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ABSTRACT
Background: Gut microbiota has been proposed to be related to the pathogenesis of
pulmonary diseases such as asthma and lung cancer, according to the gut-lung axis.
However, little is known about the roles of gut microbiota in the pathogenesis of
bronchopulmonary dysplasia (BPD). This study was designed to investigate the
changes of gut microbiota in neonatal mice with BPD.
Methods: BPD model was induced through exposure to high concentration of
oxygen. Hematoxylin and eosin (H&E) staining was utilized to determine the
modeling efficiency. Stool samples were collected from the distal colon for the
sequencing of V3–V4 regions of 16S rRNA, in order to analyze the gut microbiota
diversity.
Results: Alpha diversity indicated that there were no statistical differences in the
richness of gut microbiota between BPDmodel group and control group on day 7, 14
and 21. Beta diversity analysis showed that there were statistical differences in the
gut microbiota on day 14 (R = 0.368, p = 0.021). Linear discriminant analysis
effect size (LEfSe) showed that there were 22 markers with statistical differences
on day 14 (p < 0.05), while those on day 7 and 21 were 3 and 4, respectively.
Functional prediction analysis showed that the top three metabolic pathways were
signal transduction (PFDR = 0.037), glycan biosynthesis and metabolism
(PFDR = 0.032), and metabolism of terpenoids and polyketides (PFDR = 0.049).
Conclusions: BPD mice showed disorder of gut microbiota, which may involve
specific metabolic pathways in the early stage. With the progression of neonatal
maturity, the differences of the gut microbiota between the two groups would
gradually disappear.
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BACKGROUND
Bronchopulmonary dysplasia (BPD) is a chronic pulmonary disease that is commonly
reported in neonates after long-term oxygen inhalation or mechanical ventilation
(Jensen et al., 2019). Some children with BPD may present persistent lung function
deterioration until reaching adulthood (Cassady, Lasso-Pirot & Deepak, 2020; Principi, Di
Pietro & Esposito, 2018). The pathogenesis of BPD is multifactorial. To date, there are still
no ideal treatment options for treating children with BPD. It has been shown that
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alterations in the lung microbiota are associated with several diseases, such as asthma,
chronic obstructive pulmonary disease, and cystic fibrosis (Barcik et al., 2020; Cuthbertson
et al., 2020; Sze, Hogg & Sin, 2014). In hyperoxia environment, the changes of mouse lung
microbiota preceded the emergence of lung tissue injury (Ashley et al., 2020). A sterile
mouse model shows that mice lacking the respiratory microbiota have less lung damage
induced by a hyperoxia environment (Dolma et al., 2020). With the proposal of the
gut-lung axis concept (Budden et al., 2017), the relationship between alterations in
intestinal microbiota and BPD warrants further exploration. Bacteria, as the most
abundant and important component of intestinal microbes (Arumugam et al., 2011), play a
decisive role in the gut-lung axis. Therefore, we mainly investigated the alteration of gut
bacteria in relation to BPD. In addition, we established a hyperoxia BPD mouse model
and explored the alteration of gut bacteria in this model.

MATERIALS AND METHODS
Animals
Mice, like premature infants, are in the saccular stage of lung development at birth,
which can simulate the development process of lung tissue in children with BPD.
Moreover, mice are very suitable to be selected as animal models because of their high
gene homology with human genes, short pregnancy cycle and low test cost (Giusto et al.,
2021). Pregnant mice of specific-pathogen free (SPF) Kunming mice were purchased
from Sipeifu Biotech (Beijing, China; Approval No.: SCXK-2019-0010), and housed in
SPF-grade environments. Experiments were implemented in the Experimental Animal
Center of Qingdao University and the Medical Research Center of Affiliated Hospital of
Qingdao University. The study protocols were approved by the Ethical Committee of
Affiliated Hospital of Qingdao University (Approval No.: QYFYWZLL26150).

Induction of BPD and grouping
Neonatal mice were randomly divided into control group (n = 5 L) and BPD group (n = 5
L), and there are 5–6 mice in each litter. There is no consensus on the optimal oxygen for
inducing BPD models (Giusto et al., 2021), and we referred to one of the development
model of mice (Nardiello et al., 2017). Neonatal mice in BPD group were subject to
high concentration of oxygen (80 ± 5%) for 3 weeks. In addition, the carbon dioxide
generated by the mice was removed using the absorption agent. In control group, the
animals were exposed to oxygen at a concentration of 21%. All the animals in both groups
were kept under a temperature of 20 ± 2 �C, in a humidity of 55 ± 5%, in a light cycle
of 12 h/12 h. They were all free access to breast-feeding. The mice for breeding these
animals were exchanged per day to prevent oxygen toxicity.

