germany)
were operated at room temperature to measure the yield point (YP), plastic viscosity (PV),
apparent viscosity (AV), 10 s, and 10 min gel strengths (GS) of WBDF. The mud sample was
poured into the testing cup, and the rotor sleeve was immersed to the scribe line precisely
with the sleeve rotating at 600 rpm and 300 rpm, waiting for dial readings to reach steady
values which recorded the dial readings (Φ600) and (Φ300), respectively.

Relations below are used to obtain the desired parameters:
Plastic Viscosity, µp (cP): µp = Φ600 − Φ300
Apparent Viscosity, µa (cP): µa = (Φ600)/2
Yield Point, Yb (lb/100ft2): Yb = Φ300 − µp
Gel strength is the values of the maximum dial reading attained at 3 rpm after keeping

the fluid undisturbed for a specific time, 10 s and 10 min for 10 s gel strength and 10 min
gel strength, respectively.

2.2.3. Filtration Properties

A filtration test was conducted by pouring the mud sample into the cell to within
1/2 inch of the top, and the filtrate was collected using a dry graduated cylinder placed
under the drain tube. OFITE filter press was used for this test. The system used N2 to supply
pressure and a standard filter paper. The pressure relief valve was opened and began to
record filtrate volume in the function of time. According to the API recommendation for
this test, the operating pressure was 100 psi and the temperature was atmospheric (77 ◦F).
After 30 min, the filtrate volume was measured in cubic centimetres (to 0.1 ccs). The filter
cake thickness was measured using digital Vernier caliper model Mitutoyo 500-197-20, to
the nearest 1/32 inch.

3. Results and Discussion
3.1. XRD Analysis

Powder X-ray diffraction was conducted to investigate the crystalline nature, phase
purity, as well as average size of the Fe3O4-NPs, synthesized using OLE.

X-ray diffraction was carried out to investigate the phase purity, crystalline nature,
as well as the average size of the Fe3O4-NPs, synthesized using a PANalytical X’Pert PRO
(Almelo, the Netherlands) X-ray diffractometer (XRD), (λ = 1.54 Å Cu Kα at 40 kV and
20 mA) in the 2θ range from 10◦ to 90◦.

Figure 4 shows the XRD pattern of synthesized nanoparticles. The diffraction peaks
appeared at 2θ = 30.16◦, 35.52◦, 43.17◦, 47.27◦, 57.1◦, 62.7◦, and 74.2◦, corresponding to the
crystal planes (220), (311), (400), (331), (511), (440), and (533), respectively. The analyzed
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diffraction peaks that have a cubic phase matched well with the standard magnetite XRD
patterns (JCPDS file No.96-900-5839).
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There were no peaks of other iron compounds discovered, indicating that Fe3O4 is
extremely stable. Furthermore, it verifies that no other components were formed during the
reflexing or heating processes. Thus, the appearance of sharp pics confirms the complete
formation of high crystallinity Fe3O4-NPs.

The formula of Debye–Scherrer D = K∗λ
β∗cosθ was used to calculate the average crystal

size of Fe3O4-NPs [35].
Where D is the size of synthesized Fe3O4-NPs crystallite, K is Scherrer constant of

0.9, λ is the X-ray radiation wavelength of Cu Kα (0.154 nm), βhkl is the full-width at half
maximum (FWHM) expressed in radian, and θhkl is the diffraction angle. Full-width-at-
half-maximum (FWHM) of the intense peak (3 1 1) was used and the crystallite size was
found to be 15.3 nm.

3.2. FESEM Analysis

The examination of the morphology of the prepared Fe3O4-NPs was conducted by
using field-emission scanning electron microscopy (FESEM) with energy-dispersive X-ray
spectroscopy (EDX).

Figure 5a shows the rough and hard surface of Fe3O4-NPs comprising numerous
heterogeneous agglomerates in flake shape and cavity-like structures as highlighted in
Figure 5b,c, respectively.

Figure 5b displays that Fe3O4-NPs had a strong tendency to aggregate, resulting in
a cluster formation, which was because of the Fe3O4’s small size (15.3 nm), according to
XRD results.

Figure 5d represents the EDX of Fe3O4-NPs, which indicates the presence of Fe and
O in an atomic ratio of approximately 3:4 in the NPs system besides the small amount
of carbon which may be due to the carbonization of organic matter present in OLE after
calcination process at 550 ◦C.
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3.3. FTIR Study

The Fourier transform infrared (FTIR) spectroscopy analysis of OLE and Fe3O4-NPs is
presented in Figure 6. The investigation of the nature of the chemical bonding between
Fe3O4 particles and OLE was carried out by FTIR spectroscopy, with spectra obtained
within the range of 400–4000 cm−1.
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In Figure 6a, the spectra of OLE showed strong absorption bands at 3364, 2975, 1693,
1387, 1087,1049, and 881 cm−1, while absorption bands of synthesized Fe3O4-NPs were
present at 3253, 2925, 1627, 1369, 1097, 699, 564, and 420 cm−1 (Figure 6b).