Experimental procedure
On day 7, 14 and 21 after birth, one mouse was randomly selected from each litter and was
sacrificed using cervical dislocation. Then the pulmonary tissues and stool samples were
obtained. Pulmonary samples were washed with sterile PBS solution, fixed in 4%
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paraformaldehyde, and embedded in paraffin, followed by Hematoxylin and Eosin (H&E)
staining to determine the presence of pulmonary alveolar fusion, inflammatory infiltration,
pulmonary septum thickening, pulmonary tissue disorder, in order to validate the
modeling.

To prevent the environmental pollution, the stool samples were obtained under
sterilized conditions from the distal colon, followed by storing at −80 �C for analysis.
Stool samples were subject to sequencing of V3–V4 regions of 16s rRNA (Claesson
et al., 2010) based on Illumina HiSeq platform provided by BMKCloud (Beijing, China),
in order to obtain the raw sequencing data of the gut microbiota. The primers were
338F (5′- ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGT
WTCTAAT-3′). Our raw data files have been uploaded online on NCBI (PRJNA743668).
After that, raw reads were filtered by Trimmomatic (v0.33), and the primers were removed
by Cutadapt (v1.9.1), to obtain high-quality reads. After high-quality reads were spliced
by FLASH (v1.2.7), the clean reads can be obtained. Finally, clean reads can obtain effective
sequences by removing chimeras through UCHIME (v4.2). The statistics of sequencing
data processing process were shown in the Table S1.

We used Usearch to cluster the reads at 97.0% similarity level and obtain the operational
taxonomic units (OTUs). Taking Silva as the reference database, we used naive Bayesian
classifier to classify the OTUs, in order to obtain the composition of gut microbiota at
various levels.

In this section, we analyzed the gut microbiota in both groups at different stages.
Ace and Chao1 index were obtained under a similarity of 97%. Then species accumulation
curves and Shannon–Wiener curves were established. These data could reflect the sample
size and abundance between BPD model group and control group. Afterwards, PCoA
data from each group were obtained, in order to validate the significance of the sample
similarity. Then the biomarkers at different stages were obtained, in order to further
analyze the significances at the phylum level. Finally, we tried to identify different
metabolic pathways between two groups.

Statistical analysis
Data were presented as mean ± standard deviation. Alpha and Beta analyses were
conducted by QIIME2 analysis platform. We conducted the LEfSe data analysis between
two groups with toolkit of Python language, and the analysis of similarities (Anosim) with
the vegan toolkit of R language. The metabolic pathway analysis was conducted using
Picrust2 software. On the Student’s t-test, 95% confidence intervals were used. A p value of
less than 0.05 was considered to be statistically significant. PFDR was p-value using false
discovery rate (Noble, 2009). The analyses were drawn using GraphPad Prism 9. It can
be seen from the statistical table of each classification level that 78% of bacteria at the
species level are uncultured bacteria (Table 1). Therefore, we did not discuss the
classification of gut microbiota at the species level, and we mostly discussed it at the
phylum level.
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RESULTS
Morphological changes of lung in different groups
H&E staining indicated that the morphology of pulmonary alveoli in control group
was regular on day 7 with even sizes (Fig. 1A). On day 14, the structure of pulmonary
alveoli was normal, and there was narrowing in the alveolar septum in control (Fig. 1B).
On day 21, there was increase in number of pulmonary alveoli, together with narrowing of
alveolar septum. There were no aberrant changes in terminal bronchus in control
group (Fig. 1C). For the H&E staining in BPD model group, part of pulmonary alveoli
showed fusion on day 7, combined with infiltration of inflammatory cells (Fig. 1A). On day
14, the number of pulmonary alveoli showed decrease and the structure was not
regular. There was massive interstitial cell hyperplasia, together with thickening in alveolar
septum (Fig. 1B). On day 21, pulmonary alveoli were no longer available, and there was
obvious dilatation in terminal bronchus. In addition, structural disorder was noticed in
pulmonary tissues, indicating block in pulmonary development (Fig. 1C).

Alpha diversity
Species accumulation curve was used to confirm whether the sample was sufficient. In the
species accumulation curve, the growth rate of magenta box line reflected the emergence
rate of new species under continuous sampling. When the curve was tended to be flat,
it meant that there were enough samples to reflect the number of species in the
environment. The green box curve represented the number of species common to each
sample. With the increase of sampling samples, the green box curve decreased. When the
curve was tended to be flat, it meant that the same species in the environment also
tend to be stable. According to our species accumulation curve, the magenta and green
curves have tended to be flat, indicating that the number of samples is sufficient for
data analysis (Fig. 2A). Multi-sample Shannon curves indicated that the data volume was
adequate for the sequencing, and the sample traits would not increase with the elevation of
sequencing volume (Fig. 2B). Alpha diversity was analyzed to evaluated overall differences
between the gut microbiota in model group and control group. The ACE and Chao1
index showed no statistical differences in richness of gut microbiota between control group
and model group on day 7, 14, and 21, respectively (p > 0.05, Figs. 2C and 2D). This implied
that there were no statistical differences in the richness of gut microbiota between two groups.

Beta diversity
In this section, Beta diversity analysis was performed based on un-weighted unifrac
distance. PCoA plot showed that there was no obvious separation between two groups on

Table 1 The statistics of uncultured bacterium.

Level Phylum Class Order Family Genus Species

Count 0 610 9,442 54,658 387,267 1,552,474

Ratio (%) 0 0.03 0.48 2.76 19.59 78.53

Note:
Count: the effective reads of uncultured bacterium; Ratio: the percentage of count in all effective reads (n = 1,976,896).
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day 7 and day 21, respectively. In contrast, there was significant separation of PC1 between
two groups on day 14 (Figs. 3A–3C). Analysis of similarities indicated that there was no
significant difference in gut microbiota between two groups on day 7 (R = −0.028,
p = 0.628), while the difference was statistically significant between two groups on day 14
(R = 0.368, p = 0.021). On day 21, there was no difference in gut microbiota between two
groups (R = 0.188, p = 0.079, Table 2).

Difference analysis
LEfSe data analysis was performed to investigate the biomarkers, and all biomarkers
had linear discriminant analysis (LDA) scores of higher than 4. There were three
biomarkers with statistical differences at all biological levels on day 7, all of which were in

Figure 1 H&E staining of lung tissue under a magnification of ×100. (A–C) H&E staining of lung
tissue on day 7, 14 and 21. BPD: bronchopulmonary dysplasia.

Full-size DOI: 10.7717/peerj.13295/fig-1
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Figure 2 Alpha diversity reflected richness and diversity of bacterial communities. (A) Species
accumulation curve of the sample at the genus level. The curve was tended to be flat, indicating sufficient
sampling. (B) Shannon index curve of samples at different time. Curve was flat, and amount of
sequencing tended to be saturated, which could reflect the biological diversity of the samples. (C and D)
Student’ s t-test was used to test significance based on ACE and Chao1 index. BPD, bronchopulmonary
dysplasia. Full-size DOI: 10.7717/peerj.13295/fig-2

Figure 3 PCoA analysis based on un-weight Unifrac distance between groups. (A–C) PCoA analysis
on day 7, 14 and 21. PCoA, principal coordinates analysis; BPD, bronchopulmonary dysplasia. The red
dots represent Control and the green dots represent BPD. Full-size DOI: 10.7717/peerj.13295/fig-3
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the control group (p < 0.05). On day 14, there were statistical differences in 22 biomarkers
at each biological level, among which 16 were enriched in BPD group and six were
enriched in control group (p < 0.05, Figs. 4A and 4B). On day 21, there were statistical
differences in four biomarkers at all biological levels, all of which were in BPD group
(Fig. 4C).

On day 14, the relative abundance of intestinal microbiota showed that the proportion
of Firmicutes, Bacteroidetes and Proteobacteria in phylum level was higher than 80%
(Fig. 5). Analysis of metastats on phylum level indicated that the relative richness of

Table 2 Analysis of similarities.

Variable Day 7 Day 14 Day 21

Sample similarity within groups

All 0.212 ± 0.049 0.298 ± 0.035 0.236 ± 0.043

Control 0.243 ± 0.044 0.348 ± 0.065 0.265 ± 0.034

BPD 0.181 ± 0.031 0.248 ± 0.038 0.207 ± 0.031

Sample similarity between groups 0.204 ± 0.042 0.341 ± 0.035 0.246 ± 0.028

R value −0.028 0.368 0.188

p value 0.628 0.021 0.079

Note:
BPD, bronchopulmonary dysplasia.