The O-H stretching vibration modes of free or adsorbed water and OH groups on
magnetite particles’ surfaces are responsible for the broadband observed at 3364 cm−1 in
the OLE. The IR band at 1387 cm−1 could very well be a phenolic OH bending.

According to Figure 6a, the absorption band at around 1693 cm−1 is associated with
carbonyl stretching C = O (usually, peaks around 1700 indicate C = O, either from the
sample or adsorbed CO2). C-H stretching and bending had lower peak intensities at
2975 and 881 cm−1, respectively. The -CH2 functional group is indicated by these C-H
bands [36]. Aromatic compounds are commonly found in plants. The presence of a
C-O stretching vibration band is indicated by the absorption peaks at around 1087 and
1049 cm−1 (of secondary and primary alcohol groups, respectively). From the FT-IR spectra
of the synthesized nanoparticles using OLE, Figure 6b clearly narrates that the peaks
located at 3253, 2925, 1624, 1369, 1097, and 699 cm−1 were a little bit shifted, confirming the
interaction between OLE and nanoparticles. The spectra of synthesised Fe3O4-NPs, on the
other hand, show two distinct sharp peaks at 564 and 420 cm−1. Fe3O4 is responsible for
absorption peaks that appear in the 400–600 cm−1 range [37]. Hence, the Fe-O stretching
vibration band is assigned to both absorption bands. Hence, the FT-IR results indicated the
bonding types between OLE and Fe3O4-NPs.

3.4. Effect of Fe3O4-NPs Concentration on Drilling Fluid: Rheological Properties

Drilling fluid rheology is a critical function that influences many aspects of the drilling
process. The most important rheological properties are likely apparent viscosity, plastic
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viscosity, yield point, and fluid gel strength, which were well achieved in this work by
incorporating Fe3O4-NPs with WBDF, as shown in Table 2 and Figure 7.

Table 2. Effects of variation in the concentration of Fe3O4-NPs on WBDF properties.

Properties WBDF 1% Fe3O4 NPs 10% Fe3O4 NPs 50% Fe3O4 NPs

PV (mpa.s) 14 18 20 20.5
AV (mpa.s) 19 21 23 24

YP (pa) 15 16 18 19
10 s GS (pa) 8 6.3 7.3 8.3
10 m GS (pa) 11 9 10.5 11

30 mn filtrate (mL) 9 4.8 6.2 6.8
Filter cake thickness (mm) 2.31 1.81 1.94 2.16
Filter cake thickness (inch) 0.0787 0.0393 0.3937 0.7874

PV: plastic viscosity AV: apparent viscosity YP: yield point GS: gel strength.
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3.4.1. Plastic Viscosity

The optimum value of PV should be achieved by taking into account all operating
conditions and the necessary mud characteristics for safe drilling operations.

Figure 8 shows the variation of viscosity of the WBDF and nanofluids (NF) at 25 ◦C
upon addition of 0.01, 0.1, and 0.5 wt% Fe3O4-NPs.

The addition of 0.5 wt% Fe3O4-NPs showed a greater impact on the bentonite so-
lution’s viscosity than the 0.01 and 0.1 wt% Fe3O4-NPs had, compared to the bentonite
control. The viscosity-increasing behavior with the addition of Fe3O4-NPs can be related to
multiple mechanisms that are mostly dependent on the characteristics of nanoparticles and
their optimal dispersion within the platelets of clay forming a continuous phase of the mud
system [38]. At the same dispersed particle volume concentration, it is well known that
the nanofluid’s viscosity is much higher than the traditional dispersions viscosity. Once
NPs are incorporated in the fluid, friction between layers of fluid may increase, causing
the nanofluid viscosity to increase [39]. Furthermore, NPs act as a bridge between the clay
platelets, due to their high surface area to volume ratio, and positively charged surface,
resulting in strong attractive forces between the positive surface of Fe3O4-NPs and the clay
particles negative charged area [40]. The viscosity of each fluid is ascribed to the mode of
interaction between either the clay platelets and the surface charges of NPs or between
the intercalated clay platelets themselves. Fe3O4-NPs promoted positive charges on the
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surface, which was induced by the wrapping of polyphenolic compounds present in the
OLE around the nanoparticles during the preparation process (as illustrated in the graphi-
cal abstract). Thus, the addition of Fe3O4-NPs to the WBDF encouraged favorable charges
on the negative bentonite platelet charges [41]. This attraction between Fe3O4-NPs and
the bentonite clay platelet could be classified into three different categories: the attraction
between the edges (E-E) as well as the attraction between faces (F-F) and attraction between
edge and face (E-F), resulting in the creation of a network between Fe3O4-NPs and the
bentonite clay platelets; this phenomenon is known as heterocoagulation [42].
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FTIR spectroscopy was used to verify whether there were any possible bonding effects
between Fe3O4-NPs and OLE, while the dispersion and the special heterogeneous mor-
phological structures of nanoparticles were investigated by using field emission scanning
electron microscopy (FESEM). FTIR and FESEM findings confirm the hypothesis of the
viscosity increase.