Figure 4 LDA effect size showed the different microbiota from the kingdom level to the species level
between groups (LDA score >4 and P < 0.05). (A) Three biomarkers were significantly different in the
control group on day 7; (B) Twenty-two biomarkers were significantly different between groups on day
14; (C) Four biomarkers were significantly different in the BPD model group on day 21. LDA, linear
discriminant analysis; BPD, bronchopulmonary dysplasia. Full-size DOI: 10.7717/peerj.13295/fig-4
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Bacteroidetes in model group was significantly lower than that of control group (11.6% vs
54.8%, PFDR < 0.01), while the relative richness of Proteobacteria in model group was
significantly higher than that of control group (29.8% vs 5.1%, PFDR < 0.05). This was
consistent with the LEfSe results. The relative richness of Cyanobacteria, Acidobacteria,
Chloroflexi, Rokubacteria, Epsilonbacteraeot,Nitrospirae and Gemmatimonadetes in model
group was significantly higher than that of control (all PFDR < 0.05). The analysis of
metastats on phylum level was shown in Table S2.

Functional prediction
A total of 17 KEGG metabolic pathways associated with intestinal microbiota were
significantly different between the two groups. Three of them were enriched in the control
group and 14 were enriched in the model group. Signal transduction (PFDR = 0.037), glycan
biosynthesis and metabolism (PFDR = 0.032), metabolism of terpenoids and polyketides
(PFDR = 0.049) are the top three metabolic pathways with statistically significant
differences (Fig. 6).

DISCUSSION
Patients with intestinal diseases may present symptoms in respiratory system, while those
with respiratory diseases may accompany by intestinal symptoms (Neurath, 2020; Ojha
et al., 2018; Wang et al., 2014). Thus, there is a close interaction between respiratory and

Figure 5 The relative abundance of intestinal microbiota at the phylum level in different periods.
Only 10 groups of microbiota with the highest relative content were shown in the picture, and other
intestinal microbiota were classified as Others. BPD, bronchopulmonary dysplasia.

Full-size DOI: 10.7717/peerj.13295/fig-5
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intestinal diseases (Crawford, Nordgren & McCole, 2021; Raftery et al., 2020), which is
defined as gut-lung axis. To our best knowledge, the microorganism is crucial for the
development of immune system and metabolic balance in hosts (Budden et al., 2017;
Sarkar et al., 2021; Spielman, Gibson & Klegeris, 2018). The microflora in gut and lung play
important roles in the pathogenesis of pulmonary and intestinal diseases through the
gut-lung axis (Chioma et al., 2021; Deriu et al., 2016; Wypych, Wickramasinghe &
Marsland, 2019). However, there is a lack of studies on changes of gut microbiota in
neonates with BPD.

Our study was designed to investigate the changes of gut microbiota in BPD model.
We established the BPD model of neonatal mice by hyperoxia environment, to detecting
the changes of gut microbiota and the damage degree of lung tissue at different time.
Thus, we can clearly demonstrate the relationship between the intestinal microbiota and
the BPDmodel. On day 7, the anti-oxidant system in the pulmonary tissues was immature,
and the anti-infection and immune system development were not well developed.
Studies have shown that there would be blockage in alveolarization in lung-term exposure
of high concentration of oxygen (Yu et al., 2020). Additionally, there was massive
generation of TNF-a, IL-6, IL-8 and MCP-1 in lung tissues (Bhandari, 2010) and
inflammatory reactions in lung tissues. Our results showed that the lung tissue in model
group has been destroyed compared with the control group on day 7. However, there was
no significant difference in intestinal microbiota between two groups on day 7. This
indicates that the destruction of lung tissue occurs before the change of intestinal
microbiota in the BPD mouse model. On day 14, H&E staining showed serious injuries
in lung tissues than before, and the differences in gut microbiota between two groups were
statistically significant (P < 0.05). While the relative richness of Bacteroideteswas decreased