3.4.2. Yield Point

Yield Point (YP) is defined as fluid flow resistance due to electrochemical forces within
the fluid. The electrical charges were caused by the electrochemical forces on the reactive
particles surface [38]. The mud’s ability to remove cuttings from the annulus under difficult
conditions was evaluated by its yield point. The effects of adding 0.01, 0.1, and 0.5 wt%
NPs on the yield point of WBDF are depicted in Figure 9.

Increased NPs concentrations result in better WBFs yield point performance. The
maximum value of yield point was achieved 19 Pa at a concentration of 0.5 wt% compared
to the bentonite control. The yield point-increasing behavior with the addition of Fe3O4-NPs
can be related to the network structure formation between nanoparticles and bentonite clay.

This network improved fluid viscosity and flow resistance, as evidenced by a nearly
one-order-of-magnitude increase in yield stress compared to the bentonite control, as
shown in Figure 9. These findings are consistent with previous outcomes [43].
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3.4.3. Gel Strength

Gel strength tests the drilling fluid’s ability to keep the drill cuttings in suspension
when circulation is stopped [38].

As shown in Figure 10, 0.5 wt% Fe3O4-NPs WBM have displayed sufficient gel strength
at both 10 s and 10 min. The 10 s gel strength of WBDF was found to be constant (11 Pa)
even after the addition of 0.5 g of Fe3O4-NPs, while the 10 min gel strength of WBDF
increased slightly from 8 Pa to 8.3 Pa with 0.5 g Fe3O4-NPs. Hence, the function as a
chain linking point between bentonite platelets that facilitates the gelation behavior of
Fe3O4-NPs drilling fluid may be the reason behind that improvement (as explained in
Section 3.4.1). On the other side, 10 s gel strength of WBDF was reduced from 8 Pa to
7.3, and 6.3 Pa with the addition of 0.1, and 0.01 g of Fe3O4-NPs, respectively. The same
observation could be obtained for 10 min gel strength of WBDF, which was decreased with
the incorporation of medium and low concentration of Fe3O4-NPs. This may be explained
by the insufficient concentrations of 0.1 and 0.01 g of Fe3O4-NPs for the formation of
gelation behavior between bentonite platelets.

3.5. Effect of Fe3O4-NPs Concentration on Drilling Fluid: Fluid Filtration Loss

Figure 11a presents the impact of Fe3O4-NPs drilling fluids on the filtration perfor-
mance and the filter cake thickness at different concentrations.

The WBDF has shown a filtrate loss volume of 9 mL. The fluid loss has been signif-
icantly decreased into 6.8, 6.2, and 4.8 mL after the addition of 0.5, 0.1, and 0.01 wt% of
Fe3O4-NPs to the WBDF, respectively, as shown in Figure 11b. Furthermore, as shown in
Figure 11c, a decrease in fluid loss volume results in a decrease in filter cake thickness.
It is clear that by adding the lowest Fe3O4-NPs concentration (0.01 wt%) to the mud,
the smallest fluid loss volume was established and the thinnest mud cake was obtained,
demonstrating great enhancement by lowering the filtrate volume by 46.6% when com-
pared to WBDF, and hence this concentration could be optimal, and at this concentration,
Fe3O4-NPs contribute to filling the nano- and micro-gaps in the filter cake [44,45]. As
a result, Fe3O4-NPs were critical in blocking the nano-pores in the filter cake made of
bentonite particles.
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4. Conclusions

In this work, novel drilling fluids containing Fe3O4-NPs were prepared via green
synthesis using OLE. Three different concentrations, low (0.01 wt%), medium (0.5 wt%),
and large (0.5 wt%) of Fe3O4-NPs, were tested and evaluated for their capacity to give in
situ rheological controllability at ordinary conditions. The following conclusions can be
drawn based on the results obtained:

â The effect of Fe3O4-NPs concentration on the rheological property and fluid filtration
was investigated.
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â The best performance in both mud cake thickness and filtrate loss enhancement was
obtained with the lowest concentration of Fe3O4-NPs.

â In an aqueous setting, the Fe3O4-NPs exhibit positive charges due to the phenolic
compounds coated the nanoparticles, which would attract the bentonite clay platelets’
negatively charged surfaces.

â Coagulation was induced by the addition of Fe3O4-NPs to the WBM; the collective be-
havior of various types of clay particles were induced by the addition of an electrolyte
to the clay solution, promoting a linked structure.

â The linked structure allows more water to be trapped between the layers. This causes
an increase in viscosity and yield stress while reducing fluid filtration.

â The addition of Fe3O4-NPs reduced fluid loss volume, resulting in a thinner filter cake.
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