Figure 6 KEGG pathway analysis of the intestinal microbiota. Three pathways were enriched in
control model group, and fourteen pathways were enriched in BPD group. BPD: bronchopulmonary
dysplasia. Full-size DOI: 10.7717/peerj.13295/fig-6
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in gut microbiota of model group, the relative richness of Proteobacteria was increased.
KEGG pathway analysis indicated that there were statistical differences in signal
transduction, glycan biosynthesis and metabolism, as well as metabolism of terpenoids
and polyketides between two groups. This indicated that BPD rats showed disorder in the
gut microbiota associated with regulation of signal transduction and metabolism.
Nevertheless, the exact mechanisms are still unclear. The hyperoxic environment would
induce damages to alveolar septum (Dauger et al., 2003) and there might be persistent
inflammatory response in lung tissues (Balany & Bhandari, 2015), which further
aggravated lung injury. On day 21, the pulmonary alveoli was no longer available in the
pulmonary tissues of BPD model, and the structure in pulmonary tissues was not regular.
In control group, the development of pulmonary tissues was normal. However, there
was no statistical difference in gut microbiota between two groups. Here are some reasons,
the composition of gut microbiota was affected by diet, age, development, genetics, and
antibiotics (Jacobs et al., 2020; Lynch & Pedersen, 2016). In cases of any changes of diet,
there would be rapid spontaneous remodeling for gut microbiota (Kau et al., 2011).
In our study, mice were randomly divided into different groups after birth, without
exposure to any antibiotics. All the animals were free access to a diet and water on day
12–21, followed by termination of lactation. On this basis, we hypothesized that with the
increase of age, there would be gradual maturity for gut development on day 21. In a
previous study, there would be a gut microbiota balance in mice since termination of
lactation (Pantoja-Feliciano et al., 2013). After spontaneous intake of diet, the uptake of
fiber showed increase, which promoted the stability of gut microbiota (Conte & Toraldo,
2020) and reduction of differences in gut microbiota between two groups.

In our experiment, lung tissue damage in BPD mice occurred before gut microbiota
alterations, and the gut microbiota of the two groups appeared significantly different on
day 14, which may be related to the regulation of signal transduction and metabolism.
It has been noted that intestinal microbes can have effects on lung tissue, disruption of the
gut microbiota promotes a more severe BPD phenotype (Willis et al., 2020). This situation
where the gut and lung interact with each other is called the gut-lung axis. In newborn
mice, there is a critical developmental period during which the gut microbiota can guide
the pulmonary transport of innate lymphocytes (ILC3) and affect the susceptibility to
bacterial pneumonia (Gray et al., 2017). Microorganisms could regulate immune reactions
in intestinal and pulmonary tissues through modulating NLRP3 inflammatory bodies,
which then affect intestinal and pulmonary disorders (Donovan et al., 2020). Short chain
fatty acid generated by gut microbiota would regulate immune balance in lung tissues
(Depner et al., 2020). Breast milk may involve in prevention of BPD through affecting
formation of microorganisms and regulating inflammatory reactions (Piersigilli et al.,
2020). The mechanism of intestinal microbes affecting lung tissue is very complex, and in
the future, more studies are required to illustrate the potential mechanism. Changes of
microorganism at early stage would affect the lung response in male mice responding to
environmental changes (Brown et al., 2020). In our study, the gut microbiota of the
two groups of mice was significantly altered on day 14, and the difference gradually
disappeared on day 21. We speculate that there is a certain possibility to delay or alleviate
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the progression of BPD by regulating gut microbiota at the early stage of BPD. Therefore,
further studies are required to further investigate whether early-stage interference to gut
microbiota would affect the progress of BPD.

There are some limitations in this study. There was no grouping based on gender in this
study. Although the changes of pulmonary tissues in BPD mice and control mice were
similar, there might be differences in microorganism formation and microbiota between
neonatal mice and neonates (Hildebrand et al., 2013). In addition, considering the
differences in development time between humans and mice, it is necessary to verify these
data in humans. Therefore, verification is our next effort in clinical practice.

CONCLUSIONS
Our data proved the change of lung tissues before the change of intestinal microbiota in the
model group. There was alteration of gut microbiota in BPD mice on day 14. Specifically,
the proportion of Bacteroidetes and Proteobacteria showed significant changes, which
may be related to the signal transduction and metabolic signaling pathways in the early
stage. With the progression of neonatal maturity, the gut microbiota gradually stabilized.
Therefore, whether early changes in the gut microbiota can reduce or delay the progression
of BPD requires further research.

ABBREVIATIONS
BPD bronchopulmonary dysplasia

H&E hematoxylin and eosin

LDA linear discriminant analysis

LEfSe linear discriminant analysis effect size

SPF specific-pathogen free

Anosim analysis of similarities
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